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Fig. 2.  The actual output power of installed wind turbine (blue) and the 
target smoothed power (red) 

 
The main contributions of this paper are: 

• development of the power quality conditioner design 
with an ultracapacitor for smoothing the pulsating 
wind power, 

• development of the bidirectional DC-DC converter 
and the shunt inverter topologies used in the 
conditioner,  

• development of the control schemes for the 
bidirectional DC-DC converter and the shunt 
inverter, and 

• presenting the simulation results to show the 
conditioner is efficient in smoothing the wind power. 

 

 
 

Fig. 3. Power quality conditioner 
 

II.  POWER QUALITY CONDITIONER 

As shown in Fig. 3, the power quality conditioner consists 
of a shunt inverter and a bidirectional DC-DC converter. The 

VSI acts as a shunt active filter compensating the active power 
of the wind turbine.  The VSI is connected to the line through 
an RL filter which reduces the unwanted harmonics. The 
shape of the output current of the conditioner depends on the 
inductor value of the filter. The value of the resistor and the 
inductor determines the damping in the circuit. On the other 
side, the VSI is connected to the DC link capacitor. The DC-
DC converter with the ultracapacitor is used to reduce the size 
of the DC link capacitor and to maintain the voltage of the DC 
link relatively constant as the ultracapacitor discharges and 
charges. The bidirectional DC-DC converter charges the 
ultracapacitor in buck mode by reducing the voltage of the DC 
link. In the other direction, it acts in boost mode, discharging 
the ultracapacitor to increase the voltage of the DC link. The 
power conditioner injects or absorbs active power from the 
line through the filter to smooth the variable wind turbine 
output power. The DC link acts as the voltage source for the 
VSI. 

 

 
 

Fig.4. The equivalent circuit of the conditioner 
 
The wind turbine generator produces a constant voltage and 

variable current output.  Fig. 4 shows the equivalent circuit of 
the power conditioner when integrated to the wind turbine, 
where Vs is the voltage of the wind turbine generator, is is the 
wind turbine current, iinv is the compensating current supplied 
by the VSI that can be injected or drawn from the line, and iL 
is the smoothed current. The current flow in the system is 
expressed as ݅௅ሺݐሻ ൌ ݅௦ሺݐሻ ൅ ݅௜௡௩ ሺݐሻ                          ሺ1ሻ 

The relationship between the grid power, wind power and 
the power from ultracapacitor is given by 

௪ܲ௜௡ௗ േ ௨ܲ௖௔௣  ൌ  ௚ܲ௥௜ௗ                          ሺ2ሻ 

where Pwind is the active power of the wind turbine, Pucap is the 
active power supplied by the ultracapacitor, and Pgrid is the 
active power at the grid interconnection point. 

The electric model of the variable wind power is designed 
in SIMULINK. This model generates a constant voltage and a 
randomly variable current, similar to the characteristics of the 
wind turbine. To obtain this model, the variable current is 
injected in series with the constant voltage source. The power 
generated by this model is similar to the actual power of the 
installed wind turbine. This model acts as a variable wind 
turbine output power source for the simulation, to which the 
conditioner is connected and its performance is evaluated. 



 

 

 
 

Fig.5. Electric Model of the Ultracapacitor 
 

III.  ULTRACAPACITOR ELECTRIC CIRCUIT MODEL 

Ultracapacitors are double layered, which increases the 
storage capability by increasing the surface through a porous 
electrolyte. Ultracapacitors are mainly used in high peak 
power situations to improve the reliability of electric power 
systems. Ultracapacitors have high energy density and large 
time constants as well.  In the charging mode, the terminal 
voltage of the ultracapacitor increases, whereas in the 
discharging mode the terminal voltage of the ultracapacitor is 
decreased.  The simple ultracapacitor model shown in Fig. 5 
contains only one RC branch, which is composed of an 
equivalent series resistor (ESR) and a capacitor (C) [9]. The 
ESR represents the ohmic losses in the ultracapacitor. This 
ultracapacitor model is used in the converter simulation.  

The amount of energy drawn or released by the 
ultracapacitor is directly proportional to the capacitance value 
and change in the value of terminal voltage and is given by Eܿܽ݌ ൌ 12 ܿ൫ ௜ܸଶ െ ௙ܸଶ൯                          ሺ3ሻ 

where Vi is the initial voltage before charging or discharging 
starts, Vf is the final voltage after charging or discharging 
ends. 

IV.  BIDIRECTIONAL DC-DC CONVERTER 

The topology of the bi-directional DC-DC converter is 
shown in the Fig. 6. The bidirectional DC-DC converter acts a 
buck converter in one direction and as a boost converter in the 
other direction [10]-[13]. Power MOSFETS are used as the 
switching devices in the circuit. The operation of the converter 
is controlled by the DC link voltage and the voltage of the 
ultracapacitor. The main purpose of the bidirectional DC-DC 
converter is to maintain the voltage of the DC link relatively 
constant at a reference value. 

