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SECURITY ASSESSMENT USING NEURAL COMPUTING

Badrul H. Chowdhury, Member IEEE

Bogdan M. Wilamowski, Senior member IEEE

Electrical Engineering Departmetit
University of Wyoming
Laramie, WY 82071-3295

* ABSTRACT

The advantage of fast computation capability of an Artificial
Neural Network (ANN) is used to introduce an iterative scheme for
security assessment-of power systems. Two related approaches are
shown which demonstratedly work satisfactorily. The idea of
feedback in a single-layer feedforward neural network is
experimented yielding higher accuracy. The ANN is trained by
using a set of data obtained from off-line analysis of the power
network. After training, an approximate solution for a given
condition may be found almost immediately. The approximate
solution obtained is judged adequate for assessing the security of the
power system. A case study is also presented for demonstrating the
applicability of the approach.

Keywords: Artificial neural network, training set, contingency,
projection algorithm.

1. INTRODUCTION

Security assessment of power systems is a difficult problem
which, with traditional approaches requires enormous computational
effort. Contributing to the complexity of the task are: (i) the
constantly changing system demands and generations, and (ii) an
often inexhaustible list of contingencies that need to be evaluated in
real time. Each contingency requires solving a large set of non-
linear equations in order to obtain information on potential line
overloads or bus voltage magnitude deviations from their limits.
These non-linear equations are normally solved by using any of the
widely acclaimed power flow solution techniques viz., the Gauss-
Seidel method, the Newton-Raphson method or in some cases, the
fast decoupled method. The Gauss-Seidel method has a relatively
simple algorithm but it requires many iterations and for some large
power systems, the method may not converge to the solution. The
Newton-Raphson method also requires an iterative solution of a
large set of non-linear equations but algorithm converges faster.
However, the method is memory-intensive even with application of
sparse matrix techniques. The fast-decoupled method is the most
efficient, however in some cases, only an approximate solution may
be found.

This paper presents results of experimentation with an Artificial
Neural Network (ANN) for security assessment of a power system.
The paper presents arguments toward the concept that the
conventional tedious approach to obtaining solutions of a power
network by using numerical methods may be avoided by using
neural computing. The ANN is trained by using a set of data
obtained from off-line analysis of the power network. After
training, an approximate solution for any given condition, may be
found almost immediately. The approximate solution is accurate
enough for adequately assessing the security of the power system.
A case study is presented later in the paper.

The concept of applying ANN's to static and dynamic security
assessment is a relatively new concept. Several authors in the past
few years have investigated the suitability of applying this particular
branch of artificial intelligence in mitigating the problems of
traditional approaches to security evaluation in power systems [1-5].
These studies have brought into perspective several key issues
relating to the new art. In general, research interest in application of
neural networks in power systems operations and planning is on the
rise as evident from a recently concluded workshop [6].

2. POSSIBLE APPROACHES FOR NEURAL
COMPUTING

In static security assessment, one needs to investigate for a set of
real and reactive powers on buses, the condition of line flows
exceeding the maximum ratings and bus voltage deviations from
their lower and upper limits. In alternate terms, for a given vector of
bus powers, a vector of line flows and bus voltage magnitudes has
to be determined and evaluated. The most straightforward
explanation of such an approach is shown in Fig. 1.
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Figure 1. A possible approach for security assessment

The set of power flow equations is modeled by one layer of the
feedforward neural network as shown in Fig, 2.

Bus Powers
Bus Voltages and Line Powers
OR
Complex Bus Voltages

Fig.2 One layer neural network

If powers at the buses are known, then by using the trained
neural network, approximate values of the bus voltages and line
powers can be found. Then, having the vector of line flows and the
vector of bus voltages, the security vector can be found by setting
appropriate thresholds for maximum line ratings, and lower and
upper bounds for the voltage magnitudes. The term "security vector"
will be used in this paper in the context of branches overloaded and
buses having voltages outside the limits.

Another possible approach for security assessment is to use the
method shown in Fig. 3, where the ANN is used only to determine
the vector of bus voltages. Thereafter the vector of average line
currents Ij; and the vector of complex line flows Sj; may be
explicitly calculated using the following equations:
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and

§ij = (Vi - V,-) iij @)

where:
Vi - complex voltage at bus i.
{\,‘j - complex voltage at bus j.
2ij - series line impedance between buses i and j
- ﬁij - half-line susceptance between buses i and j.
fij - complex line current from bus i to bus j.
Sij - complex line flow from bus i to bus j.

