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Reflection-based phase-shifted long period fiber grating
for simultaneous measurement of temperature and
refractive index
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Abstract. We report a reflection-based phase-shifted long period fiber
grating (PS-LPFG) and demonstrate its capability for simultaneous mea-
surement of temperature and external reflective index (RI). The sensor
device comprises a grating directly written by CO2 laser and silver-coated
end face. A π-shifted LPFG is presented with two attenuation bands
through its reflection spectrum. These two bands have different sensitivity
towards temperature and external RI that can be used for simultaneous
measurement of the two variables. The experimental results show that
this probe-type PS-LPFG performs well in terms of linearity and sensitivity.
© 2013 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.52.1
.014404]
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1 Introduction
Precise and in situ monitoring of liquid refractive index (RI)
is of great importance in many chemical and biological appli-
cations1; however, the temperature cross-sensitivity usually
leads to an unreliable result. To reduce or compensate the
temperature fluctuation influences, it is essential that the
temperature and external RI be detected simultaneously,
especially in real-time systems. Fiber-integrated optics have
enabled better sensing technology for temperature and RI
because of the compact size, high sensitivity, multiplexing
capability, and in situ monitoring capability. In recent years,
various fiber-optic structures have been proposed and dem-
onstrated for simultaneous measurement of temperature and
external RI, such as sampled fiber Bragg grating (FBG),2

slanted multimode FBG3 and dual long period fiber grating
(LPFG),4 etc.

LPFG is a good candidate for temperature and RI mon-
itoring because of its high sensitivity; but it might be difficult
to use because of its transmission structure. Traditional
LPFG works in the transmission mode, making it very
sensitive to bending. Bending could induce a large and some-
times unpredictable change in the optical path difference that
could make it difficult to interpret the sensor signal. The
most prominent issue of the transmission structure is cross-
talk, due to axial strain while measuring RI or temperature,
because a certain amount of initial strain needs to be applied
to make sure that the grating is properly placed. Hence, a
probe-type configuration is needed to eliminate the crosstalk.
The reflection-based optical fiber probe can be easily
immersed into the test liquid and is more robust. Not
much work has been focused on using the reflection-
based fiber sensor to monitor two parameters simultaneously
so far.

For simultaneous measurement of temperature and exter-
nal RI, a phase-shifted long period fiber grating (PS-LPFG)

has been used. The PS-LPFG, first proposed by Ke,5 typi-
cally is fabricated by changing the amplitude of index modu-
lation or the length between the two adjacent grating sections
to induce a phase shift. Several attenuation bands are gener-
ated in the transmission spectrum, and this pattern has been
used for gain flattening fiber filters.6 Considering that differ-
ent attenuation bands have different sensitivities towards the
temperature and RI, it could potentially be used for multi-
parameter monitoring.

In this letter, the CO2 laser (SYNRAD, Firestar v20) was
used to inscribe the reflection-based PS-LPFG on a standard
single mode fiber (SMF) (Corning SMF-28) using point-
by-point irradiation technique. Compared with the UV
inscription technique, the CO2 laser point-by-point irradia-
tion technique is more flexible and cost-effective since no
photosensitive fibers and phase masks are required.7,8 The
reflection-based PS-LPFGs have been successfully used
for simultaneous measurement of temperature and RI in
the work presented here. The new device can work as a
multiparameter sensor with the unique advantages of
robustness, operating in the reflection mode and insensitivity
to bending.

2 Experiments and Discussions
As shown in Fig. 1, the sensing part comprises a grating sec-
tion with grating period of 312 μm (LP08 mode) and a mirror
on the fiber end face at a quarter-period separation distance
from the grating end. The quarter grating period will behave
as a half grating period because of the effective path taken
by the travelling light; going through the grating, reflecting
back from the mirror and going through the grating again.
Two gratings (on the same fiber with the same period) with
a half period separation will induce a π-shifted LPFG.5 The
output power of CO2 laser for fabricating the LPFG was
7.5 W. The grating was 62 points long and the 63rd point
was marked using a higher power laser pulse (10 W) to
make it visible. The end of the fiber was cleaved at the visible
mark using a homemade cleaving system with an online0091-3286/2013/$25.00 © 2013 SPIE
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monitoring device and then polished while monitoring the
reflection spectrum. The end-face was polished until two
resonant dips appeared and had almost equal attenuation
strength. The end face was coated with silver using a sput-
tering machine (Denton Vacuum, DESK V). Before coating,
the sensing region was inserted into a tube to ensure the mir-
ror formation on the end face of the fiber and to protect sides
of the fiber from being polished. Thus, a reflection-based
π-shifted LPFG was fabricated. The total length of the
sensing region was about 18.5 mm.

According to the analysis of PS-LPFG using F-Matrix,5

the destructive mode coupling is converted to the construc-
tive mode coupling, and one grating resonance will be split
into two or more resonances based on the number of phase
shift sections and the length of grating part. In this experi-
ment, a π-shifted LPFG was inscribed by a half period sep-
aration part between two identical gratings. When the phase
shift is equal to an integral multiple of π (in this case, a half
period represents one π shift), the spectral response becomes
symmetrical.

