
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 2006 

Empirical Study of an Unconstrained Modified Particle Swarm Empirical Study of an Unconstrained Modified Particle Swarm 

Optimization Optimization 

Ganesh K. Venayagamoorthy 
Missouri University of Science and Technology 

Phillip W. Moore 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
G. K. Venayagamoorthy and P. W. Moore, "Empirical Study of an Unconstrained Modified Particle Swarm 
Optimization," Proceedings of the IEEE International Conference on Evolutionary Computation, 2006, 
Institute of Electrical and Electronics Engineers (IEEE), Jan 2006. 
The definitive version is available at https://doi.org/10.1109/CEC.2006.1688483 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229170538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CEC.2006.1688483
mailto:scholarsmine@mst.edu


 
 

  

Abstract— In this paper, an unconstrained modified particle 
swarm optimization (UMPSO) algorithm is introduced and 
studied empirically.  Four well known benchmark functions, 
with asymmetric initial position values, are used as testing 
functions for the UMPSO algorithm.  The UMPSO is a 
variation of the canonical PSO in which the velocity and 
position is unconstrained, an additional strategic component is 
added, and the social component term has been modified.  The 
strategy component is used instead of varying parameters or 
mutation to enhance diversity in the swarm during the search.  
The UMPSO algorithm is then compared to results obtained 
from the constrained canonical PSO (CPSO) and the 
unconstrained canonical PSO (UPSO).  The results show that 
UMPSO algorithm with no maximum velocity and position, 
and no minimum velocity and position value that performs 
better than the CPSO and the UPSO for the Sphere, 
Rosenbrock, Rastrigrin, and Griewank benchmark functions. 

I. INTRODUCTION 
HERE are many algorithms used in optimization that 
utilize population search techniques.  The genetic 

algorithm, genetic programming, differential evolution, and 
other evolutionary computational algorithms are all 
motivated by evolution as seen in nature.  The particle 
swarm optimization (PSO) algorithm, however, is motivated 
from the imitation of social behavior individually and in 
groups.  The PSO, developed by James Kennedy and Russell 
Eberhart [1, 2], is modeled after movement patterns and 
social interactions as seen in flocks of birds and schools of 
fish.  Instead of using selection, crossover, and mutation 
operators to manipulate individuals in the population, each 
individual is flown through a hyper dimensional search 
space, containing the solutions for given problems, and 
coordinates their flying experiences through the population. 

In the PSO algorithm, each particle performs an 
evaluation of its position, called the fitness evaluation, 
through each time step in the search space.  The best 
performance of each particle and respective location is then 
stored into memory and called the pbest of the particle.  
Then the best of the pbest in the population, called the gbest, 
is stored into memory.  The concept of PSO lies in the 
acceleration of each particle towards its pbest and the gbest 

 
This work is supported by the National Science Foundation CAREER 

grant ECS #0348221.  
Phillip. W. Moore and Ganesh K. Venayagamoorthy with the Real-Time 

Power and Intelligent Systems (RTPIS) Laboratory, Department of 
Electrical and Computer Engineering, University of Missouri – Rolla, 1870 
Miner Circle, Rolla, MO 65409, USA (email: pwmpn2@umr.edu, 
gkumar@ieee.org)  

 

locations at each time step, and is modified by its own 
inertia. 

In this paper, an unconstrained modified version of the 
canonical PSO is presented (UMPSO). The UMPSO is a 
modified version of the canonical PSO with no constraints of 
maximum velocity, maximum position, minimum velocity, 
and minimum position.  The canonical PSO is modified by 
using a constriction factor and a new term, called the 
strategy component, to increase the performance of the PSO 
algorithm’s velocity update equation.  The strategy 
component is used instead of varying parameters or mutation 
to enhance diversity in the swarm during the search.  The 
social component term of the velocity update equation is 
also modified such that the term is solely based on the global 
best position of the swarm. 

The rest of the sections of this paper are organized as 
follows: Section II explains the different PSO algorithms 
(Constrained/Unconstrained Canonical PSO and UMPSO).  
Section III describes the benchmark functions used for 
testing the two improved PSO algorithms.  Section IV 
describes the experimental settings.  Section V presents the 
results obtained from the constrained canonical PSO 
(CPSO), the unconstrained canonical PSO (UPSO), and the 
UMPSO.  Finally, some discussion and conclusions are 
given in Sections VI and VII, respectively. 

