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Novel and Simple High-Frequency Single-Port
Vector Network Analyzer

Mohamed A. Abou-Khousa, Student Member, IEEE, Mark A. Baumgartner,
Sergey Kharkovsky, Senior Member, IEEE, and Reza Zoughi, Fellow, IEEE

Abstract—Portable, accurate, and relatively inexpensive high-
frequency vector network analyzers (VNAs) have great utility for
a wide range of applications, encompassing microwave circuit
characterization, reflectometry, imaging, material characteriza-
tion, and nondestructive testing to name a few. To meet the rising
demand for VNAs possessing the aforementioned attributes, we
present a novel and simple VNA design based on a standing-
wave probing device and an electronically controllable phase
shifter. The phase shifter is inserted between a device under test
(DUT) and a standing-wave probing device. The complex reflec-
tion coefficient of the DUT is then obtained from multiple stand-
ing-wave voltage measurements taken for several different values
of the phase shift. The proposed VNA design eliminates the need
for expensive heterodyne detection schemes required for tuned-
receiver-based VNA designs. Compared with previously developed
VNAs that operate based on performing multiple power measure-
ments, the proposed VNA utilizes a single power detector without
the need for multiport hybrid couplers. In this paper, the efficacy
of the proposed VNA is demonstrated via numerical simulations
and experimental measurements. For this purpose, measurements
of various DUTs obtained using an X-band (8.2–12.4 GHz) proto-
type VNA are presented and compared with results obtained using
an Agilent HP8510C VNA. The results show that the proposed
VNA provides highly accurate vector measurements with typical
errors on the order of 0.02 and 1◦ for magnitude and phase,
respectively.

Index Terms—Phase shifter, power detector, reflection coeffi-
cient, standing-wave probe, vector network analyzer (VNA).

I. INTRODUCTION

H IGH-PERFORMANCE vector network analyzers
(VNAs) are the most prominent measurement instru-

ments used to characterize circuits and devices at radio,
microwave, millimeter-wave, and submillimeter-wave frequen-
cies [1], [2]. The VNA is designed to measure vector scattering
parameters, i.e., the complex reflection coefficient, of a
device under test (DUT) connected at its test port, without
disturbing the waves at that port. Therefore, the actual signal
measurements within the VNA are typically performed at
another location or port, and subsequently, the vector parameter
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at the test port is inferred or calculated from these
measurements [3].

In general, VNAs can be realized based on coherent and
noncoherent detection schemes. A VNA with coherent detec-
tion scheme measures the in-phase and quadrature components
of the complex signal reflected at or transmitted through the
test port. This is accomplished by utilizing a tuned receiver,
e.g., a heterodyne receiver architecture [4]. Nowadays, com-
mercial VNAs operating based on this detection scheme are
the most developed instruments for high-frequency vector mea-
surements. Since the tuned receiver detection scheme is inher-
ently narrow band in nature, e.g., a narrow-band intermediate
frequency stage, these VNAs usually offer a large measurement
dynamic range and a very low noise floor [4]. However, the high
complexity and cost associated with implementing the tuned
receiver, i.e., the need for highly stable phase-locked sources,
limits the utility of such VNAs in many applications where
simple, handled, and relatively inexpensive high-frequency
in situ vector-measuring devices are needed.

On the other hand, automatic VNA systems based on non-
coherent detection offer a relatively inexpensive and simple
alternative to the tuned receiver VNAs. With noncoherent de-
tection, the complex signal magnitude and phase are inferred
from simple power measurements. Multiprobe [5], six-port [3],
[6], and multistate [7] reflectometers are among the pioneering
designs upon which VNA designs based on noncoherent detec-
tion schemes were realized. The measurement dynamic range
of these systems is limited by the relatively low dynamic range
of a power detector, which, for these purposes, is commonly a
diode detector. However, this range can be extended using phase
modulation and a locked-in amplifier [8]. Many automatic VNA
systems based on these reflectometers have been proposed and
successfully implemented in the past, with a recent system
described in [9]. All of the aforementioned designs are funda-
mentally based on utilizing multiple power detectors connected
to multiport junctions, i.e., hybrid couplers, which necessitates
multistep characterization and calibration procedures [10].

