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Proceedings of the 2006 IEEE WeBO3.5
International Symposium on Intelligent Control
Munich, Germany, October 4-6, 2006

Adaptive Critic Designs Based Coupled Neurocontrollers for a
Static Compensator

Salman Mohagheghi, Student Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE
Ronald G. Harley, Fellow, IEEE

Abstract-A novel nonlinear optimal neurocontroller for a
static compensator (STATCOM) connected to a power system,
using artificial neural networks, is presented in this paper. The
heuristic dynamic programming (HDP) method, a member of
the adaptive critic designs (ACD) family, is used for the design
of the STATCOM neurocontroller. The proposed controller is
a nonlinear optimal controller that provides coupled control
for the line voltage and the dc link voltage regulation loops of
the STATCOM. An action dependent approach is used, in
which the controller is independent of a model of the network.
Moreover, a proportional-integrator approach allows the
neurocontroller to deal with the actual signals rather than the
deviations. Simulation results are provided to show that the
proposed ACD based neurocontroller is more effective in
controlling the STATCOM compared to finely tuned
conventional PI controllers.

I. INTRODUCTION

S TATIC Compensators (STATCOM) are power
electronics based shunt Flexible AC Transmission

Systems (FACTS) devices which can control the line
voltage at the point of connection to the electric power
network. Regulating reactive power injected by this device
into the power grid, and the active power absorbed from the
network, provides control over the line and over the DC bus
voltage inside the device respectively [1].
A power system containing generators and FACTS

devices is a highly nonlinear system. It is also a non-
stationary system since the power network configuration
changes continuously as transmission lines and shunt loads
are switched on and off.

In recent years most of the papers have suggested
methods for designing the STATCOM PI controllers using
linear control techniques, in which the system equations are
linearized at a specific operating point and the PI controllers
are fine tuned at that point based on the linearized model, in
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order to have the best possible performance [2]-[4].
The drawback of such PI controllers is that their

parameters are mostly tuned based on a trial and error
approach. Moreover, their performance degrades as the
system operating conditions change. Nonlinear adaptive
controllers on the other hand can give good control
capability over a wide range of operating conditions, but
they have a more sophisticated structure and are more
difficult to implement compared to linear controllers. In
addition, they need a mathematical model of the system to
be controlled [5]-[7].

Intelligent controllers can offer a solution to the above
problems. Fuzzy logic based controllers have, for example,
been used for controlling a STATCOM [8],[9]. The
performance of such controllers can further be improved by
adaptively updating their parameters. Mohagheghi et al. [ 1]
applied the controller output error method (COEM)
introduced by Anderson et al. [10] in order to implement an
adaptive fuzzy controller for the STATCOM. Artificial
neural network based indirect adaptive controllers have also
been used to provide adaptive control for a STATCOM [12].
However, even this indirect adaptive controller suffers from
the disadvantage of being "short-sighted". The error at one
step ahead is used for updating the parameters of the
adaptive controller, without considering the fact that in a
real power system, the actions which take the system as
close to the set-point as possible at time (t+l), may end up
taking the system further away from the set-point a few
moments later. The basic fact is that the controller is not
even addressing the problem of how to stay close to the
desired trajectory for more than one time period into the
future [13], resulting in solutions that are by no means
optimal or suboptimal.

The well established theory of optimal control and
dynamic programming can be employed in order to
compensate for the short-sightedness of the traditional
adaptive controllers. However, these techniques can become
very complicated as the dimensions of the system to be
controlled are increased. This is due to the fact that the
computational intensity of the numerical methods applied
for solving the problem is exponentially increased by an
increase in the system size; a phenomenon referred to as the
curse of dimensionality [14]. The complexity level is even
further exacerbated when moving from finite horizon to
infinite horizon problems, while also considering the
stochastic effects, model imperfections and the presence of
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the external disturbances.
Adaptive critic designs (ACD) based neurocontrollers can

overcome the above mentioned problems. These are
powerful techniques designed to perform approximate
dynamic programming (ADP) in the presence of noise and
uncertainties, even in non-stationary cases, and provide
optimal control over the infinite horizon of the problem [13].
Such controllers do not need prior information of the plant
to be controlled and can be trained online without any large
amount of offline data.