II.   PARTICLE SWARM ALGORITHMS 
The canonical PSO and a modified PSO are studied in this 

paper.  The CPSO and UPSO results are compared with the 
results obtained from the UMPSO.  The canonical PSO, first 
proposed by James Kennedy and Russell Eberhart [1], sets 
maximum velocity, maximum position, minimum velocity, 
and minimum position limits.  In flocks of birds and schools 
of fish, these restraints are not given.  In real life, birds and 
fish are able to move freely throughout their environment.  
Though there are boundaries such as air, water, and speed, 
evolution may theoretically propel birds or fish beyond these 
boundaries if need be.   The UMPSO algorithm reflects these 
observations and places no constraints on particles’ (birds, 
fish, etc.) velocities and positions. 

A. Constrained/Unconstrained Canonical Particle Swarm 
In the canonical PSO algorithm, the velocity of a particle, 

i, in dimension, d, is obtained using (1).  The subscript i 
from (1) takes on values from 1 to I, where I is the 
maximum number of particles in the population.  Each 
particle is assigned to a positional point in a D-dimensional 
search space.  In (1), vid(t+1) is the new velocity for the ith 

Empirical Study of an Unconstrained Modified Particle Swarm 
Optimization  

Phillip W. Moore, Student Member, IEEE and Ganesh K. Venayagamoorthy, Senior Member, IEEE

T 

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1477



 
 

particle at dimension d.  The first term of (1), vid(t) is the 
current velocity for the ith particle at dimension d.  The 
values for w, c1, and c2 represent the inertia constant, 
cognitive acceleration constant, and social acceleration 
constant, respectively.  The terms rand1( ) and rand2( ) are 
uniform random numbers between 0 and 1.  The random 
values change for each particle.  The term pi = (pi1, pi2, . . . , 
piD) is the current personal best fitness for the ith particle, 
where D is the maximum number of dimensions. 

 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

id

id 1 id id

2 d id

w v t

v t 1 c rand1 p t x t

c rand2 g t x t

 × +
  + = × × − +   
 × × −    

 (1) 

 
There are different topologies that can be chosen for the 

canonical PSO.  The main two are the star and the ring 
topologies.  The star topology allows for each particle to 
communicate to the swarm’s best particle (g).  In the 
canonical PSO used in this paper, the star topology is used, 
and the swarm’s best particle is g = (g1, g2, . . . , gD).  The 
ring topology allows for each particle to communicate to the 
best particle in its neighborhood (l).  The ring topology is 
not studied in this paper. 

For the canonical PSO, the positions of the particles are 
updated using (2).  In (2), xid(t+1) is the new position of the 
ith particle at dimension d, and the first term, xid(t), is the 
current position of the ith particle at dimension d.  The 
summation of xid(t) and vid(t+1) yields the new position of 
the ith particle. 
 

( ) ( ) ( )id id idx t 1 x t v t 1+ = + +  (2) 
 

The CPSO and UPSO both use (1) and (2) for the velocity 
and position updates.  For a CPSO the velocities and 
positions have a respective maximum and minimum value.  
If a velocity or position exceeds these values, the velocity or 
position is set to the respective maximum or minimum 
value.  For a UPSO, there is no maximum or minimal value 
for the velocities and positions to exceed.  

B. Unconstrained Modified Particle Swarm 
The UMPSO is a modified version of the UPSO such that 
there is a constriction factor, a strategic component, and a 
modified social component of the UPSO.  The modified 
social component is impacted only by the global best 
position of the swarm.  The constriction factor for PSO was 
brought about by Clerc’s constriction factor [3].  Clerc’s 
constriction factor is normally used to ensure convergence.  
A detailed discussion of the constriction factor is beyond the 
scope of this paper, but a simplified method of incorporation 
with the UMPSO is shown in (3) and (4) where the values of 
c3 and c4 are set to 2.05 and the constriction factor, K, is set 
to 0.729.  With c3 and c4 set to 2.05, When the values of c3 
and c4 are multiplied by the constriction factor of 0.729 to 
obtain c1 and c2, the values of c1 and c2 become 1.49. 