A simple noncoherent detection-based VNA design using a
single power detector and a set of perturbation-two-port (PTP)
networks was proposed in [11]. The PTP approach is based
on using a set of perturbation networks inserted between a
DUT and a scalar network analyzer. The complex reflection
coefficient of the DUT is calculated from the magnitude of the
reflection coefficient measured by the scalar network analyzer
using a given set of PTP networks [11].

In this paper, we introduce a novel and simple noncoherent
detection-based VNA, which utilizes a single power detector

0018-9456/$26.00 © 2009 IEEE
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Fig. 1. Schematic of the proposed VNA.

and an electronically controllable phase shifter inserted be-
tween a DUT and a standing-wave probing device. Subse-
quently, the magnitude and phase of the reflection coefficient
of the DUT Γ are uniquely determined from standing-wave
voltages measured at three or more phase-shift settings. Given
that the phase-shifter characteristics at these settings are known,
the proposed VNA can fully be calibrated with only three
standard loads, i.e., known reflections. The phase shifter can
be characterized by measuring its scattering parameters either
using an independent VNA or using this same VNA in conjunc-
tion with a characterization procedure involving a set of known
standards.

Unlike the PTP approach, the proposed VNA design does not
require a scalar network analyzer. Using a single power detector
and avoiding the use of a scalar network analyzer and multiport
hybrid junctions by performing standing-wave measurements
are the main unique aspects of the proposed VNA, which
significantly reduces its complexity compared with the pre-
viously proposed noncoherent detection-based VNAs. Given
the current advanced state of small electronically controllable
phase-shifter designs, implementing the proposed novel VNA
design yields an accurate, wideband, robust, handheld, rela-
tively inexpensive, and high-performance measurement device
that may be used for a variety of diverse applications.

This paper describes the design of the proposed VNA and
demonstrates its accuracy for complex reflection coefficient
measurements. Subsequently, the VNA performance is inves-
tigated via simulations considering various critically important
system parameters such as the number of phase-shift settings,
relative phase shifts, characteristics of the phase shifter, and
detector noise. Moreover, the experimental attributes of an
X-band (8.2–12.4 GHz) prototype system is presented based on
a commercially available off-the-shelf electronic phase shifter.
The measurement accuracy associated with the prototype VNA
is then compared with that of an Agilent HP8510C VNA.

II. PROPOSED VNA DESIGN

The developed VNA is formed by inserting an electroni-
cally controllable phase shifter between a simple standing-wave
probing device and a DUT, as shown in Fig. 1. The standing-
wave probing device consists of a transmission line (TL), e.g.,
a straight waveguide section, with a probe attached to a diode
detector. The reflected signal from the DUT is then combined
with the incident signal (from the isolated oscillator) to form a
standing wave in the TL. Subsequently, a diode detector located
a distance L along the TL produces a dc voltage proportional to

the standing-wave power at that location. In this configuration,
the phase shifter is used to electronically “move” the standing-
wave pattern with respect to the detector location and hence
obtain the pertinent reflection information without the need to
move the detector itself, as in the slotted line method [1], or
use multiple detectors along the TL, as in some realizations of
six-port reflectometers [5], [12], [13].

A. System Concept

Assuming that the diode detector is biased in the square-law
region, the measured standing-wave voltage as a function of the
phase shift introduced by the phase shifter is modeled by

V (φm) = C
∣∣1 + S(φm)e−jβL

∣∣2 (1)

where C is a constant proportional to the incident power and the
diode detector characteristics, β = 2π/λg and λg are the propa-
gation constant and the wavelength in the TL, respectively, and

S(φm) = S11(φm) +
S21(φm)S12(φm)Γ

1 − S22(φm)Γ
(2)

is the effective reflection coefficient referenced to the output
port of the TL after accounting for the scattering character-
istics (S-parameters) of the phase shifter, i.e., Sij(φm), {i =
1, 2; j = 1, 2}.