The DC-DC converter operating modes can be divided into 
four modes as follows: 

• Mode 1: The DC-DC converter acts in buck mode, 
when the voltage of the DC link is above the 
reference value. In this mode, the DC-DC converter 
allows the power flow to charge the ultracapacitor. 

• Mode 2: The DC-DC converter acts in boost mode, 
when the voltage of the DC link falls below the 
reference value. In this mode, the ultracapacitor 

energy is discharged to increase the voltage of the 
DC link. 

• Mode 3: When the ultracapacitor is fully charged, the 
DC-DC converter shuts down to avoid the damaging 
of the ultracapacitor and the equipment. 

• Mode 4: When the ultracapacitor is fully discharged, 
the conditioner shuts down until charging of the 
ultracapacitor may resume. 

 

 
 

Fig.6. Bidirectional DC-DC Converter 
 

The DC link capacitor is used as an intermediate element 
between the DC-DC converter and the inverter. The DC link 
model is: ܥ ݐܸ݀݀ ൌ ௗ௖ሺ஽஼ି஽஼ ஼௢௡௩ሻܫ െ  ௗ௖ሺூ௡௩ሻ                         ሺ4ሻܫ

where C is the DC link capacitance, IୢୡሺDCିDC C୭୬୴ሻ is the 
current from the DC-DC converter, and IୢୡሺI୬୴ሻ is the inverter 
current at the source side. 

V.  SHUNT INVERTER 

A full-bridge IGBT based inverter topology is used in this 
application. The full-bridge inverter consists of four switching 
devices, which are connected to form the full-bridge inverter 
circuit shown in Fig. 7. The gating signals for the IGBTs are 
obtained by the bipolar pulse width modulation controller. 
Anti-parallel diodes are connected across the power IGBTs to 
protect the devices and to provide the power flow in the 
reverse direction [12], [13]. The voltage source inverter is 
connected in shunt to the line acts as a current source, 
injecting or drawing the compensating current from the line 
[14]. The shunt inverter is connected to the line through a 
series interference RL filter, which reduces the unwanted 
harmonics. The filter provides smoothing and isolation from 
high frequency components. On the other side, the simple full-
bridge line connected inverter is connected to the DC link. The 
injecting current is in phase with the line voltage to have a 
unity power factor. The output voltage and current waveforms 



 

of the inverter are good, allowing the efficient power transfer 
to the line from the inverter.  

 

 
 

Fig.7. Circuit diagram of the shunt inverter 
 

The VSI operates in the following two modes: 
• Mode 1: When the wind power is greater than the 

desired value, the converter acts like a rectifier 
drawing the power from the line and charging the DC 
link capacitor. 

• Mode 2: When the wind power is less than the 
desired value, then the converter acts like the VSI 
injecting power into the line by discharging the DC 
link capacitor. 

VI.  CONTROL OF THE POWER CONDITIONER 

A.  Control of the DC-DC Converter 
The main objective of the DC-DC controller is to maintain 

the voltage of the DC link relatively constant at the reference 
value. The control strategy of the converter is shown in Fig. 8. 
The DC link voltage is the input for the converter controller. 
The reference voltage of the DC link is set at 208V.  The DC 
link voltage is subtracted from the reference voltage to obtain 
the error signal. The generated error signal is passed through a 
dead band in order to avoid the unnecessary continuous 
transfer of the energy in the converter. Then, the signal is 
passed through a PI controller, before it is given to the 
comparator. Whenever, the voltage of the DC link raises 
above the reference value, gating signal s1 is given to the 
MOSFET Q1 and Q2 is turned off. In this case, the DC-DC 
converter acts in buck mode reducing the DC link voltage. 
Whenever, the DC link voltage falls below the reference value 
then, gating signal S2 is given to MOSFET Q2 and Q1 is 
turned off. In this case, the DC-DC converter acts in boost 
mode, increasing the DC link voltage. Anti-parallel diodes 
conduct when the respective switching device is not 
conducting. Finally, switches are used to select the gating 

signals for MOSFETs between the comparator output and 
zero, depending on the voltage of the DC link. 

 

 
 

Fig.8. Flowchart showing the control strategy of the bidirectional DC-DC 
converter 

. 
The switching sequence of the MOSFETS in the DC-DC 

converter is as follows. 
• If   VDC୪୧୬୩ ൐ V୰ୣ୤, then Q1 operates with duty cycle 

obtained from the comparator and Q2 is turned off. 
• If   VDC୪୧୬୩ ൏ V୰ୣ୤, then Q2 operates with duty cycle 

obtained from the comparator and Q1 is turned off. 
 

 
Fig. 9. DC-DC converter controller  

 
The controller for the bidirectional DC-DC converter 

designed in the MATLAB is shown in Fig. 9. The gating 



 

signals thus obtained are given to the MOSFETs in the 
converter circuit. 