In earlier work the authors designed ACD based
neurocontrollers for a STATCOM in a small as well as a
multimachine power system [15],[16]. Both these proposed
controllers were only designed to replace only the line
voltage controller of the STATCOM, while the dc link
control loop was left unchanged to be controlled by a
conventional PI controller. However, the coupled behavior
of the active/reactive power injection in a STATCOM
justifies a coupled neurocontrol approach where both the
quantities are controlled by the neural network.

This paper extends the work presented in the authors'
previous work in [15], [16] by proposing an ACD based
coupled neurocontroller for a STATCOM that is designed to
control the line voltage at the point of common coupling
(PCC) and the dc link voltage inside device simultaneously.
The proposed controller uses the action dependent heuristic
dynamic programming (ADHDP) method, which is a
member of the ACD family, in order to provide nonlinear
optimal control. The STATCOM is considered to be
connected to a single machine infinite bus. Simulation
results are provided in order to compare the effectiveness of
this new STATCOM neurocontroller with that of the
conventional STATCOM PI controllers during large scale
disturbances.

II. STATCOM IN A SINGLE MACHINE INFINITE Bus
Figure 1 shows the STATCOM connected to a single

machine infinite bus. The generator is modeled together with
its automatic voltage regulator (AVR), exciter, governor and
turbine dynamics all taken into account. The generator is a
37.5 MVA, 11.85 kV (line voltage) machine. System
parameters which have been used in the simulations appear
in [15]. The system is simulated in the PSCAD/EMTDCR
environment.

The STATCOM is first controlled using a conventional
PI control scheme as described in [2]. d-axis and q-axis
voltage deviations are derived from the difference between
the actual and reference values of the power network line
voltage V and the dc bus voltage Vd, (inside the STATCOM)
respectively, and are then passed through two PI controllers,
whose output values Aed and Aeq in turn determine the
modulation index ma and inverter output phase shift a
applied to the PWM module as in (1):

Ae + Ae2
Ma

= d.

a =Cos-' Ae±AI
W Ae2+ Ae2

(1)

The plant in Fig. 1 indicates the generator, its controllers,
the transmission lines, the STATCOM inverter and the shunt
loads. The controller includes the PI controllers designed to
regulate the line voltage at the PCC and the dc link voltage
inside the STATCOM. The main objective of this controller
is control the voltage V at the point of connection to the
power network. The proposed neurocontroller will replace
the two PI controllers as well as the PWM module.

Infinte
Bus

I Tthsmirssionrn Lines

Synchronous
Generator

Fig. 1. STATCOM in a single machine infinite bus power system.

III. ADAPTIVE CRITIC DESIGNS

The problem of optimal control deals with minimizing or
maximizing an objective function over the finite/infinite
horizon of the problem [14]. Consider a nonlinear discrete
system as in (2):
Xk+l >fk(xk,uk,wk), (2)
where Xk is the state of the system, Uk is the control or
decision variable to be selected at time k and Wk is the
random parameter, also referred to as disturbance or noise.

The decisions taken at any point in time cannot be
analyzed by themselves, since there should be a tradeoff
(balance) between the desirable performance at the present
time (low cost) and the undesirable performance in the
future (high cost). A cost function, or utility function U(t),
should therefore be defined based on the states of the
system, so that it gives the cost associated with every state
of the problem. A cost-to-go function J(t) is now defined in
order to serve as a performance measure of the controller
over the time horizon of the problem. For a finite horizon
problem (N steps ahead in time), this function is defined as:

N

J(t=E KU(t + k), (3)
k=O

where y is the discount factor selected for the problem. Low
discount factor gives more weight to the immediate future,
while higher discount factors put more emphasis on the cost
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occurred in the future.
Various optimization techniques in the literature directly

depend on the problem space and the model of the system.
Special cases of optimization problems can be solved by
linear programming (LP), quadratic programming (QP) or
general nonlinear programming (NP). However, in most of
the real world problems such as control applications in
power systems, the complexity of the system and the
uncertainties associated with it are far beyond the
capabilities of these simplified optimization techniques.
Dynamic programming (DP) is traditionally used for

analytical solution to the optimal control problem in the
general case. However, in most of the real world
applications in power systems, solving the DP analytically
may not be feasible, and the restrictive conditions mentioned
earlier lead the solution to a suboptimal control scheme with
limited look-ahead policies [ 14].

Adaptive critic designs on the other hand, allow solving
the ADP in the presence of noise and uncertainties.
Essentially, ACD based controllers are built upon three
different mathematical theories: adaptive control, optimal
control and reinforcement learning. Two major categories of
the ACD family include the model based ACD scheme,
where a model of the plant to be controlled in required to
train the neurocontroller, and the action dependent ACD
(ADACD) scheme, which is a modelfree approach [17].

Figure 2 shows the schematic diagram of an ACD
neurocontroller for a general plant. It consists of two
components:

* Critic Network: a neural network that accomplishes the
task of dynamic programming by approximating the true
cost-to-go function with no prior knowledge of the
system. Moreover it avoids the curse of dimensionality
that occurs in some cases of classical dynamic
programming based optimal control.

* Action Network: a neural network that sends out optimal
control signals to the plant, resulting in
minimization/maximization of the function J over the
time horizon of the problem.

It can be mathematically proven that in order for the
Action network to minimize the function J, it needs to be
trained by the error signal OJFOA, which represents the
sensitivity of the cost-to-go function to the output of the
Action network [17]. The Critic network generates the
appropriate training signal for the Action network. It was
shown by Werbos that once the Critic network weights are
converged, the training signals provided by it will guide the
Action network towards optimal performance [18].

IV. STATCOM ACD BASED NEUROCONTROLLER

The ADHDP-based ACD neurocontroller configuration
with the Critic and Action neural networks is shown in Fig.
2, where X(t) is the vector of the plant outputs (i.e., the line
voltage deviations and the dc link voltage deviations), Xref is

the vector of the plant reference signals (i.e., the STATCOM
line voltage and dc link voltage reference), and A(t) is the
vector of the controller outputs (i.e., the inverter modulation
index ma and phase shift a). Both the neural networks are
three layer feedforward multilayer perceptron (MLP) type
neural networks having a single hidden layer with
hyperbolic tangent activation functions; and the
backpropagation algorithm is used for training these
networks and updating their synaptic weight matrices [19].

Fig. 2. Schematic diagram of the STATCOM ACD neurocontroller. The
blocks denoted as TDL represent tapped delay lines.

The simulation step size of 100 p,s is selected for the
PSCAD simulations, while the sampling time for both the
neural networks is 20 ms. A smaller time step does not make
a noticeable change in the performance of the ACD
neurocontroller. In an earlier work, the authors verified that
the sampling time of 20 ms (50 Hz) can be effectively
employed in practical implementations of a controller built
on a DSP board [20].

A. Critic Neural Network
The Critic network is trained to approximate the cost-to-

go function in (3), given the plant inputs and outputs at time
t and their delayed values. The ADHDP Critic network is
shown in Fig. 3. It can be seen that in the Action dependent
approach, the controller output is also fed into the Critic
network. Once the Critic is converged, it can provide the
appropriate training signal for the Action network [18]. The
number of neurons in the hidden layer of the Critic is
heuristically chosen to be fifteen.

Hidden Layer

Fig. 3. Schematic diagram ofADHDP Critic network.
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Bellman's equation in (3) indicates:
J(t - 1) = U(t - 1) + yx J(t). (4)

Therefore the instantaneous error can be defined as a
function of two successive values of the cost-to-go function
J. This is normally referred to as the temporal difference
error. Two identical Critic networks are used for this
purpose that receive the input data at different time steps and
therefore estimate J at time steps (t) and (t- 1). This
information can then be used to train the Critic network
(Fig. 4). For detailed explanations and training procedure,
the reader is referred to [18].