The S-parameters of the phase shifter are assumed to be
known either from a system characterization procedure or
from prior independent measurements using a VNA. The lat-
ter option is particularly appealing with stable phase shifters
since the measured S-parameters can be saved and later used
during system operation. Similarly, the propagation constant
β, the detector location along the line L, and the constant
C are assumed to be known from system characterization.
Hence, the only remaining unknown in (1) is the sought-after
DUT reflection coefficient Γ. Several phase shifts {φm : m =
1, 2, . . . , M} and their corresponding measured standing-wave
voltages {V (φm) : m = 1, 2, . . . , M} are used to formulate
a system of M nonlinear equations, which can subsequently
be solved, i.e., using the Gauss–Newton method, to deter-
mine Γ. For example, Fig. 2 shows the actual (simulated)
and calculated complex DUT reflection coefficients obtained
using the proposed procedure for L = λg/4, C = −1,1 with an
ideal phase shifter, i.e., S11(φm) = S22(φm) = 0, S21(φm) =
S12(φm) = e−jφm , and three phase shifts of {φ1 = 0, φ2 =
10◦, φ3 = 20◦}. As shown in Fig. 2, the obtained solution for
Γ, which is based on using the three standing-wave voltages
produced by the three phase shifts, very closely matches the
actual DUT reflection used for the simulation.

For system design, it is important to find the minimum
number of phase shifts M required to uniquely calculate the
complex reflection coefficient of the DUT from the M voltage
measurements in (1). Assuming that the discrete phase shifts

1Negative diode detector polarity is assumed throughout this paper.
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Fig. 2. Actual and calculated DUT reflection coefficients based on noise-free
standing-wave voltages and three phase shifts.

are a means to sample the standing-wave pattern along the line,
the minimum number of phase shifts required to accurately
recover the standing-wave pattern from its samples, and con-
sequently the reflection information, is essentially dictated by
the sampling theorem. The standing-wave pattern is periodic
with a period equal to half of the wavelength in the TL, i.e.,
λg/2. If we were to sample the standing-wave pattern using
the phase shifter and a single detector, the minimum number of
samples (phase shifts) is determined by the Nyquist rate. Ac-
cordingly, the minimum sampling rate required to reconstruct
the standing-wave pattern of period λg/2 should be greater than
4/λg. This results in at least four samples for every λg along
the TL. Since the distance λg in the TL corresponds to a total
phase shift of 2π rad, the sampling rate should be greater than
2/π. Assuming that the relative phase shift interval of π rad
(V(φm) is periodic with a period of π), the minimum number
of required phase shifts is given by

M > 2 → Mmin = 3. (3)

This result is analogous to the requirement of using at least three
power detectors spaced along the λg/2 line to insure proper
sampling of the standing wave in multiprobe TL methods
[5], [13].

B. Calibration

In practice, the obtained DUT complex reflection coefficient
after solving the nonlinear equations involving the phase-shifter
characteristics and the corresponding standing-wave measure-
ments might not be accurate due to various imperfections in
the measurement system, i.e., reflections due to connector mis-
match, losses in the TL, etc. [These were not accounted for in
the model given in (1).] The effects of such imperfect hardware
can collectively be modeled as systematic errors, which, in
turn, can be calibrated out from the measured DUT reflection
coefficient, hence enhancing the measurement accuracy.

To reduce the effects of systematic errors, the proposed VNA
can be calibrated using the conventional three-term calibration
procedure used with traditional four-port reflectometers [14].
Following this procedure, a fictitious error adapter representing
three systemic errors is inserted between the test port and the
phase shifter. The three error parameters are determined from
the measured effective complex reflection coefficient of three
standard (known) loads. For this purpose, termination, short,
and offset short loads are used as the standard or calibration
loads. The effective complex reflection coefficient, which is
measured at the output port of the TL, for each standard load
connected at the test port is found after solving the set of
nonlinear equations involving the phase shifts and the corre-
sponding standing-wave voltages. Subsequently, the measured
DUT reflection coefficient is corrected based on the obtained
error terms [14].

C. Features

With three phase shifts, the resulting system of nonlinear
equations is in fact overdetermined since the complex reflection
coefficient represents only two unknowns (real and imaginary
parts of Γ). Hence, these equations can also simultaneously be
solved to obtain C. Additional phase shifts may also be used
to solve for other unknowns if needed, e.g., detector location,
and, more importantly, increase the measurement accuracy
through coherent averaging using many phase shifts produced
via simple electronic control. Consequently, the effects of the
unreliable standing-wave pattern measurements near standing-
wave nulls and detector noise can significantly be reduced.

Unlike the multiprobe techniques, which are bandwidth lim-
ited due to the fixed relative placement of the detectors, the
proposed design does not impose any restriction, neither on the
placement of the detector nor on the values of the phase shifts
for wideband coherent reflectometry measurements.

