
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 1997

Adaptive Critic Design in Learning to Play Game of Go Adaptive Critic Design in Learning to Play Game of Go

R. Zaman

Danil V. Prokhorov

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
R. Zaman et al., "Adaptive Critic Design in Learning to Play Game of Go," Proceedings of the International
Conference on Neural Networks,1997, Institute of Electrical and Electronics Engineers (IEEE), Jan 1997.
The definitive version is available at https://doi.org/10.1109/ICNN.1997.611623

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICNN.1997.611623
mailto:scholarsmine@mst.edu

Adaptive Critic Design in Learning to Play Game of Go

Raonak Zaman Danil Prokhorov Donald1 C. Wunsch I1
Raonak@ eesunl .ee. ttu.edu Prokhor@eesunl .ee. ttu.edu Dwunsch @ coe2.coe. ttu.edu

Applied Computational Intelligence Laboratory
Electrical Engineering
Texas Tech University

http://www.acil. ttu. edu
BOX. 43 102, Lubbock, TX 79409-3 102

Abstract

This paper examines the performance of an HDP-type
(adaptive critic design (ACD) of the game Go. The game
Go is an ideal problem domain for exploring machine
learning; it has simple rules but requires complex
strategies to play well. All current commercial Go
2programs are knowledge based implementations; they
utilize input feature and pattern matching along with
minimax type search techniques. But the extremely high
branching factor puts a limit on their capabilities, and
they are very weak compared to the relative strengths of
other game program like chess. In this paper, the Go-
playing ACD consists of a critic nerwork and an action
network. The HDP type critic network learns to predict
cumulative utility function of the current board position
,from training games, and, the action network chooses a
next move which maximizes critics' next step cost-to-go.
After about 6000 different training games against a
public domain program, WALLY 111, the network
(playing WHITE) began to win in some of the games and
showed slow but steady improvements on test games.

Introduction

Go is a deterministic, perfect information, zero-sum
game of strategy between two players. Players take turns
putting black and white pieces (called stones) on the
intersection of the lines in a 19x19 board (usually 9x9 for
computer programs, including ours). Once played, a stone
cannot be moved, unless captured by the other player. A
player can pass any time. The object of the game is to
surround territory and/or opponent's stones. Adjacent
stones of the same color forms groups; an empty
intersection adjacent to a group is called its liberty. A
group is captured, when its last liberty is occupied by the
opponent. To prevent loops, it is illlegal to make moves

that recreates prior board position (rule of KO). The game
ends when both players pass in successive turns [2].

Most computer game playing algorithms use minimaix
techniques along the move tree for several ply (one plly
consists of two consecutive moves, one by each player)
along with static position evalluator to pick the best mow.
There are several reasons why this approach is not
efficient for Go. First, for normal board sizes the number
of legal moves at each position or branching factor is
much higher than in chess. Second, many situations in Cio
require very deep reading in order to assess correctly
(since the stones do not move around, a human player can
look ahead more reliably than in chess, in some cases for
60 ply). Third, there is no simple evaluation function that
could be applied to the leaf positions in the minimax move
tree.

In his Neurogammon prioject, Tesauro (1993) used
Temporal difference, TD(h), algorithms for the
prediction evaluation function at different board positions
[3]. TD(k) methods are incremental learning procedurles
specialized for prediction problems where the sensory
inputs are applied in sequencie (Sutton, 1988) [4]. TD@)
algorithms adjusts the weights in a multi-layer network;
the incremental weight is given as:

f

k=l

and, it minimizes the following criterion function:

p=l k=l

In equations (1) and (2), P is the number of examples,
e.g., the number of games; N, is the number of steps in the
p" example, which is not known until the outcome is
determined; zN, is the actual outcome (determined by the
rule of the game) of the p" extample at the end of the game
p. Game p consists of states xp(k), k = I , 2, .. N,. G(x,(k))

0-7803-4 122-8197 $10.000 1997 IEEE 1

http://www.acil

is the output of the network when presented with x,(k);
and, h[0,1] is a parameter which is used to place more
emphasis on predictions temporally close to the outcome.