Since the output vector shown in Fig. 1 contains both branch
data and bus data, the ANN used in the first approach will have a
larger number of neurons to train compared to the ANN used in the
second approach. :

SECURITY
VECTOR
[r— ..

Figure 3. An alternate approach for security assessment

2.1 Contingency Analysis for Generator Failure

Predicting the effect of the failure of a generator is a relatively
easy task with the ANN. This is simulated by a simple change in
the input vector (the generated real and reactive powers on that bus
is forced to zero). As a result the voltage distributions under such a
contingency may be computed by the ANN. As a next step line
currents can be computed from Eqs. 1 and 2. Having values of line
currents, system security can be computed as a simple sum of the
cases where the parameter ranges are violated.

For proper operation, it is essential that bus voltages obtained
from the ANN are high in accuracy. The training method applied,
plays a key role in attaining the desired accuracy. For a given power
system, the ANN can be trained using, for example the back
propagation algorithm which is very slow and may require hundreds
or even thousands of iterations depending on the size of the system.
However, for the test system used for demonstration in the paper, it
was found that the projection algorithm based on the least squares
approximation technique was more efficient. Since an ANN without
hidden layers is used, the projection algorithm proved to be very
stable and accurate,

In order to further increase accuracy of the solutions, a feedback
is applied to the feedforward ANN as shown in Fig. 4. A vector of
bus power for feedback, Sy is computed simply as a sum of line
flows Sy at each bus k. At the initial state, elements of the vector
of line power are zeros and hence the feedback vector is zero.
Therefore, in the first step, the input vector of bus powers S}, is
-applied to the neural network and an approximate initial vector of

line powers Sim,o is obtained. In the second step, the difference
between the input vector of bus powers Sy, and the feedback vector
Syt is input to the ANN. Hence, the neural network operates on the
difference (error) and the vector of line powers at the output is
corrected. Usually a few iterations are enough in order to obtain
convergence.
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Fig. 4. The feedforward ANN with feedback
2.2 Contingency Analysis for Line Failure

A more difficult task is to provide analysis in the case of line
failures. In general when a line fails, the power network topology
changes and results obtained from the previously trained ANN can
be misleading. For each possible line failure, the ANN should be
trained in order to obtain correct values of bus voltages and line
flows for any given power distribution. This is a rather time.-
consuming approach and therefore not considered to be practical.

In order to simulate a line failure, the following iterative
algorithm is used. Instead of changing the system topology by
taking the line out of the system, two additional complex power
sources are introduced in relation to the failed line as shown in Fig.
5.

Outaged line
S TS
s} §s2

Figure 5. Power compensation method used for simulating
line outages

The two added power sources shown in the figure have the same
values as the line flows measured at each bus, but have opposite
direction relative to the outaged line flow. This is done in order to
initially obtain zero net power flow between the buses connected by
the failed line. However, these initial net complex power
compensation may not result in zero power flow betwken the buses
because of changes in conditions in the rest of the power network as
aresult of adding the extra sources. This may cause under- or over-
compensation. To circumvent this problem, a modification to the
computational scheme shown in Fig. 4 was implemented in the
feedback loop block of "Computation of bus powers." If a certain
line would fail, then the power flow existing in the failed line prior
to the outage is added to the complex powers of the associated buses
as shown in Fig. 5. Using this iterative scheme and with the minor
correction to the computational algorithm, very accurate results can
be obtained without the need for changing the topology of the
network. With the proposed approach, we are merely adding extra
power sources to the system; hence it is not necessary to re-train the
ANN for each line contingency.




Table 1. The Training Set for the ANN.