In general, the performance of the proposed VNA depends
on the following factors:

1) detector noise level;
2) phase-shift interspacing;
3) number of phase shifts;
4) DUT reflection coefficient, i.e., low and high reflection

coefficients;
5) quality of the phase shifter, i.e., return and insertion

losses;
6) detector characteristics;
7) repeatability in producing phase shifts.

The effect of the first five factors will further be examined in the
next section. The effect of the detector characteristics will not
be addressed in this paper. The detector is assumed to produce
a dc voltage proportional to the standing-wave power, i.e.,
operating in the square-law region. Deviations from this norm
can usually be corrected using known methods [15]. The phase-
shift settings should be repeatable to obtain consistent mea-
surements. To this end, the used phase-shifter characteristics
should remain constant over the course of the measurements.
Phase shifters with highly repeatable phase-shift settings are
very common nowadays.
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Fig. 3. Actual and calculated DUT reflection coefficients based on noisy
standing-wave voltages and three phase shifts (noise RMS of 1 mV).

III. SIMULATION RESULTS

The capability of the proposed VNA to accurately mea-
sure various DUT reflection coefficients in the presence of
measurement noise, i.e., detector noise, was investigated via
simulations. A VNA system with L = λg/4 and C = −1 was
considered to illustrate the operation of the proposed VNA
without the error adapter. The effect of detector noise was simu-
lated by adding independent identically distributed noise terms
to the M voltages computed from the standing-wave model as
per (1) before calculating the DUT reflection coefficient Γ. The
noise terms were modeled as samples of the Gaussian random
process with zero mean and standard deviation σ, representing
the detector noise root-mean-square (RMS) value. Fig. 3 shows
the actual and calculated DUT reflection coefficients Γ with
an ideal phase shifter producing three phase shifts of {φ1 =
0, φ2 = 10◦, φ3 = 20◦}, based on noisy standing-wave voltages
(σ = 1 mV). As shown in Fig. 3 and when compared with
the noiseless results shown in Fig. 2, it is clear that the DUT
reflection coefficient was uniquely determined, even in the
presence of detector noise. Average performance metrics, i.e.,
the RMS error (RMSE), will be used next to quantify the errors
introduced due to noise.

Theoretically speaking, the interspacing between the phase
shifts can be arbitrarily small, and yet, an accurate estimate of
the DUT reflection coefficient may still be obtained. However,
due to the noise contaminating the detected voltage, the spacing
between the phase shifts, within a relative phase shift interval
of π, affects the accuracy of the measurement results. Extensive
simulations were performed to study the effect of phase-shift
interspacing and noise RMS on the accuracy of the obtained
DUT reflection coefficient. For instance, consider measuring
a DUT reflection coefficient of Γactual = 0.5ejπ/4 using the
proposed system with M = 3 equally spaced phase shifts in
the interval from 0 to π. The phase shifts were {φ1 = 0, φ2 =
δφ, φ3 = 2δφ}, where δφ is the phase-shift interspacing (in
degrees) such that δφ < 90◦. Several noise RMS values and
phase-shift interspacing were considered, and the magnitude
and phase average RMSEs relative to the actual (simulated)

DUT reflection coefficient were computed for combinations of
noise RMS value and phase-shift interspacing. The RMSEs for
magnitude and phase are defined, respectively, as

Magnitude RMSE =

√√√√ 1
N

N∑
i=1

(|Γi| − |Γactual|)2 (4)

Phase RMSE =

√√√√ 1
N

N∑
i=1

(Angle(Γi/Γactual))
2 (5)

where Γi is the computed DUT reflection coefficient at the ith
simulation run. A total of N = 10 000 simulation runs with
different noise realizations were used to estimate the average
magnitude and phase RMSEs. The RMSE is used here as a
figure-of-merit to quantify the uncertainty in phase and magni-
tude measurements due to the detector noise only. The analysis
of other typical sources of measurement uncertainties such as
connection repeatability and calibration standards accuracy is
beyond the scope of this paper.