Schraudolph et. a1 (1994) used TD(0) for training the
critic in their Go network [5] . Chan et. AI. (1996) showed
that non-zero h gives better learning and the larger the h
is, the better is the performance [6] . In our Go project, we
used Heuristic Dynamic programming (HDP) type
adaptive critic design [7] for evaluating a Go board. The
main differences of HDP with above mentioned three
TD(h) approaches are, it uses an additional utility function
(per step costheward) in training signal. We used on-line
learning since instead of using a fixed set of training
games, we trained our network by playing against a public
domain AI-type Go-program, WALLY.

An HDP-type critic estimates the function J (cost-to-
go) in the Bellman equation of dynamic programming
expressed as:

(3)
k =O

where, y is a discount factor for finite horizon problems
(O<y<l), and U(.) is a non-negative utility function or
local costheward. The critic is trained forward in time,
and it tries to minimize the following error measure over
time

and,

E (t) = J (t > - [y J (t + 1) + u(t)]

(4)

(5)
where, the terms inside the square bracket make the
desired signal for time step t, if t is not the terminal state.
At the end of the game, the desired signal is simply U(t) or
modified U(t) to reflect the outcome of the experiment
[7,8]. J(t) is a function of R(t), i.e., the observable states
of plant. For our Go-playing ACD, R(t) can be the board
representation at step t. The winner in a Go-game is
determined by counting areas of two players and the
player with more area wins. For the function U(t) we used
an incremental area measure from board R(t-1) to R(t).
When area associated with R(t-1) is larger than that of
R(t) (loss of area between two steps, (t-I) and t), U(t) is
set to zero since U(.) is strictly non-negative by the
principle of dynamic programming. This means that, the
critic will only learn to predict outcome for one player. In
our experiments, we trained the critic to play as WHITE,
and, WALLY played as BLACK.

Network architecture

WALLY, a weak public domain program (rating -30
Kyu), is used to provide the BLACK moves. So, only half
of the states were created by the ACD. But, the critic
actually can see all the states because utility after WALLY
move will be zero. The action network is an algorithm that
picks a move from all legal moves which will maximize J
for next board configuration. So, J will seek to maximize
WHITE’S area. By legal moves, we mean all empty board
positions, except those violating the rule of KO or
involuntary suicide rule. These rules are worth giving to
the network rather than starting from zero knowledge to
give the network a structure. After training 6000 games
using gradient descent weight update an 81 ~ 2 1 x 1 network
learned to defeat WALLY in some games. All the hidden
nodes have bipolar sigmoid activation and the output node
has sigmoid activation. The slope of activation functions
are 0.5 in all cases. The block diagram of the training
process is shown in Fig. I .

The critic sees each states after both WALLY and the
action network moves. The action network picks only
WHITE moves, so it sees only even-numbered states. The
action network sees the state R(t) and picks up a WHITE
move that will maximize J(R(t+l)). During first 6000
training games, the initial state was always the blank
board, i.e., we are training on even play.

The U(.) function is given by:

U(t)

where,

= util(t) - util(t-I) ; if util(t) > util(t-I)
= 0, otherwise. (6)

To avoid singularity, any of the terms on right side of
Eq. (7) may be reduced to zero if its denominator is zero.
N, and NB are the number of WHITE and BLACK stones
on board, respectively. Aw and AB are the area occupied
by WHITE and BLACK stones, respectively. PB and Pw
are BLACK and WHITE prisoners held by the opponent,
respectively . One’s utility measure increases with
increasing his own occupied area or capturing more of
opponent’s stone. The first term is included to teach critic
not to make unnecessary PASS moves. The third term in
the utility will train the critic to weigh the importance of
attacking play. In our experiment, we did not explicitly
include the first term but our area measurement actually
gave (A, + N,) and (AB + NB) instead of simply A, and
AB.

0-7803-4122-8197 $10.0001997 IEEE 2

R (t

Figure 1. Block diagram of the Go-playing network.

0.0

R(tt1)

A

14 27

to U(.)

Figure 1. Block diagram of the Go-playing network.