XftAit 2jt 3) CRITICI

Fig. 4. Critic network training structure.

A unipolar function, as the absolute value of the linear
combination of the present and past values of the plant
output is selected in this work, which fits the training
procedure of the Critic and Action networks best. The
selected utility function for this study is given in (5):
U(t) =1 0.4xAV(t) +0.4xAV(t -1) + 0.1xAV(t -2)

+ 0.4XAVdC(t)+0.4XAVdC(t-l)+O.lXAVdC(t -2)1

A discount factor of 0.7 is selected in this study.

B. Action Neural Network
The Action network optimizes the overall cost over the

time horizon of the problem (minimizing the function J) by
providing an optimal control input to the plant. It consists of
a MLP neural network with fourteen neurons heuristically
chosen in the hidden layer. The overall input vector consists
of the values of the plant output at times t, t- 1 and t-2, and in
turn it generates the control signals for the plant (Fig. 5).

Hidden. Layer

1hput Layer
A V( -1) Output

Fig. 5. Schm -3daramo A D coerD *
Fig. 5. Schematic diagram ofADHDP Action network.

The training signal for the Action network is provided by
backpropagating the constant 1.0 through the Critic network.
It is also shown in Fig. 2 that the instantaneous output vector
of the Action network AA(t) is added to the sum of the
previous outputs in order to generate the final control signal
A(t). This ensures a "proportional-integrator" type structure
for the ACD neurocontroller and allows it to deal with the
actual signals and not the deviations.

V. NEUROCONTROLLER TRAINING

The neurocontroller undergoes several training stages
before it can control the plant. The training procedure is
briefly discussed in this section. For more details, the reader
is referred to [16].

A. Action Network Pre-Training
The initial weights of the Action network can play an

important role in the performance as well as the training
duration of the neurocontroller. A common approach is to
use the weights derived from another neural network based
control scheme, such as an indirect adaptive controller [12].
However, it is also possible to train the Action network
using supervised learning in order to learn the dynamics of
the PI controllers. This can be achieved by applying
pseudorandom binary signals (PRBS) to the line voltage
reference and the dc link voltage reference of the
STATCOM. The PI controllers will try to respond to the
changes by generating the appropriate control signals. The
Action network is now trained to learn the dynamics of the
PI controllers. If sufficiently trained, it is guaranteed that at
its worst case the Action network will perform as good as
the PI controllers. Moreover, the pre-trained Action network
can control the system and keep its stability.

B. Critic Network Training

The Critic network should now be trained in order to learn
to estimate the function J. This is the most important part of
the ACD neurocontroller design, since without sufficient
training; the Critic cannot send appropriate weight update
signals to the Action network.

Critic network training should be done at two different
stages. In the first stage, called forced training, the plant
control signals are disturbed by applying PRBS to them
from external sources. This provides the Critic network with
data on the small signal dynamics of the power system. In
the second stage, referred to as natural training, the power
system is exposed to large scale disturbances and faults,
such as three phase short circuits and the Critic network
undergoes training in order to learn the large signal
dynamics of the system. These two stages should be iterated
back and forth, preferably at various operating conditions. A
change in the operating conditions and/or power system
topology will change the training data of the neural network
and therefore, its connection weights of the input and output
layers. At the beginning of training at each new operating
point or system configuration, a large learning rate
parameter for the Critic network should be adopted, which is
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gradually reduced by an annealing process [19] as the
training continues. If the weights are trapped in a local
minimum, the initial large learning rate parameter moves
them from that point to a new minimum in the error surface
of the problem. If repeated sufficiently enough at various
operating conditions, this procedure ensures that the Critic
network weights move towards the global minimum.