Fig. 4(a) and (b) shows the RMSEs for magnitude and phase,
respectively, as a function of the phase-shift interspacing for
different noise RMS values using an ideal phase shifter with
M = 3. The results show that magnitude and phase RMSE
values of less than 0.01 and 1◦, respectively, at δφ = 10◦ can be
achieved with a noise RMS value as high as 10 mV. For δφ <
10◦, the RMSEs for magnitude and phase rapidly and monoton-
ically decrease as the phase-shift interspacing decreases for all
noise levels. A marginal decrease in the RMSE performance is
observed after increasing the phase-shift interspacing beyond
δφ = 10◦ (the RMSE performance remains within the order
of the magnitude attained at δφ = 10◦). It is also apparent
that the RMSE performance linearly degrades as a function of
increasing noise RMS value.

As the minimum number of discrete phase shifts was earlier
established, it becomes important to study the improvement in
the performance of the system when more than three phase
shifts are used to calculate the DUT reflection coefficient.
Fig. 5(a) and (b) shows the RMSEs for magnitude and phase,
respectively, as a function of the number of phase shifts for
different noise levels with δφ = 10◦ for the same system pa-
rameters and DUT that were earlier used. For all noise levels,
increasing the number of phase shifts results in decreasing the
RMSEs for both magnitude and phase. An increase beyond
eight phase shifts only marginally improves the performance.
The linear relationship between the noise RMS value and the
RMSEs for magnitude and phase is also manifested in these
results.

Since the probed standing-wave voltage dynamic range
changes as a function the magnitude of the DUT reflection
coefficient |Γ|, the accuracy of the computed reflection coef-
ficient is also dependent on |Γ|. Typical magnitude RMSEs,
for three phase shifts and δφ = 10◦, as a function of |Γ|
for different noise RMS values are shown in Fig. 6(a). The
RMSE curves shown in Fig. 6(a) were normalized to the actual
magnitude of the DUT reflection coefficient (directly related to
the percentage error). The normalized RMSE is relatively high
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Fig. 4. (a) Magnitude and (b) phase RMSEs as obtained using the proposed VNA with M = 3 as a function of the phase-shift interspacing for different noise
RMS values.

Fig. 5. (a) Magnitude and (b) phase RMSEs as obtained using the proposed VNA as a function of the number of phase shifts for different noise RMS values
(δφ = 10o).

Fig. 6. (a) Normalized magnitude and (b) phase RMSEs as obtained using the proposed VNA as a function of the magnitude of the reflection coefficient (M = 3
and δφ = 10o).
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Fig. 7. (a) Normalized magnitude and (b) phase RMSEs as obtained using the proposed VNA with a nonideal phase shifter as a function of the magnitude of the
reflection coefficient (M = 3 and δφ = 10o).

for low DUT reflections. For such low reflections, the standing-
wave pattern is almost flat, and consequently, the anticipated
changes in the standing-wave voltage as a function of the phase
shifts can easily be masked by system noise. On the other
hand, high DUT reflections cause sharp nulls in the standing-
wave pattern. Reliable detection of changes in the standing-
wave voltage around these nulls in the presence of noise is
always problematic. Relatively better performance is obtained
for the middle reflection values between these two extremes, as
expected. For 0.1 < |Γ| < 0.8, the phase RMSE is almost linear
as a function of |Γ|, as shown in Fig. 6(b).

Thus far, the analyses and the corresponding results were
for an ideal phase shifter. However, nonideal phase-shifter
characteristics such as the input port return loss (RLi), the
insertion loss (IL), and the output port return loss (RLo) also
alter the standing-wave pattern and consequently influence the
performance of the proposed VNA. To highlight this effect,
the performance of the proposed VNA when using a nonideal
phase shifter characterized by RLi = 10 dB, IL = 8 dB, and
RLo = 20 dB (M = 3 and δφ = 10◦) was simulated. These
values were chosen since they closely match the corresponding
midband values of an X-band phase shifter used to construct
the prototype VNA, as will be described in the next section.
Fig. 7(a) and (b) shows the magnitude normalized RMSE
and the phase RMSE, respectively, as a function of |Γ|. The
high insertion loss of the phase shifter reduces the standing-
wave voltage dynamic range, and hence, the accuracy with
the nonideal phase shifter is, in general, lower compared with
that when an ideal phase shifter is considered (see Fig. 6), as
expected. The effect of standing-wave nulls on the accuracy of
determining high DUT reflections is also reduced in this case
since the insertion loss in the phase shifter significantly reduces
these nulls. Consequently, the RMSE monotonically decreases
as a function of increasing |Γ|.