We approximately chose the weights v=0.8 and
p=0.2.The desired signal for the terminal state (end of one
game) is given by:

A,
A, +AB

.D(T) =

Training Strategies and Resul1:s

During the first 4000 training games, the action
network selected moves by Gibb’s sampling, as in Chan
et. al. (1996), to make variations in play since WALLY
tends to repeat the same plays. This is necessary only at
the beginning because during that period the final
outcome is very close to zero in most cases. Thus, the
lraining signals are large, and action network will quickly
fall into some local minima to adopt one line of play only.
Gibb’s sampling will provide a tool to explore multiple
paths in the depth-first search tree. At the end of 3000
training games, the network was occuipying an average of
‘29 squares among a total of 81 squares. During this period
,all initial states were the empty board. Beyond the 4000th
game the action network started to pick moves that
maximized the critic’s evaluation of ithe next board. The
network started to build up more area (on a moving
average of last 200 games) with training and registered its
first win shortly after 5500th training game. The critic’s
weight was saved (GO.WT) after 6000 training games
when the network was winning in 1% games and
occupying more than 34 squares (close defeat)
in 20% of the games. Gamma was 0.95 during this
training process.

We performed four different training and testing
cycles using this saved weight (GO.WT) as the initial
weight. Gamma were 0.0, 0.7, 0.9, 0.95 in those
experiments respectively. We forced WALLY to pla:y
different games each time by selecting first two moves
(one BLACK and one WHITE) at random. 100 test games
(no online learning) were interleaved between each 500
training games (online learning, not on fixed training
set).The number of wins and close losses by the network
for a total of 4600 training and testing games in four
different cases are shown in TABLE I.

Table I

I Y I No, of Wins 1 No. of losses by I

l ~ - p $ - l
0.95

As a rule in the game Go, at the end of the game
Black’s score is reduced by some points to nullify the
advantage of placing the first stone. This particular point
called “Komi” is generally 5.5. With Komi in place, all
the losses with less than 6 points will be counted as White
wins.

3

Conclusion References

We have compared the performance of an HDP type
adaptive critic design, that can learn to play Go from zero
knowledge, for different values of discount factor. The
result clearly indicates regular improvement in total
winning number for larger value of discount factor,
gamma. This simple ACD design of the game Go does not
represent a strong Go playing network yet, but it does
demonstrate that, the principle of dynamic programming
can be utilized to incorporate machine learning in the
game of Go. Go is a game of complex strategies at each
stages of the game; success of ACD depends solely on the
quality of the J function. To improve the relative accuracy
of J function from board to board, we are currently
experimenting with a simultaneous recurrent network [9]
to predict J. Also, the utility function with more Go-
related knowledge (e.g., liberty of a group or stone, no. of
2-eye groups, control over the neighboring empty space,
etc.) will aid in forming a meaningful J function.

Acknowledgment

We deeply acknowledge support from Texas Tech
Center for Applied Automation and Research and the
National Science Foundation Neuroengineering Program
Grant No. ECS-9413 120.

1.

2.

3.

4.

5 .

6.

7.

8.

9.

Bill Newman, “Wally - a Simple Minded Go-program,”
Shareware Go program available by anonymous ftp from
ftp://imageek. york.cun y .edu/nngs/Go/comp/.
‘The game of Go,” by Arthur Smith, Charles Tuttle Co.,
Tokyo, Japan, 1956.
S. Sutton, ‘‘ Learning to predict by the method of temporal
differences,” Machine learning, No. 3, 1988, pp. 9-44.
G. Tesauro, “Practical Issues in temporal difference
leaming,” Machine learning, No. 8, 1992, pp. 2.57-278.
N. N. Schraudolph, P. Dyan, T. J. Sejnowski, “Temporal
learning of position evaluation in the game of Go,”
Advances in Neural Information Processing, Vol. 6, 1994,

H. W. Chan, 1. King, J. C. Lui, “Performance analysis of a
new updating rule for TD(A) learning in feedforward
networks for position evaluation in Go game,” in
Proceedings of the ICNN, Vol. 3, Washington DC, 1996,

D. Prokhorov, D. C . Wunsch 11, “Adaptive critic designs,”
accepted in IEEE Trans. On Neural Networks.
D. Prokhorov, R. Santiago, D. C. Wunsch 11, “Adaptive
critic designs: a case study for neurocontrol,” Neural
Networks, vol. 8, no. 9, 199.5, pp. 1367-1372.
P. Werbos and X. Pang, “Generalized Maze Navigation:
SRN Critics Solve What Feedforward or Hebbian Nets
Cannot”, in the Proceedings of the Ninth Yale Workshop
on Adaptive and Learning Systems, New Haven CT, 1996,

pp. 8 17-824.

pp. 17 16- 1720.

pp. 51-58.

4

	Adaptive Critic Design in Learning to Play Game of Go
	Recommended Citation

	Adaptive critic design in learning to play game of Go

