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Abstract 

This paper examines the performance of an HDP-type 
(adaptive critic design (ACD) of the game Go. The game 
Go is an ideal problem domain for exploring machine 
learning; it has simple rules but requires complex 
strategies to play well. All current commercial Go 
2programs are knowledge based implementations; they 
utilize input feature and pattern matching along with 
minimax type search techniques. But the extremely high 
branching factor puts a limit on their capabilities, and 
they are very weak compared to the relative strengths of 
other game program like chess. In this paper, the Go- 
playing ACD consists of a critic nerwork and an action 
network. The HDP type critic network learns to predict 
cumulative utility function of the current board position 
,from training games, and, the action network chooses a 
next move which maximizes critics' next step cost-to-go. 
After about 6000 different training games against a 
public domain program, WALLY 111, the network 
(playing WHITE) began to win in some of the games and 
showed slow but steady improvements on test games. 

Introduction 

Go is a deterministic, perfect information, zero-sum 
game of strategy between two players. Players take turns 
putting black and white pieces (called stones) on the 
intersection of the lines in a 19x19 board (usually 9x9 for 
computer programs, including ours). Once played, a stone 
cannot be moved, unless captured by the other player. A 
player can pass any time. The object of the game is to 
surround territory and/or opponent's stones. Adjacent 
stones of the same color forms groups; an empty 
intersection adjacent to a group is called its liberty. A 
group is captured, when its last liberty is occupied by the 
opponent. To prevent loops, it is illlegal to make moves 

that recreates prior board position (rule of KO). The game 
ends when both players pass in successive turns [2]. 

Most computer game playing algorithms use minimaix 
techniques along the move tree for several ply (one plly 
consists of two consecutive moves, one by each player) 
along with static position evalluator to pick the best mow. 
There are several reasons why this approach is not 
efficient for Go. First, for normal board sizes the number 
of legal moves at each position or branching factor is 
much higher than in chess. Second, many situations in Cio 
require very deep reading in order to assess correctly 
(since the stones do not move around, a human player can 
look ahead more reliably than in chess, in some cases for 
60 ply). Third, there is no simple evaluation function that 
could be applied to the leaf positions in the minimax move 
tree. 

In his Neurogammon prioject, Tesauro (1993) used 
Temporal difference, TD(h), algorithms for the 
prediction evaluation function at different board positions 
[3]. TD(k) methods are incremental learning procedurles 
specialized for prediction problems where the sensory 
inputs are applied in sequencie (Sutton, 1988) [4]. TD@) 
algorithms adjusts the weights in a multi-layer network; 
the incremental weight is given as: 

f 

k=l 

and, it minimizes the following criterion function: 

p=l k=l 

In equations ( 1 )  and (2), P is the number of examples, 
e.g., the number of games; N, is the number of steps in the 
p" example, which is not known until the outcome is 
determined; zN, is the actual outcome (determined by the 
rule of the game) of the p" extample at the end of the game 
p. Game p consists of states xp(k), k = I ,  2, .. N,. G(x,(k)) 
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is the output of the network when presented with x,(k); 
and, h[0,1] is a parameter which is used to place more 
emphasis on predictions temporally close to the outcome. 

Schraudolph et. a1 (1994) used TD(0) for training the 
critic in their Go network [ 5 ] .  Chan et. AI. (1996) showed 
that non-zero h gives better learning and the larger the h 
is, the better is the performance [6] .  In our Go project, we 
used Heuristic Dynamic programming (HDP) type 
adaptive critic design [7] for evaluating a Go board. The 
main differences of HDP with above mentioned three 
TD(h) approaches are, it uses an additional utility function 
(per step costheward) in training signal. We used on-line 
learning since instead of using a fixed set of training 
games, we trained our network by playing against a public 
domain AI-type Go-program, WALLY. 

An HDP-type critic estimates the function J (cost-to- 
go) in the Bellman equation of dynamic programming 
expressed as: 

( 3 )  
k =O 

where, y is a discount factor for finite horizon problems 
(O<y<l), and U(.) is a non-negative utility function or 
local costheward. The critic is trained forward in time, 
and it tries to minimize the following error measure over 
time 

and, 

E ( t )  = J ( t >  - [y J ( t  + 1) + u(t)] 

(4) 

(5) 
where, the terms inside the square bracket make the 
desired signal for time step t, if t is not the terminal state. 
At the end of the game, the desired signal is simply U(t) or 
modified U(t) to reflect the outcome of the experiment 
[7,8]. J(t) is a function of R(t), i.e., the observable states 
of plant. For our Go-playing ACD, R(t) can be the board 
representation at step t. The winner in a Go-game is 
determined by counting areas of two players and the 
player with more area wins. For the function U(t) we used 
an incremental area measure from board R(t-1) to R(t). 
When area associated with R(t-1) is larger than that of 
R(t) (loss of area between two steps, (t-I) and t), U(t) is 
set to zero since U(.) is strictly non-negative by the 
principle of dynamic programming. This means that, the 
critic will only learn to predict outcome for one player. In 
our experiments, we trained the critic to play as WHITE, 
and, WALLY played as BLACK. 