Collectively, the simulation results show that the detector
noise and the characteristics of the phase shifter have a pro-
found effect on the performance of the proposed VNA and
therefore must properly be accounted for. The uncertainties in

Fig. 8. Schematic of the X-band VNA prototype.

measuring the magnitude and phase of the DUT reflection
coefficient linearly change with increasing noise RMS value.
Hence, it becomes imperative to use low-noise power detectors
and acquisition systems to obtain accurate measurement results.
Coherent averaging using multiple sets of phase shifts can
be implemented to reduce the combined effect of noise and
reduction in the voltage dynamic range due to the losses in the
phase shifter, as it will be shown later in this paper.

IV. MEASUREMENT RESULTS

An X-band (8.2–12.4 GHz) automated VNA prototype, as
depicted in Fig. 8, was constructed and tested. The standing-
wave device consisted of a straight section of an X-band rec-
tangular waveguide and a zero-biased Schottkey diode detector.
The output power of the sweep oscillator was set such that
the diode detector operated in the square-law region for all
frequencies within the band. Since the corresponding detector
output voltage is low in that region, a low-noise instrumentation
amplifier was used to amplify the output voltage. A com-
mercially available electronic phase shifter (controllable by a
variable dc input voltage) was used in this implementation. The
S-parameters of the phase shifter (in between the calibration
planes shown in Fig. 8) were measured over the X-band using
an Agilent HP8510C VNA and subsequently incorporated in
the calculation of Γ, as per (2).

The phase-shifter input return loss, output return loss, and
insertion loss are around 10 dB, 20 dB, and 8 dB, respectively,
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Fig. 9. Measured DUT reflection coefficient using the HP8510C VNA and the proposed VNA. (a) Real and imaginary parts of Γ. (b) |Γ| as a function of the
DUT one-way attenuation.

at the center frequency of 10.3 GHz. The phase shifter provides
relative phase shifts of around 140◦ and 90◦ at the beginning
and toward the end of the band, respectively, in response to
control voltages Vm, ranging from 0.4 to 1.2 V. Voltage steps
of 0.1 V were used to control the phase shifter in that range,
i.e., a total of nine discrete phase shifts. Each 0.1 V results in
phase shifts of ∼18◦ and ∼10◦ at the beginning and toward the
end of the band, respectively.

The system was calibrated using a short, a 0.902-cm offset
short, and a matched load as calibration standards. In solving
for the error terms, the standards were assumed to be ideal, and
they were also used to calibrate the Agilent HP8510C VNA
for comparison purposes. To account for any source and/or
amplifier drifts during the course of the measurements, the
constant C was simultaneously computed with the complex
reflection coefficient during the measurement of the calibration
standards and the DUT. Automation of the swept measurements
was accomplished through a PC with a fast data acquisition
(DAQ) card and a general-purpose interface bus control link.
The detection system noise RMS value was estimated to be
around 4 mV.

Fig. 9(a) and (b) shows the measured complex reflection
coefficient of a variable DUT using the HP8510C and the
proposed VNA at a frequency of 10.3 GHz. The variable DUT,
which consisted of a variable phase shifter and an attenuator,
terminated with a short, allowing the synthesis of various
complex reflection coefficients with 0.028 < |Γ| < 0.78 (−2
to −31 dB) and a wide range of phase values. While all
HP8510C measurements were conducted with an internal aver-
aging factor of 16, i.e., averaging internal system noise only, the
proposed VNA measurements were the results of coherent av-
eraging of four different sets of phase shifts, each consisting of
M = 3 phase shifts. As shown in Fig. 9(a) and (b), the
results of measurements obtained using the proposed VNA
are in excellent agreement with their counterparts obtained
using the HP8510C VNA. Referenced to the HP8510C VNA
measurements, the average magnitude error in the proposed
VNA measurements ranged from a minimum of 7.68 × 10−4

(for |Γ| = 0.028, 2.77% error) to a maximum of 0.018 (for
|Γ| = 0.708, 2.52% error). On the other hand, the average phase
errors in the ranges 0.69◦ (for |Γ| = 0.401) and 2.54◦ (for |Γ| =
0.708) were observed, respectively. Most of the magnitude
and phase average errors are actually within the measurement
uncertainties of the HP8510C VNA [16].