The strategic component that is added to the PSO is used, 
instead of using varying parameters or mutation, to enhance 
diversity.  The strategy component is equal to the inner 
product of an N-dimensional number randN (N is the 
dimension of the solution space and each dimension of 
randN is uniformly distributed random numbers in the range 
from 0 to 1) and the difference between the gbest and pbest.  
For example, the vector size for pbest will equal N (the 
number of dimensions).  The vector for the swarm’s gbest 
will also have a vector size of N.  Therefore the difference of 
these terms will also produce a vector of size N.  The dot 
product of a vector of random numbers of vector size N and 
the difference of the two terms will produce a scalar value.  
This scalar value is referred to as the strategy component. 
The strategy component will have the same value for each 
dimension of a single particle.  This strategy component 
prevents pseudo-convergence or undesired maturity by 
increasing search diversity at an early stage when pbest and 
gbest are very different.  As the pbest and gbest values 
converge to a solution, the difference between these values 
will converge to zero.  One may question whether the 
convergence of PSO algorithm is affected by adding the 
social component.  The PSO algorithm is not affected in 
practice, because the simulations always converge.  In 
theory, the social component does not break the social 
behavior based on which PSO is developed.  The equation 
for the positional update of UMPSO is the same as the 
canonical PSO update equation given in (2).  Using this 
equation, the coordinates of gbest is enforced in the value of 
the velocity rather than moving towards the gbest from the 
current position. 

 

( )

( )
( ) ( )

( )

( ) ( )

id

1 id id

2 d

id

i

v t

K c rand1 p t x t

c rand2 g t
v t 1

randN p t g t

  +
   × × × − + +    
  × ×     + =  
 
 • −    
 
  

 (3) 

2

2K , c3 c4, 4
2 4

= ϕ = + ϕ >
− ϕ − ϕ − ×ϕ

 (4) 

III. BENCHMARK FUNCTIONS 
In this paper, four benchmark functions have been used 

for optimization problems [4, 5, 6].  The functions are the 
Sphere function (5), Rosenbrock’s function (6), Rastrigrin’s 
function (7), and Griewank’s function (8).  These four 
benchmark functions test the performance of the CPSO, 
UPSO, and UMPSO. 

 

( )
n

2
1 i

i
f x x=∑  (5) 

1478



 
 

 

( ) ( ) ( )
n 1

2 2
2 i 1 i i

i 1
f x 100 x x x 1

−

+
=

= − + −∑  (6) 

 

( ) ( )
n

2
3 i i

i 1
f x x 10 cos 2 x 10

=

 = − × ×π× + ∑  (7) 

 

( )
nn

2 i
4 i

i 1 i 1

x1f x x cos 1
4000 i= =

 = × − + 
 

∑ ∏  (8) 

IV. EXPERIMENTAL SETTINGS 
For our experiment in optimization of four benchmark 

functions, the asymmetric initialization method is used for 
population initialization [4, 5, 7].  Table I lists the position 
initialization ranges for the four benchmark functions.  The 
four benchmark functions are minimized for the experiments 
carried out.  The constraints for the CPSO algorithm are 
given in Table II for each benchmark function.  There is no 
velocity and position constraint for UPSO and UMPSO, as 
explained in Section II, for all four benchmark functions.  
For each algorithm and benchmark function, a population 
size of 20, 40, and 80 are examined.  Also, for each 
algorithm, benchmark function, and population size, a 
dimension size of 10, 20, 30, 50, and 100 are examined.  The 
number of iterations ran for each dimension is given in 
Table III. 

