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Abstract--The increasing complexity of the modern power grid 

highlights the need for advanced modeling and control 
techniques for effective control of excitation and turbine systems. 
The crucial factors affecting the modern power systems today is 
voltage control and system stabilization during small and large 
disturbances.  Simulation studies and real-time laboratory 
experimental studies carried out are described and the results 
show the successful control of the power system excitation and 
turbine systems with adaptive and optimal neurocontrol 
approaches. Performances of the neurocontrollers are compared 
with the conventional PI controllers for damping under different 
operating conditions for small and large disturbances. 
 

Index Terms— Adaptive Critic Designs, Approximate 
Dynamic Programming, Excitation Control, Neural Networks, 
Optimal Control, Reinforcement Learning, Turbine Control.  

I.  INTRODUCTION 
OWER system control essentially requires a continuous 
balance between electrical power generation and a varying 
load demand, while maintaining system frequency, 

voltage levels and the power grid security.  However, 
generator and grid disturbances can vary between minor and 
large imbalances in mechanical and electrical generated 
power, while the characteristics of a power system change 
significantly between heavy and light loading conditions, with 
varying numbers of generator units and transmission lines in 
operation at different times.  The result is a highly complex 
and non-linear dynamic electric power grid with many 
operational levels made up of a wide range of energy sources 
with many interaction points.  As the demand for electric 
power grows closer to the available sources, the complex 
systems that ensure the stability and security of the power grid 
are pushed closer to their edge. Thus, the need for advanced 
modeling and control techniques for the effective control of 
power system elements. 

Adaptive critic designs (ACDs) are neural network designs 
capable of optimization over time, under conditions of noise 
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and uncertainty. This family of ACDs brings new optimization 
techniques which combine concepts of reinforcement learning 
and approximate dynamic programming, thus making them 
powerful tools.  The adaptive critic method provides a 
methodology for designing optimal nonlinear controllers using 
neural networks for complex systems such as the power 
system where accurate models are difficult to derive. 

This paper describes the work of the authors based on 
adaptive critics for designing power system stabilization, 
excitation and turbine neurocontrollers for generators [1]-[3] 
which overcome the risk of instability [4], the problem of 
residual error in the system identification [5], input 
uncertainties [6], and the computational load of online 
training.  The neurocontroller augments/replaces the 
conventional PI controllers, and is trained in an offline mode 
prior to commissioning.  Two different types of Adaptive 
Critics are discussed, namely the Heuristic Dynamic 
Programming (HDP) type and the Dual Heuristic 
Programming (DHP) type.  Results are presented for a single-
machine-infinite-bus and a multimachine power system. 

II.  ADAPTIVE CRITIC DESIGNS 

A.  Background 
The simplest adaptive critic designs learn slowly on large 

problems but they are successful on many real world difficult 
small problems.  Complex adaptive critics may seem 
breathtaking, at first, but they are the only design approach 
that shows potential of replicating critical aspects of human 
intelligence: ability to cope with a large number of variables 
in parallel, in real time, in a noisy nonlinear non-stationary 
environment.   

A family of ACDs was proposed by Werbos [7] as a new 
optimization technique combining concepts of reinforcement 
learning and approximate dynamic programming.  For a given 
series of control actions that must be taken sequentially, and 
not knowing the effect of these actions until the end of the 
sequence, it is impossible to design an optimal controller 
using the traditional supervised learning neural network.  The 
adaptive critic method determines optimal control laws for a 
system by successively adapting two ANNs, namely an action 
neural network (which dispenses the control signals) and a 
critic neural network (which ‘learns’ the desired performance 
index for some function associated with the performance 
index).  These two neural networks approximate the 
Hamilton-Jacobi-Bellman equation associated with optimal 
control theory.  The adaptation process starts with a non-
optimal, arbitrarily chosen, control by the action network; the 
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critic network then guides the action network towards the 
optimal solution at each successive adaptation.  During the 
adaptations, neither of the networks need any ‘information’ of 
an optimal trajectory, only the desired cost needs to be known.  
Furthermore, this method determines optimal control policy 
for the entire range of initial conditions and needs no external 
training, unlike other neurocontrollers. 