C. Action Network Training
With the Critic network weights already converged and

the Action network pre-trained, the system is now being
exposed to small scale and large scale disturbances. The
feedback loop is now closed, i.e., the Action network is now
controlling the plant. The weight matrices of the controller
are now updated based on the error signal received from the
Critic network (Fig. 2). Similar to the training process
adopted for the Critic network, the Action network is trained
at multiple operating conditions with various power system
configurations in order to ensure that its weight matrices
converge to the global minimum. At this stage, the training
procedure of the Critic network may also be resumed.

VI. SIMULATION RESULTS
Several tests have been conducted in order to compare the

effectiveness of the proposed neurocontroller with the two
PI controllers.

In the first test, the system is exposed to a 100 ms three
phase short circuit at the terminals of the synchronous
generator. Figure 6 shows the line voltage at the middle of
the transmission line where the STATCOM is connected to
the power system. The neurocontroller damps out the
oscillations with a maximum peak of 1.043 p.u, whereas the
two PI controllers force an overvoltage of almost 1.08 p.u
on the system. is faster in restoring the system to the steady
state conditions and it achieves that with a considerably
smaller overshoot.

1:' 0.8

.- 0.7

08

1 15 2 25 3 35 4
Time (sec)

Fig. 6. Voltage at the PCC during a 100 ms three phase short circuit at the
terminals of the generator.

The two controllers can also be compared in terms of the
control effort provided by each one during the transients.
Figure 7 illustrates the modulation index of the STATCOM

inverter. The PI controllers want to force the power system
towards over-modulation, which can generate harmonic
distortion for the power system.

1.05

1 F--Pl Controllers
. ............ ..............

ACD Neurocontroller

E~ 095~

0.u9 -

Time (sec)

Fig. 7. STATCOM modulation index during a 100 ms three phase short
circuit at the terminals of the generator.

The reactive power injected by the two controllers is
another measure that can indicate their effectiveness in
damping out the oscillations. Figure 8 shows that the PI
controllers require a maximum reactive power of almost 22
MVar injected to the power system in order to restore the
system to the steady state conditions, while the ACD
neurocontroller manages to do this by injecting a maximum
reactive power of 15 MVar, i.e., with 32% less power
injection. Therefore, a STATCOM controlled by the
proposed ACD neurocontroller can use switches with less
current ratings.

24

22-

20 PI Controllers

no 18
I ACD Neurocontroller

-1210E-
0 l 2 3 4 5 6 7 a

Time (sec)

Fig. 8. Reactive power injected by the STATCOM during a 100 ms three
phase short circuit at the terminals of the generator.

In another test, a 100 ms three phase short circuit is
applied to the middle of one of the transmission lines where
the STATCOM is connected to the power network. Figure 9
shows the terminal voltage of the synchronous generator.
The ACD neurocontroller damps out the oscillations with
33%o less overshoot.
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Fig. 9. Generator terminal voltage during a 100 ms three phase short circuit
at the middle of the transmission line.

Figure 10 compares the performances of the two
controllers in damping out the dc link oscillations. Even
though the PI controller is faster in restoring the dc link
voltage to its steady state value at 10 kV, it achieves this
with considerably large deviations. These large scale
excursions will generate stress on the dc capacitor
insulation. Moreover, the PI controller causes a sharp rise
and fall in the dc link voltage, which in turn creates larger
currents passing through the inverter dc side.

.f

Time (sec)

Fig. 10. STATCOM dc link voltage during a 100
circuit at the middle of the transmission line.

ms three phase short

VII. CONCLUSION

A novel optimal nonlinear controller is designed using
neural networks for a STATCOM in a single machine
infinite bus. The proposed controller is a coupled
neurocontroller, based on the adaptive critic designs
technique, that replaces the line voltage and dc link voltage
controllers of a STATCOM. Since the proposed
neurocontroller aims to achieve optimal control through
reinforcement learning (and not an analytical solution), the
size and complexity of the power system is immaterial;
therefore, the proposed design procedure can be applied to
larger power systems and/or other FACTS devices.
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