 
 

TABLE I 
ASYMMETRIC INITIALIZATION OF POSITIONS 
Function Asymmetric Initialization Range 

f1 (50, 100) 
f2 (15, 30) 
f3 (2.56, 5.12) 
f4 (300, 600) 

 
 

TABLE II 
VELOCITY AND POSITION CONSTRAINTS FOR CPSO 

Function Minimum/Maximum Velocity and 
Position 

f1 -100 / 100 
f2 -100 / 100 
f3 -10 / 10 
f4 -600 / 600 

 
 

TABLE III 
MAXIMUM ITERATIONS 

Dimension Iterations 
10 1000 
20 1500 
30 2000 
50 5000 

100 5000 

V.    RESULTS 
The CPSO, UPSO, and UMPSO algorithms are all used to 

minimize four benchmark functions (Sphere, Rosenbrock, 
Rastrigrin, and Griewank).  The parameters for CPSO and 
UPSO are: w = 0.8, c1 = 2, and c2 = 2.  The parameters for 
UMPSO are: K = 0.729, c1 = 1.49, and c2 = 1.49. When 
applying the same w, c1, and c2 parameters to the UMPSO, 
the results did not turn out as well.  When applying the 
constriction factor to the CPSO and UPSO (instead of using 
w, c1, and c2 parameters) the newly obtained results 
compared to the CPSO and UPSO were worse.  This is why 
these three variations for the CPSO, UPSO, and UMPSO 
were not used, and this is why I have selected the given 
parameters for CPSO, UPSO, and UMPSO.  Tables IV – VII 
show the results of CPSO, UPSO, and UMPSO algorithms 
for the four benchmark functions.  All of the results gathered 
in the tables are the averaged minimal fitness values from 
the benchmark functions over 50 trials.  All of the results 
gathered for each benchmark function, population size, 
dimensions size, and PSO algorithms are averaged over 50 
test runs.   

A. Sphere Function 
The results obtained from optimizing the Sphere function 

(5) show that the CPSO and UPSO algorithms perform 
worse as the dimension of the function increases and as the 
population decreases.  For the UMPSO algorithm, as the 
dimension of the function increases up to 50 the 
performance of the algorithm increases.  As the dimension 
of the Sphere function increases to 100 the performance of 
the UMPSO algorithm slightly decreases.  The increase in 
population size for the UMPSO has little effect on the 
UMPSO algorithm’s performance.  The performance of 
UMPSO was better than UPSO and CPSO for every 
population size and dimension size combinations.  Table IV 
shows the results of each algorithm for the various 
population and dimension sizes.   

B. Rosenbrock Function 
The results obtained from optimizing the Rosenbrock 

function (6) show that the CPSO and UPSO algorithms 
perform worse as the dimension size of the function 
increases and as the population size decreases.  For the 
UMPSO algorithm, as the dimension size increases, the 
performance of the UMPSO decreases.  An increase in 
population size has little effect on the UMPSO algorithm’s 
performance.  The UPSO is only able to obtain better results 
than the UMPSO for a high population size and small 
dimension size.  For the rest of the results, a clear majority, 
the performance of the UMPSO beats the performances of 
the CPSO and UPSO.  The CPSO outperformed the UPSO 
for most of the population and dimension size variations.  
Table V shows the results of each algorithm for the various 
population and dimension sizes. 

C. Rastrigrin Function 
The results from optimizing the Rastrigrin function (7) are 

the same as the results from the Sphere function (5) for 
CPSO and UPSO.  As the population size increases and the 

1479



 
 

dimension size decreases, the performance of CPSO and 
UPSO gets better.  The UMPSO algorithm, however, is able 
to find the minimal solution for every variation of population 
sizes and dimension sizes.  The UMPSO outperforms the 
CPSO which outperforms the UPSO for every variation of 
population sizes and dimension sizes.  Table VI shows the 
results of each algorithm for the various population and 
dimension sizes. 

D. Griewank Function 
The results obtained from optimizing the Griewank 

function (8) varies for the different dimension sizes.  This is 
due to the fact that as the dimension size increases, so does 
the number of iterations.  As the population size increases, 
the performance of CPSO and UPSO get better.   