Dynamic programming prescribes a search which tracks 
backward from the final step, retaining in memory all 
suboptimal paths from any given point to the finish, until the 
starting point is reached.  The result of this is that the 
procedure is too computationally expensive for most real 
problems.  In supervised learning, an ANN training algorithm 
utilizes a desired output and, having compared it to the actual 
output, generates an error term to allow the network to learn.  
The backpropagation algorithm is typically used to obtain the 
necessary derivatives of the error term with respect to the 
training parameters and/or the inputs of the network.  
However, backpropagation can be linked to reinforcement 
learning via the critic network which has certain desirable 
attributes. 

The technique of using a critic, removes the learning 
process one step from the control network (traditionally called 
the “action network” or “actor” in ACD literature), so the 
desired trajectory is not necessary.  The critic network learns 
to approximate the cost-to-go or strategic utility function (the 
function J of Bellman’s equation in dynamic programming) 
and uses the output of the action network as one of its inputs, 
directly or indirectly.  

Different types of critics have been proposed. For example, 
Watkins [8] developed a system known as Q-learning, 
explicitly based on dynamic programming.  Werbos, on the 
other hand, developed a family of systems for approximating 
dynamic programming [7]; his approach subsumes other 
designs for continuous domains.  For example, Q-learning 
becomes a special case of Action-Dependent Heuristic 
Dynamic Programming (ADHDP), which is a critic 
approximating the J function (see section B below), in 
Werbos’ family of adaptive critics. A critic which 
approximates only the derivatives of the function J with 
respect to its states, called the Dual Heuristic Programming 
(DHP), and a critic approximating both J and its derivatives, 
called the Globalized Dual Heuristic Programming (GDHP), 
complete this ACD family.  These systems do not require 
exclusively neural network implementations, since any 
differentiable structure is suitable as a building block.  The 
interrelationships between members of the ACD family have 
been generalized and explained in detail by Prokhorov [9, 10]. 

B.  Heuristic Dynamic Programming  
Fig. 1 shows a model dependent HDP Critic/Action design.  

The HDP Critic neural network is connected to the Action 
neural network through a Model neural network of the plant.   
These three different neural networks used in this study are 
three-layer feedforward neural networks with a single hidden 
layer with sigmoidal transfer functions.  The input and output 
layers have linear transfer functions. 
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Fig. 1  A model dependent HDP critic/action design. 
 

For model dependent designs it is assumed that there exists 
a Model neural network which is able to predict the changes 
in the states/outputs Y(t+1), of the plant at time t+1, given at 
time t, the states/outputs, Y(t) and the action signals, A(t).  
 

                       
^
( 1) ( ( ), ( ))Y t f Y t A t+ =                         (1) 

 
In addition to the signals at time t, delayed values of these 

signals can be used depending on the complexity of the plant 
dynamics [11].  The inputs to the Model network are time-
delayed values (TDL) of both the plant and the Action 
network outputs. The details on the development of Model 
networks using supervised learning are explained in [11, 16].   

Heuristic Dynamic Programming has a Critic neural 
network that estimates the function J (cost-to-go) in the 
Bellman equation of dynamic programming, expressed as 
follows: 
 

0

( ( )) ( ( ))k

k

J Y t U Y t kγ
∞

=

= +∑                     (2) 

 
where γ is a discount factor for finite horizon problems (0 < γ 
< 1), U(.) is the utility function or the local cost and Y(t) is an 
input vector to the Critic.  The Critic neural network is trained 
forward in time (multi-time steps ahead), which is of great 
importance for real-time operation.   

Fig. 2 shows the HDP Critic adaptation/training.  The 
inputs to the Critic are outputs from the Model neural network 
and its time-delayed values (Fig. 1).  Two Critic neural 
networks are shown in Fig. 2 having the same inputs and 
outputs but at different time instants.  The first Critic neural 
network has inputs from time steps t, t-1 and t-2, and the 
second Critic neural network has inputs from time steps t+1, t 

and t-1.  Their corresponding outputs are J(t) and )1(
^

+tJ  
respectively.  The second Critic neural network estimates the 

function 
^
J  (cost-to-go) at time t+1 by using the Model neural 

network to get inputs one step ahead.  As a result it is possible 
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to know the Critic neural network output )1(
^

+tJ  at time t. 
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Fig. 2  HDP Critic neural network adaptation/training. 
 