20.000 -30.000 -20.000 -20.000 -20.000 -20.000 15.000
-30.000 -30.000 -30.000 -20.000 -30.000 -20.000 20.000
-40.000 -30.000 -35.000 -20.000 -35.000 -20.000 25.000
-40.000 -35000 -35000 -25.000 -35.000 -25.000 25.000
-45.000 -35.000 40.000 -25.000 -40.000 -25.000 35.000
-45.000 -40.000 40.000 -30.000 40.000 -30.000 35.000
-48.000 -40.000 -50.000 -30.000 45000 -30.000 45.000
-48.000 45000 -50.000 -32.000 45.000 -38.000 45.000
-53.000 -45.000 -75.000 -32.000 -50.000 -38.000 65.000
-55.000 -50.000 -75.000 -50.000 -50.000 -45.000 65.000
-70.000  -50.000 -70.000 -50.000 -70.000 -45.000  65.000
-70.000  -70.000 -70.000 -70.000 -70.000 -70.000  65.000
-80.000 -70.000 -75.000 -70.000 -80.000 -70.000  70.000
-85.000 -70.000 -95.000 -70.000 -90.000 -70.000 75.000
-85.000 -75.000 -95.000 -80.000 -90.000 -80.000 75.000
90.000 -75.000 -105.000 -30.000 -100.000 -80.000  90.000
90.000 -80.000 -105.000 -90.000 -100.000 -90.000  90.000
©95.000 -80.000 -125.000 -90.000 -130.000 -90.000 100.000
-125.000 -100.000 -145.000 -120.000 -150.000 -120.000 150.000
-145.000 -100.000 -165.000 -120.000 -170.000 -120.000 190.000
-165.000 -120.000 -165.000 -130.000 -150.000 -130.000 180.000
-185.000 -120.000 -185.000 -130.000 -180.000 -130.000 210.000

3. CASESTUDY

In order to test the algorithm for its effectiveness in predicting
system security we selected a simple six-bus test system [7] as
shown in Fig. 6.

Figure 6. Experimental test system used in the simulation

The training set is shown in Table 1. It consists of 22 vectors of
input data and the same number of output vectors. Each input vector
has the following elements:

[P4, Qq, Ps, Qs, Ps, Qg, P2, P3,]T

and each output vector has:

84, IVd, 8, [V4, B, [Vd, 82, 8,]"

The real and reactive powers have units of MW and MVars
respectively and the voltage magnitudes and angles are given in per
unit and degrees, respectively.

After training is completed, the ANN is tested for validation. A
set of new input training vectors are applied to the neural network.
Table 2 shows 5 such test input vectors and Table 3 shows
comparisons of corresponding bus voltages and line flows as
computed by the ANN against values obtained by off-line computer
analysis using a rigorous mathematical power flow model. Results
shown in Table 3 are for the case when no feedback is used in the
ANN. Also noteworthy is the fact that not all line flows are shown
on the table for the reason of brevity. Table 4 is similar to Table 3
except that a feedback loop was incorporated into the ANN. It may
be observed that the case with feedback yields more accurate results.

20.000
30.000
40.000
40.000
40.000
40.000
42.000
42.000
50.000
50.000
55.000
55.000
60.000
80.000
80.000
100.000
100.000
120.000
170.000
160.000
190.000
210.000

-0.877
-1.578
-1.946
-1.900
-2.147
-2.098
-2.324
-2.276
-2.639
-2.600
-3.879
-3.732
-4.504
-4.955
-4.934
-4.656
-4.648
-5.707
-5.293
-6.963
-1.727
-8.170

1.028 -1.280 1.036
1.026 -2.087 1.033
1.023 -2.287 1.031
1.020 -2.233 1.027
1.018 -2.617 1.025
1.015 -2.563 1.021
1.014 -3.131 1.018
1.010 -3.107 1.015
1.007 -4.181 1.008
1.002 -4.009 0.994
0999 4966 0.995
0984 -4812 0975
0982 -5.614 0973
0.979 -6.539 0.966
0975 -6473 0.957
0972 -6.249 0953
0968 -6.191 0.943
0.966 -8.149 0.935
0.935 -7.089 0.892
0928 -9.674 0.882
0.904 -8.000 0.869
0.895 -9.998 0.856

-1254
-2.075
-2.157
2,140
-2.568
2549
-3.026
-2.986
-3.479
3473
-5.341
-5.329
-6.361
-6.864
-6.873
-6.282
-6.304
-8.717
-6.768
-9.846
-6.700
-9.001

1.037
1.035
1.034
1.030
1.029
1.026
1.024
1.019
1.017
1.011
1.007
0.989
0.987
0.984
0.977
0.974
0.966
0.959
0.928
0.920
0.917
0.907

-0.645
-1.144
-1.195
-1.229
-1.295
-1.327
-1.421
-1.451
-1.448
-1.520
-2.705
2911
-3.523
-3.799
-3.892
-3.136
-3.236
-4.367
-2.444
-3.545
-2.578
-3.345

Table 2. Test Input Vectors for the Trained Neural Network

Test# Ps Qs

W AW N =

Table 3.