 
TABLE IV 

EMPIRICAL EVALUATION WITH THE SPHERE FUNCTION 

Pop Dim Iter CPSO UPSO UMPSO 

10 1000 14.3375 ± 9.0613 1.8337e+003 ± 2.2648e+003 2.9479e-045 ± 1.8670e-044 
20 1500 168.9215 ± 84.2691 4.1081e+004 ± 1.3630e+004 2.9349e-070 ± 2.0723e-069 
30 2000 604.6584 ± 190.9694 8.5829e+004 ± 2.0132e+004 3.3207e-102 ± 2.0754e-101 
50 5000 1.0118e+003 ± 266.0150 1.9436e+005 ± 2.1353e+004 2.3641e-264 ± 0 

20 

100 5000 1.0024e+004 ± 1.5531e+003 4.6945e+005 ± 2.7273e+004 1.5618e-255 ± 0 
10 1000 2.7040 ± 1.4629 18.0193 ± 59.7917 8.3325e-044 ± 5.4542e-043 
20 1500 61.1763 ± 24.3178 1.5950e+004 ± 8.8459e+003 4.5850e-071 ± 2.4707e-070 
30 2000 186.2706 ± 56.2312 5.2100e+004 ± 1.5665e+004 1.0353e-100 ± 5.5202e-100 
50 5000 244.4477 ± 82.9629 1.3965e+005 ± 2.3585e+004 1.6726e-262 ± 0 

40 

100 5000 3.6192e+003 ± 406.4337 4.0929e+005 ± 2.9349e+004 1.1442e-264 ± 0 
10 1000 0.6159 ± 0.3504 3.9297e-006 ± 1.6520e-005 2.0069e-045 ± 8.4195e-045 
20 1500 13.4140 ± 6.5374 2.1178e+003 ± 2.0065e+003 1.6170e-067 ± 1.1433e-066 
30 2000 41.1833 ± 14.1383 1.7909e+004 ± 7.9992e+003 1.7909e-099 ± 1.2563e-098 
50 5000 64.0966 ± 14.5559 9.2552e+004 ± 1.8420e+004 2.3809e-261 ± 0 

80 

100 5000 1.5826e+003 ± 327.8356 3.2109e+005 ± 3.4460e+004 1.1396e-259 ± 0 
 

TABLE V 
EMPIRICAL EVALUATION WITH THE ROSENBROCK FUNCTION 

Pop Dim Iter CPSO UPSO UMPSO 

10 1000 3.3501e+003 ± 1.9417e+003 2.8888e+003 ± 1.1333e+003 7.1207 ± 1.0808 
20 1500 1.1217e+004 ± 1.1787e+003 9.4947 ± 1.0699e+003 15.6063 ± 1.4108 
30 2000 1.8477e+004 ± 1.5896e+003 1.6315e+004 ± 1.3921e+003 24.5977 ± 1.5131 
50 5000 3.0136e+004 ± 1.5237e+003 3.0570e+004 ± 2.5609e+003 41.8011 ± 2.6084 

20 

100 5000 7.8885e+004 ± 5.0767e+003 6.6296e+004 ± 3.8205e+003 86.3193 ± 4.8965 
10 1000 3.2405e+003 ± 1.6834e+003 8.3996 ± 27.3871 6.6161 ± 1.2925 
20 1500 9.5915e+003 ± 569.4242 8.2952e+003 ± 562.7265 15.8352 ± 1.7466 
30 2000 1.5240e+004 ± 784.0405 1.3732e+004 ± 539.9592 24.4118 ± 1.9519 
50 5000 2.6365e+004 ± 1.4284e+003 2.5163e+004 ± 939.1171 42.2297 ± 3.1453 

40 

100 5000 6.6149e+004 ± 4.5768e+003 5.5273e+004 ± 1.7811e+003 86.7361 ± 5.3449 
10 1000 901.7533 ± 1.6309e+003 1.0466e-006 ± 4.2976e-006 6.6194 ± 1.6081 
20 1500 8.7857e+003 ± 469.8712 3.9806e+003 ± 2.0879e+003 15.2034 ± 1.5940 
30 2000 1.4472e+004 ± 591.1318 1.2229e+004 ± 820.4599 24.8515 ± 2.6669 
50 5000 2.4241e+004 ± 731.7662 2.2841e+004 ± 478.4604 42.9488 ± 3.7506 

80 

100 5000 5.6412e+004 ± 1.6794e+003 4.9655e+004 ± 962.9508 86.5200 ± 5.4722 
 
 