The Critic network tries to minimize the following error 
measure over time 
 

            2
1 1

1 ( )
2 C
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where ∆Y(t) is the changes in Y(t), a vector of observables of 
the plant (or the states, if available).  The utility function U is 
dependent on the system controlled and a typical function is 
given in [2].  It should be noted that only for the purposes of 
this study, changes in the state variables are used rather than 
state variables.  The weights’ update for the Critic network 
using the backpropagation algorithm is given as follows: 
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where η is a positive learning rate and WC1 are the weights of 
the Critic neural network.  The same Critic network is shown 
in two consecutive moments in time in Fig. 2.  The Critic 

network’s output 1
^^

J( Y( t ))∆ + is necessary in order to provide 

the training signal γ 1
^^

J( Y( t ))∆ + + U(∆Y(t)), which is the 

desired/target value for
^

J( Y( t ))∆ .   
The objective of the Action neural network in Fig. 1, is to 

minimize J(∆Y(t)) in the immediate future, thereby optimizing 
the overall cost expressed as a sum of all U(∆Y (t)) over the 
horizon of the problem.  This is achieved by training the 
Action neural network with an error signal ∂J/∂A.  The 

gradient of the cost function J, with respect to the outputs A, 
of the Action neural network, is obtained by backpropagating 
∂J/∂J (i.e. the constant 1) through the Critic neural network 
and then through the pretrained Model neural network to the 
Action neural network.  This gives ∂J/∂A and ∂J/∂WA for all 
the outputs of the Action neural network, and all the Action 
neural network’s weights WA, respectively.  The weights’ 
update in the Action neural network using backpropagation 
algorithm is given as follows: 
 

                  2
2 1

1 ( )
2 A

t
E E t= ∑                              (7) 

 

where                  1
( )
( )A

J tE
A t

∂
=
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and      
^

^

( ) ( ) ( )
( ) ( )( )
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=

∂ ∂∂ ∆
                     (9) 

 
Weight change in the Action network ∆WA1 can be written as: 
 

         1
1

( ) ( )
( ) ( )A

A

J t J tW
A t W A t

α
⎛ ⎞∂ ∂ ∂

∆ = − ⎜ ⎟∂ ∂ ∂⎝ ⎠
                  (10) 

 
where α is a positive learning rate. 
 
With (6) and (10), the training of the Critic and the Action 
networks can be carried out.  The general training procedure 
for the Critic and the Action networks are described in [1]. 

C.  Dual Heuristic Programming 
The Critic neural network in the DHP scheme shown in Fig. 3, 

estimates the derivatives of J with respect to the vector 
^
Y∆  

(outputs of the Model neural network) and learns 
minimization of the following error measure over time: 

 
3 2 2( ) ( )T

C CE E t E t s= ∑                        (11) 

 
where 
 

   
^ ^ ^

2 ^

( ( )) ( ( 1)) ( ( ))( )
( ) ( )( )

C
J Y t J Y t U Y tE t

Y t Y tY t
γ∂ ∆ ∂ ∆ + ∂ ∆

= − −
∂∆ ∂∆∂∆

  (12) 

 
and ∂(.)/∂∆Y(t)) is a vector containing partial derivatives of the 
scalar (.) with respect to the components of the vector ∆Y.  
The Critic neural network’s training is more complicated than 
in HDP, since there is a need to take into account all relevant 
pathways of backpropagation as shown in Fig. 3, where the 
paths of derivatives and adaptation of the Critic are depicted 
by dashed lines.  In Fig. 3, the dashed lines mean the first 
backpropagation and the dotted-dashed lines mean the second 
backpropagation.   
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Fig. 3  DHP Critic neural network adaptation. 
 
The Model neural network in the design of DHP Critic and 

Action neural networks is obtained in a similar manner to that 
described in [16]. 

In the DHP scheme, application of the chain rule for 
derivatives yields: 
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where 
^ ^ ^ ^

( 1) ( ( 1)) ( 1)ii t J Y t Y tλ + = ∂ ∆ + ∂∆ + , and n, m, j are 
the numbers of outputs of the Model, Action and Critic neural 
networks respectively.  By exploiting (13), each of n 
components of the vector EC2(t) from (12) is determined by  
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The partial derivatives of the utility function U(t) with 
respect to Ak(t), and ∆Y(t), ( ) ( )kU t A t∂ ∂  and ( ) ( )U t Y t∂ ∂∆  
respectively, are obtained by backpropagating the utility 
function, U(t) through the Model network. The adaptation of 
the action network in Fig. 3, is illustrated in Fig. 4 which 
propagates λ(t+1) back through the model network to the 
action network.  The goal of such adaptation can be expressed 
as follows [9, 10]: 
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The error signal for the Action network adaptation is therefore 
given as follows: 
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The weights’ update expression [10], when applying 
backpropagation, is as follows: 
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where α  is a positive learning rate and WA2 are weights of the 
DHP Action neural network. 
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Fig. 4  DHP Action neural network adaptation. 