B JUIMH W JOIMH NGO =3 0m
= = = =

Ll O N e B
<

Ps

-43 32 -38 - 18
-5 -37 -56 -40
-8 66 -71 -62

92 72 -110 - 85

-135 90 -156 -132

Ps Q P2
-32 -28 34
-32 -30 53
-65 -65 60
-93 -8 98
-165 -124 145

Py

35
49
75
89
180

Validation of Bus Voltages and Line Flows
(No Feedback)
BUS VOLTAGES LINE FLOWS

Actual ANN Actual

= 102247 1.02108 1-2: 799 9.00
= -1.7821 -1.9240 14: 2127 22.69
= 1.03185 1.03077 24: 2556 26.78
= -2.1894 -2.3606 2-6: 1135 11.64
= 1.02982 1.02965 3-6: 27.20 28.34
= -1.8620 -2.0197 56 203 203
= 1,01162 1.01282 12: 325 336
= -1.6579 -1.6513 14: 2425 23.76
= 100869 1.01022 24: 3834 37.26
=-2.1357 -2.1333 2-6: 12,67 12.82
= 102495 1.02501 3-6: 33.78 3423
=-1.1799  -1.2281 56: 753 17.01
= 098270 0.98405 1-2: 21.17 2058
=-38673 -3.7943 14: 4726 46.39
= 097922 0098128 24: 60.80 59.70
= -42537 -4.1726 2-6: 28.07 27.64
= 099372 099489 3-6: 67.22 66.48
= -40451 -3.9837 56: 4.63 434
= 097397 097294 1-2: 26.10 27.19
= -46641 -4.8183 14: 5488 56.16
= 0.94950 0.94782 24: 69.11 70.08
= -6.3593 -6.5527 2-6: 4321 43.56
= 097364 097323 3-6: 88.24 89.26
= -6.2389 -6.4079 5-6:  7.30  7.69
= 094127 093739 1-2: 3143 3513
= -64609 -6.9309 14: 75.17 79.05
= 0.88395 0.87684 24: 101.60 104.72
= -8.2686 -8.8373 2-6: 68.09 70.04
= 09240 091876 3-6: 152.58 157.31
= -84162 -9.0166 5-6: 1090 11.82

-0.651
-1.102
-0.898
-0.926
-1.275
-1.302
-1.664
-1.684
-1.960
-2.040
-3.432
-3.637
-4,383
-4.305
-4.400
-3.212
-3.320
-4.745
-1.587
-4.494
-1.205
-2.249



Table 4. Validation of Bus Voltages and Line Flows

(With Feedback)
BUS VOLTAGES LINE FLOWS
Actual ANN  Actual
T [V{= 102117 102108 12 910 900
E & =-19331 -1.9240 14: 2272 22.69
S [v§ = 103076 103077 24: 2669 2678
T & =-23694 -23606 26 11.64 11.64
. # [V4d = 102068 1.02965 36 2829 2834
1 & =-20334 -20197 56 200 203
T |V{= 101287 1.01282 12 341 336
E & =-16607 -1.6513 14: 2380 23.76
S |v{ = 101018 101022 24: 3722 3726
T & =-21398 -21333 26 1282 12.82
# V4 = 102504 1.02501 3.6 3421 3423
2 & =-12384 -12281 56 701 7.0l
T [V{ = 098404 098405 12: 2067 20.58
E & =-3791 .37943  14: 4643 4639
S |v§ - 098131 098128 24: 5967 5970
T & =-41821 41726 26 27.63 27.64
#[Vd = 099490 099489 36 6646 66.48
3 & =-39947 39837 56 433 434
T [V{= 097203 097294 12 2725 27.19
E & --48207 48183 14: 5618 56.16
S V4 - 094784 094782 24: 7005 70.08
T & =-65598 -6.5527 2-6: 4355 43.56
# V4 = 097324 097323 3.6 8924 8926
4 & =-64154 64079 56 7.69 7.69
T V4= 093747 093739 12 3508 35.13
E & =-69307 -69309 14: 79.02 79.05
S |V = 087694 087684 24: 104.60 104.72
T & =-88204 -88373 2.6 70.02 70.04
# |Vd = 091881 091876 3-6: 15924 15731
5 & =-90101 90166 56 11.81 11.82