TABLE VI 
EMPIRICAL EVALUATION WITH THE RASTRIGRIN FUNCTION 

Pop Dim Iter CPSO UPSO UMPSO 

10 1000 29.0770 ± 9.4898 91.1710 ± 45.6996 0 ± 0 
20 1500 110.3294 ± 16.5217 277.2081 ± 52.6843 0 ± 0 
30 2000 194.2152 ± 39.7327 471.2959 ± 54.6243 0 ± 0 
50 5000 429.6415 ± 48.0173 922.4154 ± 39.3056 0 ± 0 

20 

100 5000 1.5043e+003 ± 157.6142 2.0448e+003 ± 66.9770 0 ± 0 
10 1000 22.4251 ± 7.9207 74.3478 ± 33.2963 0 ± 0 
20 1500 77.0191 ± 16.1267 248.2973 ± 45.8245 0 ± 0 
30 2000 199.2235 ± 54.3471 422.4963 ± 64.5098 0 ± 0 
50 5000 337.2394 ± 60.3831 848.9662 ± 51.5138 0 ± 0 

40 

100 5000 1.3114e+003 ± 151.2171 1.9368e+003 ± 58.6183 0 ± 0 

1480



 
 

10 1000 17.8075 ± 5.0798 64.5741 ± 33.6009 0 ± 0 
20 1500 56.2418 ± 16.2717 217.5272 ± 53.2187 0 ± 0 
30 2000 150.9791 ± 39.4416 390.2007 ± 55.2521 0 ± 0 
50 5000 304.5458 ± 46.2564 752.6109 ± 53.9969 0 ± 0 

80 

100 5000 1.1106e+003 ± 120.5360 1.7652e+003 ± 73.7778 0 ± 0 
 

TABLE VII 
EMPIRICAL EVALUATION WITH THE GRIEWANK FUNCTION 

Pop Dim Iter CPSO UPSO UMPSO 

10 1000 0.6694 ± 0.3948 28.1349 ± 23.2931 0 ± 0 
20 1500 2.2554 ± 1.4409 354.8366 ± 120.7057 0 ± 0 
30 2000 4.2407 ± 1.1067 818.8691 ± 185.5850 0 ± 0 
50 5000 8.8352 ± 2.7666 1.8120e+003 ± 198.2503 0 ± 0 

20 

100 5000 89.1876 ± 10.4594 4.3247e+003 ± 224.8858 0 ± 0 
10 1000 0.1843 ± 0.1302 1.6749 ± 5.2513 0 ± 0 
20 1500 0.8211 ± 0.2331 124.0973 ± 60.2632 0 ± 0 
30 2000 1.5794± 0.3662 424.9801 ± 136.0264 0 ± 0 
50 5000 2.5239 ± 0.4401 1.3421e+003 ± 162.0179 0 ± 0 

40 

100 5000 41.2122 ± 5.1474 3.6847e+003 ± 247.2692 0 ± 0 
10 1000 0.0349 ± 0.0199 0.0211 ± 0.1046 0 ± 0 
20 1500 0.3607 ± 0.5838 23.3257 ± 16.9792 0 ± 0 
30 2000 0.5637 ± 0.1867 178.0840 ± 69.8172 0 ± 0 
50 5000 0.6774 ± 0.1082 800.5959 ± 163.1089 0 ± 0 

80 

100 5000 14.4755 ± 2.9136 3.0104e+003 ± 272.1686 0 ± 0 
 
 
The UMPSO algorithm is able to find the minimal 

solution for every variation of population sizes and 
dimension sizes.  The UMPSO outperforms the CPSO for 
every population and dimension size variations.  The UPSO 
only outperforms the CPSO with a large population size and 
small dimension size.  Table VII above shows the results of 
each algorithm for the various population and dimension 
sizes. 

VI. DISCUSSION 
For the results of the UMPSO algorithm for the Rastrigrin 

and Griewank functions, a performance measure of 0 is 
obtained.  This means that the performance measure is less 
than 1×10-323 since this is studied in the Matlab software. 

