
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 1999

Hardware-Software Co-Verification in an Undergraduate Hardware-Software Co-Verification in an Undergraduate

Laboratory Laboratory

Hardy J. Pottinger
Missouri University of Science and Technology, hjp@mst.edu

Daryl G. Beetner
Missouri University of Science and Technology, daryl@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
H. J. Pottinger and D. G. Beetner, "Hardware-Software Co-Verification in an Undergraduate Laboratory,"
Proceedings of the IEEE International Conference on Microelectronic Systems Education (1999, Arlington,
VA), Institute of Electrical and Electronics Engineers (IEEE), Jan 1999.
The definitive version is available at https://doi.org/10.1109/MSE.1999.787028

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229170511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MSE.1999.787028
mailto:scholarsmine@mst.edu

Hardware-software Co-verification in an Undergraduate Laboratory

Hardy J. Pottinger
Daryl Beetner

 Department of Electrical and Computer Engineering
University of Missouri - Rolla

Abstract
Skills in hardware-software co-design are quickly be-
coming critical to product development in high-
technology computer industries. Systems-on-silicon typi-
cally include a considerable amount of software as well
as custom hardware and are increasingly difficult to de-
velop using traditional techniques. To satisfy a growing
demand in industry, students in electrical engineering,
computer engineering, and computer science should be
introduced to concepts of hardware-software co-design at
the undergraduate level. This paper examines a new
laboratory at the University of Missouri - Rolla in which
students in Electrical and Computer Engineering are
exposed to modern system design concepts through the
use of hardware-software co-simulation. Key tools used
in the course including a hardware prototype consisting
of an 8051 microcontroller and a field programmable
gate array, and a VHDL model of the prototype are dis-
cussed.

1. Introduction

The availability of powerful but inexpensive proces-
sors and synthesizable cores are changing the face of em-
bedded computer system design. Embedded computer
systems are those computers found in industrial and
commercial application with non-traditional interfaces.
Embedded system designers need a wide range of skills to
compete in this rapidly changing field. These skills in-
clude system modeling, requirements analysis, system
specification, hardware-software partitioning, and system
integration. Our existing course sequence [1] includes
courses in hardware design as well as software develop-
ment but does little to integrate either, or to include these
new skills so critical in a highly competitive industry.
This paper discusses steps we are taking to correct the
situation by integrating elements of hardware and soft-
ware design and system modeling in a single undergradu-
ate microcontroller laboratory.

System level modeling of a combined hardware-
software system, use of C for microcontroller program-
ming, and rapid prototyping of hardware with FPGA’s are
key ingredients of a new required undergraduate course at
the University of Missouri - Rolla. This course follows a
typical introductory logic design course in which students
are exposed to industrial strength design automation tools
used here as well as hardware design using FPGA’s. Al-
though most have some familiarity with C, none have
used it outside of the usual introductory programming
course. None of the students have had a previous course
in assembly language or microprocessor hardware.

Subsequent sections will briefly discuss the hardware
prototype we are using, the simulation model which en-
ables students to 'get it right' the first time, and a sampling
of the laboratory exercises the students perform using
these tools.

2. Hardware Prototype

The companion lecture course is based on the Intel
8051 microcontroller family. C is used as the program-
ming language and the compiler from Keil Software is
used for all programming exercises. Keil's simulator,
which is included with the compiler, is a good high-level
language debugger but does a poor job of simulation at
the hardware-software interface. In order to give the stu-
dents a realistic feel for embedded systems we wanted to
avoid the usual microcontroller plus dumb terminal com-
bination. We wanted the students to be able to develop
their own hardware without a lot of fabrication overhead.
We also wanted the students to be able to simulate every-
thing, not just the software, in order to get it right the first
time and avoid the usual 'burn and try' approach. Even
though this is often advocated as an 'advantage' by FPGA
vendors we didn't believe it an appropriate philosophy to
promote. Finally, we wanted the students to have the op-
portunity of actually seeing their design as a hardware
artifact rather than simply being satisfied with a simula-
tion model. Aside from the personal satisfaction gained
from the exercise, we recognized that some phenomena

such as power requirements, EMI, ground bounce and
signal integrity are perhaps best illustrated in the lab at a
more concrete level.