It is important to note that the utilized electronic phase-
shifter quality is far from ideal, i.e., it presents a high insertion
loss, resulting in a two-way attenuation of ∼16 dB. Neverthe-
less, the high measurement accuracy demonstrated with this
phase shifter is attributed to the capability of performing co-
herent averaging of the complex reflection coefficient measure-
ments obtained using different and multiple sets of phase shifts.
This effect was also studied by performing measurements with
different sets of phase shifts, each with M = 3 phase shifts for
the same DUT earlier described. Fig. 10 shows the RMSEs for
the phase and magnitude of the measured complex reflection
coefficient using the proposed VNA with one set of phase shifts
and averaging the results of two, three, and four different sets.
The RMSE values were computed with respect to the HP8510C
VNA measurements, i.e., the HP8510C VNA measurements
were used as Γactual in (4) and (5). As shown in Fig. 10,
using one set of phase shifts did not yield accurate phase
and magnitude results. However, coherent averaging of the
measurements obtained using two sets of phase shifts signifi-
cantly enhances the performance. Marginal improvement was
obtained by averaging the results of three and four sets of phase
shifts. With four sets of phase shifts, the maximum magnitude
RMSE (normalized to |Γ|) was ∼0.03 (for |Γ| = 0.028), and
a maximum phase RMSE of 2.83◦ was obtained (for |Γ| =
0.708), as shown in Fig. 10.

The proposed VNA was used to perform swept frequency
measurements of an arbitrary unknown DUT, and the results
were compared with those obtained with the HP8510C VNA.
Fig. 11 shows the magnitude and phase of the DUT complex
reflection coefficient measurements over the entire X-band
frequencies. The proposed VNA results were the average of
the measurements obtained with four sets of phase shifts. As
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Fig. 10. (Top) Magnitude RMSE normalized to |Γ| and (bottom) phase RMSE
as a function of |Γ| with averaging over different numbers of phase sets
(M = 3).

Fig. 11. (Top) Magnitude and (bottom) phase measurements of an X-band
DUT obtained using the HP8510C VNA and the proposed VNA.

indicated in Fig. 11, the proposed VNA measurements closely
match those of the HP8510C VNA. The proposed VNA results
presented in Fig. 11 are raw measurement results corresponding
to 51 frequency points in the band without any smoothing.

The proposed VNA produced highly consistent and repeat-
able complex reflection coefficient measurements as observed
from repeatedly testing the system over long periods of time
with different calibration runs. The sensitivity of the proposed
VNA to changes in the phase-shifter characteristics was investi-
gated as well. Repeated measurements of the phase-shifter char-
acteristics showed that they remain fairly constant over time
(almost 18 months), and consequently, the performance of the
proposed VNA remains robust. In fact, the used phase shifter
was characterized five months before taking the measurements
presented in this paper. Finally, it is emphasized that higher
measurement accuracy can potentially be obtained with the

proposed VNA design when a phase shifter of a higher quality,
i.e., a smaller insertion loss, is used.

V. SUMMARY

Simple, handheld, relatively inexpensive, and automated
VNAs are in demand for a wide range of applications requiring
in situ vector measurements, such as microwave and millimeter-
wave circuit characterization, imaging, material characteriza-
tion, and nondestructive testing. For these and similar emerg-
ing applications, a novel VNA design has been introduced in
this paper. The simplicity of the proposed VNA design stems
from the fact that it is based on standing-wave measurements
performed using a single power detector. Additionally, the
proposed VNA can be calibrated following a simple procedure
using only three calibration standards. The complex reflection
coefficient of the DUT is inferred from three phase-shifted
standing-wave measurements. An electronic phase shifter in-
serted between the DUT and the standing-wave probing device
is controlled to yield the required phase shifts. Various at-
tributes of the proposed design were investigated in simulations,
considering the phase-shifter characteristics and the detector
noise. It was shown that the uncertainties in phase and mag-
nitude measurements linearly increase with the detector noise
RMS value.

To demonstrate the feasibility and accuracy of the proposed
VNA, an off-the-shelf electronic phase shifter was used in con-
structing a prototype automated X-band VNA. The prototype
was used to perform swept and single-frequency measurements
of various DUTs. An excellent agreement between the mea-
surements obtained using the proposed VNA prototype and the
HP8510C VNA was observed. The measurement accuracy of
the proposed VNA can further be improved by utilizing a higher
quality phase shifter.
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