B.  Control of the Shunt Inverter 
The variable wind power is passed through a low pass filter 

to get a smoothing reference signal for the inverter controller. 
The output of the low pass filter is given to the shunt inverter 
controller as the reference value [15]. The reference signal Pref 
is obtained as below 

௥ܲ௘௙ ൌ  11 ൅ ܵܶ כ ௪ܲ௜௡ௗ                         ሺ5ሻ 

where T is the time constant of the filter. The smoothing 
performance of the wind turbine output power depends on the 
time constant of a low pass filter. The time constant of the low 
pass filter is in the range of several seconds and is tuned to 
provide the desired smoothing. The power fluctuation is 
smoothed by drawing or injecting the difference of the 
reference power and the variable wind power. 

 

 
Fig.10. Shunt inverter control scheme 

 
Pulse width modulation (PWM) controller is used to 

control the switching of the power devices in the full-bridge 
shunt inverter. The inverter control strategy is as shown in the 
fig. 10. PWM controller controls the magnitude and phase of 
the output of the inverter. The advantage of the PWM is both 
the magnitude and phase of the output can be controlled. 
Modulation is achieved by comparing the sinusoidal 
waveform of certain frequency and amplitude to a high 
frequency triangular carrier waveform. The output frequency 
of the shunt inverter depends on the frequency of the 
sinusoidal waveform. The output current waveform shape of 
the inverter depends on the switching frequency and the filter 
inductor. The damping in the circuit depends on the filter 
connected to the inverter output. A bipolar PWM technique is 
used in this work to control the switching of the inverter. The 
bipolar switching sequence used is: 

If   Vୡ୭୬୲ ൐ V୲୰୧,  then Q1 is on 

If  Vୡ୭୬୲ ൏ V୲୰୧,  then Q2 is on 

If  െVୡ୭୬୲ ൐ V୲୰୧,  then Q3 is on 

If െVୡ୭୬୲ ൏ V୲୰୧, then Q4 is on. 

VII.  SIMULATION RESULTS 

The model of the proposed conditioner and its control has 
been developed using the SIMULINK software in MATLAB. 
Simulations are performed to investigate the performance of 

the power quality conditioner and its control. The important 
parameters used in the simulation are shown in Table I. 

 
TABLE I 

SIMULATION PARAMETERS  
 

 
Ultracapacitor 

Nominal capacitance = 94F 
Initial voltage = 75V 

ESR = 12.5mΩ 
DC-DC 

Converter 
C1 = 9µF 

L1 = 372µH 
DC 

Link 
C = 2200µF 

Reference Value = 208V 
DC-DC Converter 

Controller 
Kp=.00167 

Ki=10 
Shunt Inverter 

Filter 
Rsh=0.1Ω 
Lsh=1mH 

 
The variable output power of the wind turbine model 

developed in SIMULINK is shown in Fig. 11. This model was 
developed to mimic the actual wind turbine active power 
output shown in Fig. 2. The smoothed reference signal to the 
inverter controller is shown in Fig. 12. The reference signal is 
obtained when the variable wind power is passed through a 
low pass filter with a large time constant. The simulation 
interval is 1500 sec in both cases.  
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Fig. 11.  Modeled active power output of the wind turbine 
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Fig. 12.  Reference power obtained from the low pass filter. 
 

Fig. 13 shows an expanded timescale of wind turbine 
output power for a 100 sec time interval.  The expanded 
conditioner output is shown in Fig. 14.  When the active wind 
power is less than the reference value, the conditioner injects 
active power into the line. When the active wind power is 
greater than the reference value, the conditioner draws power 
from the line. The resulting smoothed power is shown in Fig. 
15. The smoothed power of the wind turbine is clearly 
following the reference signal. The voltage of the 



 

ultracapacitor is shown in Fig. 16 and the voltage of the DC 
link is shown in Fig.17.  Note that the ultracapacitor does not 
discharge significantly over the 100 sec time interval. 
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Fig. 13.  Active power output of the wind turbine model 
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Fig. 14.  Conditioner active power 
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Fig. 15.  Smoothed power at the grid interconnection point 
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Fig. 16.  Voltage of the ultracapacitor 
 

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

 
 

Fig. 17.  Voltage of the DC link 
 

VIII.  CONCLUSION AND FUTURE WORK 

In this paper, the design of a power conditioner and control 
for smoothing the wind turbine output power with the 
ultracapacitor is presented. The simulation results show that 
the proposed conditioner has a good performance in 
smoothing the wind power. The DC-DC converter maintains 
the voltage of the DC link relatively constant providing the 
good controllability of the shunt inverter. In the future, the 
hardware of the conditioner will be constructed and 
implemented.  The conditioner and its control will be 
validated by connecting to a wind turbine installed at the 
Missouri University of Science and Technology. 
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