It is important to note that the parameters (K, c1, c2, 
population, and positional update equation) for the CPSO, 
UPSO and UMPSO algorithms are static.  For each 
benchmark function, population size, and dimension size, 
the UMPSO algorithm is able to outperform CPSO which is 
able to outperform UPSO (except for 5% of the time with 
the CPSO algorithm and 3% of the time with the UPSO 
algorithm in which the two algorithms performed better than 
the UMPSO).  An advantage of UMPSO is that a small 
population size is adequate to obtain the same results with 
that of a larger population size. 

VII. CONCLUSION 
For a PSO to be a robust algorithm, it is important for it to 

perform well under many different problems.  In this paper, 
the UMPSO algorithm is applied to four different 
benchmark functions and it obtains great results for each 
population and dimension size variations.  Although many 

new PSO algorithms have come out with dynamic and/or 
adaptive parameters [8, 9, 10] to improve the performance of 
PSO, they will still need constraints for velocities and 
positions.  These constraints will need to be custom fit for 
each optimization problem.  The UMPSO algorithm, 
however, is custom fit for every application since there are 
no constraints.  The robustness of this algorithm remains to 
be verified and refined. The application of the UMPSO 
algorithm may further be improved by enhancing the PSO 
parameters dynamically during search process. 

REFERENCES 
[1] R. C. Eberhart, J. Kennedy, “A New Optimizer Using Particles Swarm 

Theory”, Proc. Sixth International Symposium on Micro Machine and 
Human Science, (Nagoya, Japan) IEEE Service Center, Piscataway, 
NJ, October 4 – 6, 1995, pp. 39 – 43. 

[2] R. C. Eberhart, Y. Shi. “Comparison Between Genetic Algorithms and 
Particle Swarm Optimization”, Evolutionary Programming VII 
(1998), Lecture Notes in Computer Science 1447, pp. 611 – 616. 

[3] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and 
Adaptive Particle Swarm Optimization”, Proc. CEC 1999, 
Washington, DC, 1999, pp. 1951 – 1957. 

[4] J. Sun, W. Xu, B. Feng, “A Global Search Strategy of Quantum-
Behaved Particle Swarm Optimization”, 2004 IEEE Conference on 
Cybernetics and Intelligent Systems, Vol. 1, December 1 – 3, 2004, 
pp. 111 – 116. 

[5] R. C. Eberhart, Y. Shi, “Empirical Study of Particle Swarm 
Optimization”, Proc. of the 1999 Congress on Evolutionary 
Computation, Vol. 3, July 6 – 9, 19 99, pp. 1945 – 1950. 

[6] J. J. Liange, P. N. Suganthan, “Dynamic Multi-Swarm Particle Swarm 
Optimizer”, Proceedings of the 2005 IEEE Swarm Intelligence 
Symposium, June 8 – 10, 2005, pp. 124 – 129. 

[7] Y. Shi, R. C. Eberhart, “Fuzzy Adaptive Particle Swarm 
Optimization”, Proceedings of the 2001 Congress on Evolutionary 
Computation, Vol. 1, May 27 – 30, 2001, pp. 101 – 106. 

[8] X. Xie, W. Zhang, Z. Yang, “Hybrid Particle Swarm Optimizer with 
Mass Extinction”, IEEE 2002 International Conference on 

1481



 
 

Communications, Circuits and Systems, and West Sino Expositions, 
Vol. 2, June 29 – July 1, 2002, pp. 1170 – 1173. 

[9] J. Sun, W. Xu, B. Feng, “Adaptive Parameter Control for Quantum-
Behaved Particle Swarm Optimization on Individual Level”, 2005 
IEEE International Conference on Systems, Man and Cybernetics, 
Vol. 4, October 10 – 12, 2005, pp. 3049 – 3054. 

[10] G. K. Venayagamoorthy, “Adaptive Critics for Dynamic Particle 
Swarm Optimization”, Proceedings of the 2004 IEEE International 
Symposium on Intelligent Control, 2004, pp. 380 – 384. 

1482


	Empirical Study of an Unconstrained Modified Particle Swarm Optimization
	Recommended Citation

	Empirical Study of an Unconstrained Modified Particle Swarm Optimization [CEC7719]