Network architecture 

WALLY, a weak public domain program (rating -30 
Kyu), is used to provide the BLACK moves. So, only half 
of the states were created by the ACD. But, the critic 
actually can see all the states because utility after WALLY 
move will be zero. The action network is an algorithm that 
picks a move from all legal moves which will maximize J 
for next board configuration. So, J will seek to maximize 
WHITE’S area. By legal moves, we mean all empty board 
positions, except those violating the rule of KO or 
involuntary suicide rule. These rules are worth giving to 
the network rather than starting from zero knowledge to 
give the network a structure. After training 6000 games 
using gradient descent weight update an 81 ~ 2 1 x 1  network 
learned to defeat WALLY in some games. All the hidden 
nodes have bipolar sigmoid activation and the output node 
has sigmoid activation. The slope of activation functions 
are 0.5 in all cases. The block diagram of the training 
process is shown in Fig. I .  

The critic sees each states after both WALLY and the 
action network moves. The action network picks only 
WHITE moves, so it sees only even-numbered states. The 
action network sees the state R(t) and picks up a WHITE 
move that will maximize J(R(t+l)). During first 6000 
training games, the initial state was always the blank 
board, i.e., we are training on even play. 

The U(.) function is given by: 

U(t) 

where, 

= util(t) - util(t-I) ; if util(t) > util(t-I) 
= 0, otherwise. ( 6 )  

To avoid singularity, any of the terms on right side of 
Eq. (7) may be reduced to zero if its denominator is zero. 
N, and NB are the number of WHITE and BLACK stones 
on board, respectively. Aw and AB are the area occupied 
by WHITE and BLACK stones, respectively. PB and Pw 
are BLACK and WHITE prisoners held by the opponent, 
respectively . One’s utility measure increases with 
increasing his own occupied area or capturing more of 
opponent’s stone. The first term is included to teach critic 
not to make unnecessary PASS moves. The third term in 
the utility will train the critic to weigh the importance of 
attacking play. In our experiment, we did not explicitly 
include the first term but our area measurement actually 
gave (A, + N,) and (AB + NB) instead of simply A, and 
AB. 
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Figure 1. Block diagram of the Go-playing network. 
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Figure 1. Block diagram of the Go-playing network. 

We approximately chose the weights v=0.8 and 
p=0.2.The desired signal for the terminal state (end of one 
game) is given by: 

A, 
A, +AB 

.D( T )  = 

Training Strategies and Resul1:s 

During the first 4000 training games, the action 
network selected moves by Gibb’s sampling, as in Chan 
et. al. (1996), to make variations in play since WALLY 
tends to repeat the same plays. This is necessary only at 
the beginning because during that period the final 
outcome is very close to zero in most cases. Thus, the 
lraining signals are large, and action network will quickly 
fall into some local minima to adopt one line of play only. 
Gibb’s sampling will provide a tool to explore multiple 
paths in the depth-first search tree. At the end of 3000 
training games, the network was occuipying an average of 
‘29 squares among a total of 81 squares. During this period 
,all initial states were the empty board. Beyond the 4000th 
game the action network started to pick moves that 
maximized the critic’s evaluation of ithe next board. The 
network started to build up more area (on a moving 
average of last 200 games) with training and registered its 
first win shortly after 5500th training game. The critic’s 
weight was saved (GO.WT) after 6000 training games 
when the network was winning in 1% games and 
occupying more than 34 squares (close defeat) 
in 20% of the games. Gamma was 0.95 during this 
training process. 

We performed four different training and testing 
cycles using this saved weight (GO.WT) as the initial 
weight. Gamma were 0.0, 0.7, 0.9, 0.95 in those 
experiments respectively. We forced WALLY to pla:y 
different games each time by selecting first two moves 
(one BLACK and one WHITE) at random. 100 test games 
(no online learning) were interleaved between each 500 
training games (online learning, not on fixed training 
set).The number of wins and close losses by the network 
for a total of 4600 training and testing games in four 
different cases are shown in TABLE I. 

Table I 

I Y I No, of Wins 1 No. of losses by I 

l ~ - p $ - l  
0.95 

As a rule in the game Go, at the end of the game 
Black’s score is reduced by some points to nullify the 
advantage of placing the first stone. This particular point 
called “Komi” is generally 5.5. With Komi in place, all 
the losses with less than 6 points will be counted as White 
wins. 
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Conclusion References 

We have compared the performance of an HDP type 
adaptive critic design, that can learn to play Go from zero 
knowledge, for different values of discount factor. The 
result clearly indicates regular improvement in total 
winning number for larger value of discount factor, 
gamma. This simple ACD design of the game Go does not 
represent a strong Go playing network yet, but it does 
demonstrate that, the principle of dynamic programming 
can be utilized to incorporate machine learning in the 
game of Go. Go is a game of complex strategies at each 
stages of the game; success of ACD depends solely on the 
quality of the J function. To improve the relative accuracy 
of J function from board to board, we are currently 
experimenting with a simultaneous recurrent network [9] 
to predict J. Also, the utility function with more Go- 
related knowledge (e.g., liberty of a group or stone, no. of 
2-eye groups, control over the neighboring empty space, 
etc.) will aid in forming a meaningful J function. 
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