The performance of the ANN was then tested for predicting
contingency conditions which translates into security assessment.
Table 5 shows the input vectors used and the contingencies tested in
this phase of the study. All powers are shown in MW and MVars.
Table 6 shows comparisons of the ANN outputs against those
obtained by using a power flow computer model. Some
inaccuracies may be noted in Test cases 1,2 and 4 of Table 6. The
reason was the fact that during numerical computation of power
flows, it was found that the generator at bus 2 for case 1, generators
at buses 2 and 3 for case 2, and generator at bus 2 for case 4
respectively had exceeded their var limits and had lost voltage
control. No such control action was incorporated in the design of the
ANN and hence the inaccuracies.
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Table 5. Inputs Used for the Test Contingencies

Test Case Ps Qg Ps Qs Ps Qs
L.Genoutatbus2 -135 -90 -156 -132 -165 -124
2, Line out: 14 -135 90 156 -132 -165 -124
3. Line out: 2-3 -135 90 -156 -132 -165 -124
4. Line out: 3-5 -135 90 -156 -132 -165 -124
5. Line out: 5-6 -135 90 -156 -132 -165 -124

Table 6. Comparisons of Test Contingencies

BUS VOLTAGES LINE FLOWS

Actual ANN  Actal

T |V{ = 093995 092392 1.2: 11472 110.84
E & =13091 -13.0160  14: 12039 12191
S V] = 087590 086450 24: 9343 85.94
T & =152167 -153047 2.6 65.17 6042
# V4 = 091932 090974 3.6 15725 163.54
1 & =172701 -17.4265 5-6:1 522 15.57
T [V{= 08645 079971 12: 9343 914
E & =-162398 -17.1182  1.5: 92.67 99.46
S [v{ - 086336 082533 24: 17096 17226
T & =144657 -151891  2-6: 69.16 62.16
# IVd = 091643 088341 3.6 158.62 17020
2 & =154939 -163792 5.6 1545 1626
T |V = 093753 093745 12: 3579 3584
E & =-6959 -69577 14: 79.16 179.19
S |v4 = 087689 087678 24: 10429 104.32
T & =-86551 -8.6644 2.6 68.17 68.20
#  [Vd = 091910 087678 3-6: 159.38 150.44
3 & =-86806 -8.6888 56 11.88 11.89
T [V{ = 092633 092092 12: 2968 2973
E & =-67997 -68695 14: 81.32 8325
S [V{ = 080765 0.79785 24: 11610 115.76
T & =104793 -10.7502  2-6: 6935 68.78
# V4 = 090595 090151 36 183.14 186.73
4 & =-69633 .7.0479  5-6: 3000 3131
T [V{ = 093807 093485 1.2: 3597 3544
E & =-70244 -69766 14: 7943 80.00
S V4 - 0.88057 085992 24: 104.18 106.66
T & =-91324 88581 26 68.11 6677
#  |Vd = 092623 092738 36 15296 150.86
5 & =-92336 89642 45 1341 1596

P,

145
145
145
145

Py

180
180
180
180
180



4. CONCLUSIONS

Computation time for security assessment using a trained neural
network approach is significantly shorter than that required by
numerical analysis under identical contingencies. A single layer
ANN was experimented for this purpose and the projection
algorithm was used for training. Results obtained were generally
comparable to actual output from numerical computations and no
need was felt for experimentation with a multi-layer neural network.
For a given power system, the ANN has to be trained only once and
subsequently will operate for any load condition in the system. This
includes normal power system operating condition operation with no
outages as well as for operating conditions under contingencies of
generator and line outages. A new algorithm was developed in
order to incorporate line outage condition into the ANN. Very
accurate results could be obtained without the need for changing the
topology of the network under contingencies. With this approach, it
was not necessary to re-train the ANN for each line contingency.
Test results from a case study on a small power system are shown.
A degree of accuracy can be seen from comparisons with actual
results.

Although the test case shown in the paper deals with a small and
simple power network, the approach described can be easily
extended to much larger and complex systems. We believe that with
larger networks, a somewhat larger input training vector having
information on tap-changing transformers, phase-shifting transfor-
mers, reactive compensators, capacitors and synchronous conden-
sers will be required. We are confident that the solution time for the
ANN execution will not slow down considerably with a larger
network because about 90 per cent of the weights found for the
neurons will be insignificant.
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