III.  ACD BASED CONTROL OF EXCITATION AND TURBINE 
SYSTEMS OF GENERATORS  

The micro-machine laboratory at the University of Kwa-
Zulu Natal, Durban, South Africa has two 3 kW, 220 V, three 
phase micro-alternators, and each one represents both the 
electrical and mechanical aspects of a typical 1000 MW 
alternator.  The laboratory power system is simulated in the 
MATLAB/SIMULINK environment and simulations studies 
with neurocontrollers are carried out prior to hardware 
implementations.  The laboratory single machine infinite bus 
power system in Fig. 5 consists of a micro-alternator, driven 
by a dc motor whose torque - speed characteristics are 
controlled by a power electronic converter to act as a micro-
turbine, and a single short transmission line which links the 
micro-alternator to a voltage source which has a constant 
voltage and frequency, called an infinite bus.  The parameters 
of the micro-alternators, determined by the IEEE standards are 
given in [13].  A time constant regulator is used to insert 
negative resistance in series with the field winding circuit 
[13], in order to reduce the actual field winding resistance to 
the correct per-unit value.  

A three-machine power system shown in Fig. 6 is set up by 
using the two micro-alternators and the infinite bus as the 
third machine. 
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A.  Conventional Excitation and Turbine Control 
The practical system uses a conventional AVR and exciter 

combination of which the transfer function block diagram is 
shown in Fig. 7, and the time constants and gain are given in 
[13].  The exciter saturation factor Se is given by 

 
    0.6093exp(0.2165 )e fdS V=            (18) 
 

Tv1, Tv2, Tv3 and Tv4 are the time constants of the PID voltage 
regulator compensator; Tv5 is the input filter time constant; Te 
is the exciter time constant; Kav is the AVR gain; Vfdm is the 
exciter ceiling voltage; and, Vma and Vmi are the AVR 
maximum and minimum ceiling voltages. 

The block diagram of the power system stabilizer (PSS) 
used to achieve damping of the system oscillations is shown in 
Fig. 8 [14].  The considerations and procedures used in the 

selection of the PSS parameters are similar to that found in 
[14]. 

A separately excited 5.6 kW thyristor controlled dc motor is 
used as a prime mover, called the micro-turbine, to drive the 
micro-alternator.  The torque-speed characteristic of the dc 
motor is controlled to follow a family of rectangular hyperbola 
to emulate the different positions of a steam valve, as would 
occur in a real typical high pressure (HP) cylinder turbine.  
The three low pressure (LP) cylinders’ inertia are represented 
by appropriately scaled flywheels attached to the micro-
turbine shaft.  The micro-turbine and governor combination 
transfer function block diagram is shown in Fig. 9, where, Pref 
is the turbine input power set point value, Pm is the turbine 
output power, and ∆ω is the speed deviation from the 
synchronous speed.  The turbine and governor time constants 
and gain are given in [13]. 
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Fig. 5  The single machine infinite bus configuration with the conventional AVR and governor controllers, and neurocontroller.   
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Fig. 6  Multimachine power system consisting of two micro-alternators G1 and G2 which are conventionally controlled by the AVRs, governors and a PSS. 
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Fig. 7  Block diagram of the AVR and exciter combination.  
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Fig. 8  Block diagram of the power system stabilizer.  
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Fig. 9  Block diagram of the micro-turbine and governor combination.  

 
The gains Kav (0.003) of the AVR and Kg (0.05) of the 

governor are obtained by suitable choices of the gain and 
phase margins in each case, as described in [15].  
Transmission lines are represented by using banks of lumped 
inductors and capacitors. 