These constraints led us to consider a combination of a
Xilinx FPGA and an 8051 with either EPROM or RAM
for program storage and some minimum amount of addi-
tional I/O. We are using Xess's XS40 board
(www.xess.com). which consists of a ROMless 8051 vari-
ant, 32k SRAM, and a Xilinx 4005 FPGA. It interfaces to
a PC's parallel port for downloading the FPGA's bit file
and for loading the 8051 code into the SRAM. The par-
allel port can be used as a simple stimulus generator and
the XS40 makes all of the 8051 pins as well as many of
the FPGA's pins available on two rows of header pins.
This makes it a simple matter to either plug the XS40 into
a breadboard or to connect it to a logic analyzer.

At this point in time the students can write their soft-
ware and debug it using the Keil compiler and debugger.
They can expand the 8051 and develop special purpose
peripherals using powerful design automation software
tools and the onboard FPGA. Unfortunately if that were
the end of the story they would be faced with a long trial
and error process of painful hardware and software inte-
gration. In fact the documentation supplied with the
XS40 suggests such an approach. Fortunately hardware-
software co-verification can come to the rescue. The only
missing ingredient was a complete, instruction set accu-
rate simulation model of the hardware-software prototype.

3. Simulation Model

Real processor simulation models are not easy to come
by. So-called bus functional models are in wide use and
are fairly easy to write but require special scripts and do
not execute actual user code. We wanted a model of the
8051 that was instruction set and clock cycle accurate that
could execute object code files produced by the Keil
software. We started with an incomplete model gra-
ciously supplied by Dr. Frank Vahid and his students and,
after about a semester's worth of intense work by two of
our students, Mr. Mike Mayer and Mr. Kyle Mitchel, we
have a, still incomplete, but usuable model of the 8051.
This model was incorporated into Mentor Graphic's
QuickHDL Pro simulator that allows us to mix VHDL and
schematic models for simulation. A model of the XS40's
32k SRAM which can read Intel Hex format object files
and the student’s own FPGA design completes the typical
simulation model.

4. Laboratory Exercises

Students are given a schematic with symbols for the
8051, 32k SRAM, and a black box for their portion of the

circuit. Underneath the 8051 and SRAM are our VHDL
models. A typical exercise will involve writing a small C
program for the 8051 and debugging it with the software
debugger. Along with the software exercise, the students
are given a small hardware design to complete. One of
the first exercises is to simply add an address latch and
put the 8051 into expanded mode to utilize the offchip
SRAM as code space for the microcontroller. Skills
learned in the previous logic design course are reinforced
and the students use traditional schematic capture based
design and simulation for this portion of the exercise.
After they are relatively confident that their code and
hardware are working properly, they can use the system
model to integrate and test the two. Finally, after they are
confident that their software is working with their hard-
ware, they are ready to download both the FPGA bit file
and their object code to the XS40.

5. Conclusion

After extensive simulation, working hardware the first
time is almost anticlimatic. Initial feedback from students
in the first semester the lab is being taught has been fa-
vorable. One student commented that 'once a design is
checked using Mentor tools and then verified with actual
hardware and test equipment in the lab, I am confident the
design is a good one'. Our use of simulation coupled with
actual hardware implementation paid off early in the se-
mester. The students designed a simple eight bit parallel
port for the 8051, located at memory location 0xFFFF.
There was enough ground bounce when the 8051's ad-
dress lines switched from all 1's to all 0's to cause a glitch
on the address latch enable line and a very subtle program
error. Without the confidence gained through simulation
that their logical design was actually correct and the error
most likely was elsewhere, this problem might not ever
have been found by students at this level.

Hardware-software co-verification is a powerful tech-
nique that is only starting to be used in industry. Use by
undergraduates in Electrical and Computer Engineering
can only hasten its adoption and thus improve the process
of embedded system design as well as provide students
with skills needed by industry. Our initial experience
leads us to believe that this will be a common feature in
future undergraduate computer laboratories.

References

[1] H. J. Pottinger, W. Eatherton, "Using a multi-FPGA
based rapid prototyping board for system design at the
undergraduate level", 37th Midwest Symposium on
Circuits and Systems, Lafayette, Lousiana, August
1994.

	Hardware-Software Co-Verification in an Undergraduate Laboratory
	Recommended Citation

	Hardware-software co-verification in an undergraduate laboratory