B.  Simulation and Experimental Studies with Different 
Control Schemes for Excitation and Turbine Systems 

The dynamic and transient operation of the HDP and DHP 
neurocontrollers is compared with the operation of the 
conventional (CONV) controller (AVR and turbine governor, 
excluding the PSS) for single machine infinite bus power 
system in Fig. 5. In addition, the performance of a continually 
online trained neurocontroller (COT) is also shown. The COT 
neurocontroller is developed based on the indirect adaptive 
neurocontrol scheme [16]. In power systems faults such as 
three phase short circuits occur from time to time, and because 
they prevent energy from the generator reaching the infinite 
bus, it means that most of the turbine shaft power goes into 
accelerating the generator during the fault.  This represents a 
severe transient test for the controller performance.  Figs. 10 
and 11 show the response of all four controllers for the three 
phase temporary short circuit for 50 ms with the new 
transmission line impedance Z2.  Here, it is obvious that the 
DHP controller clearly beats the other three controllers in 
terms of offering the greatest oscillation damping especially in 
the rotor angle.  The DHP controller proves its robustness to 
changes in the system configurations. 

Based on the results for the single machine power system 
above, the DHP controller has the best performance; hence, 
the DHP neurocontroller is the only one that is now 
implemented on the multimachine power system.  The 
performance of the DHP neurocontroller is now compared 
with that of the conventional controllers, one of which is 

equipped with a power system stabilizer. Fig. 12 shows the 
multimachine power system of Fig. 6 now equipped with two 
DHP neurocontrollers.  
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Fig. 10  Terminal voltage of the micro-alternator for a temporary 50 ms three 
phase short circuit (transmission line impedance Z2). 
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Fig. 11  Rotor angle of the micro-alternator for a temporary 50 ms three phase 
short circuit (transmission line impedance Z2). 
 
The DHP neurocontrollers were implemented on DSPs and 
allowed to control the laboratory multimachine power system 
[3]. The purpose of these tests is to confirm via practical 
measurements the potential of adaptive critic based 
neurocontrollers which have been demonstrated during the 
simulation studies for a single machine and a multimachine 
power system.  However, the laboratory implementation on 
micro-machines is also intended to form a basis for possible 
future investigations into use of such neurocontrollers on large 
multi-megawatt sized power plants in a real-world power 
station. 

At the operating condition (P = 0.2 pu, Q = 0 pu on 
both generators), the series transmission line impedance is 
increased at time t = 10 s from Z = 0.022 + j0.75 pu to Z = 
0.044 + j1.50 pu by opening switch S2.  Fig. 13 shows the 
load angle response of generator G2.  The load angle 
response of generator G1 for the same disturbance is 
shown in Fig.14.   
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Fig. 12  Multimachine power system with two DHP neurocontrollers. 
 
Four different controller combination studies are carried out 

for the above disturbance. 
• Case a - conventional controller on both G1 and G2 
• Case b - conventional controller with a PSS on G1 and 

conventional controller on G2 
• Case c - DHP neurocontroller on G1 and conventional 

controller on G2 
• Case d - DHP neurocontrollers on both G1 and G2. 
It is clear the DHP neurocontrollers exhibit the best damping 
of the controllers. 
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Fig. 13  Load angle response of generator G2 for series transmission line 
impedance increase by opening switch S2 for P = 0.2 pu and Q = 0 pu. 
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Fig. 14  Load angle response of generator G1 for series transmission line 
impedance increase by opening switch S2 for P = 0.2 pu and Q = 0 pu. 

IV.  CONCLUSION 
This paper has presented the investigations on the design 

and implementation of Adaptive Critic based neurocontrollers 
to replace/augment the conventional PI controllers on 
generators in both single-machine-infinite-bus and 
multimachine power system. These neurocontrollers exhibit 
better damping than the conventional controllers. The 
Adaptive Critic Design based neurocontrollers have the great 

advantage that once trained, their weights/parameters remain 
fixed and therefore avoid the risk of instability associated with 
continual online training.  The convergence guarantee of the 
Critic and Action neural networks during offline training was 
shown in [4, 18].  In addition, the heavy computational load of 
online training only arises during the offline training phase 
and therefore makes the online real time implementation cost 
of the neurocontrollers cheaper.  The processing hardware 
cost is a small fraction of the cost of turbogenerators and 
therefore this is not a big issue.   

The Adaptive Critic Design based nonlinear optimal 
controllers designed presented are all based on approximate 
models obtained by neuroidentifiers, but nevertheless exhibit 
superior performance in comparison to the conventional linear 
controllers which use more extensive linearized models.  This 
benefit of a neuroidentifier agrees with the conclusions on the 
comparison of using approximate and exact models in 
adaptive critic designs which was explicitly shown in [5].  All 
these features are desirable and important for industrial 
applications which require a neurocontroller technology that is 
nonlinear, robust and stable. 
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