During the experiment, the light emitting from a broad-
band source (Agilent 83437A, in the wavelength range of
1300–1700 nm) propagates through a 2 × 1 (3 dB) coupler
and the sensor part. The reflection spectrum is monitored
by an Optical Spectrum Analyzer (OSA AQ 6319) with a
resolution of 50 pm. Figure 2 shows the spectrum of the
reflection-based PS-LPFG. The center wavelengths of the
two resonant dips are 1475.50 nm and 1519.55 nm, respec-
tively. The grating strength of each dip is about 20.60 dB and

20.43 dB, respectively. The full wave at half maximum
(FWHM) of each dip are 5.9 and 6.1 nm, respectively.
These two dips are not identical because the polishing proc-
ess cannot ideally control the polished length. In other
words, the phase shift is not a precisely controlled π in
the experiment, and that will induce an asymmetrical spectral
response. We know the equation for the phase shift value is
Δϕ ¼ 2πLs∕Λ, where Δϕ is the desired phase shifted value
in radian, Ls is the separation length between the two adja-
cent gratings,Λ is the grating period. In this case, the value of
Ls will be doubled as compared with the transmission struc-
ture because of the back and forth of the light path. Thus, a
10 μm length error will lead to a 0.128π phase shift error.

In case the environmental temperature rises, both the
effective RIs of the cladding mode and core mode increase.
However, the RI of the core mode will change more than the
cladding mode because the thermo-coefficient of the Ge-
doped silica core is larger than that of the cladding. The ther-
mal-induced fringe shift of the reflection-based PSLPFG
can be approximated as

Δλ
λ

¼
��

1

Δneff;i

��
∂Δneff;i
∂T

�
þ CTE

�
ΔT; (1)

where Δneff;i is the sum of changes of effective RI of the
core and the ith-order cladding mode. The coefficient of
thermal expansion (CTE) is about 0.55 × 10−6∕°C.
Consequently, the wavelength of the attenuation peak will
induce a red shift as the environmental temperature increas-
ing. The temperature sensitivity of the reflection-based PS-
LPFG depends on the cladding mode order, as well as differ-
ent resonant wavelengths, because the effective RI of the
cladding mode is also related to the wavelength. Hence,
we could assume that these two resonant dips have different
a sensitivity with respect to the ambient temperature.

For the temperature measurement, the sensor probe was
placed into an oven (Yamato, DX300) and the reflection
spectrum was measured as the oven temperature increased
from 30°C to 100°C in steps of 10°C. Asbestos and a quartz
tube were applied to decrease the air flow effect and keep the
environmental temperature stable. Figure 3 shows the tem-
perature response of the reflection-based PS-LPFG. The red

Fig. 1 Schematic of the proposed sensor (light split into cladding
modes in LPFG section).

Fig. 2 Spectrum of a reflection-based PSLPFG. Fig. 3 Temperature responses of the reflection-based PS-LPFG.
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line and black line represent the linear fit of the normalized
wavelength shift in the left and right attenuation dips, respec-
tively. The experimental result shows that the temperature
response is nearly linear in terms of wavelength shift in
both attenuation bands. The right band with a slope of
0.155 nm∕°C is obviously more sensitive than the left band
(0.141 nm∕°C).

For external RI measurement, the sensor probe was
directly immerged into the sucrose solution. Ten cups of
the sucrose solution with different concentrations were
prepared [0.0, 4.090, 7.039, 9.142, 13.877, 17.197, 20.760,
24.084, 27.878, and 32.101 (unit: percentage)]. The corre-
sponding RIs are 1.3333, 1.3390, 1.3433, 1.3464, 1.3537,
1.3590, 1.3649, 1.3705, 1.3772, and 1.3848, respectively.9

A careful clean and dry process (using deionized water)
was done after each measurement to remove the crosstalk of
different solutions. The measured and normalized external
RI response of PS-LPFG was shown in Fig. 4. The red
line and black line stand for the normalized linear fit of
the right and left attenuation bands, respectively. The two
lines are relatively linear in that RI range. The right band
has a slope of −174.8 nm∕RIU, which is relatively higher
than that of the left band (−137.1 nm∕RIU).

For the different sensitivities of the two attenuation bands
to temperature and RI, we could define a characteristic
matrix MT;RIto represent the sensing performance of the
PS-LPFG,
�
Δλ1
Δλ2

�
¼ MT;RI

�
ΔT
Δn

�
¼

�
0.155 −174.8
0.141 −137.1

��
ΔT
Δn

�
: (2)

The characteristic matrix could be used for simultaneous
measurement of temperature and external RI from the wave-
length shifts of the two resonant dips. In this case, the tem-
perature should be limited within 1.0°C if the measurement
range of RI is about 0.02. To demonstrate the capability and
measurement accuracy of this method, we measured the
change in RIs of the deionized water as a function of ambient
temperature, as shown in Fig. 5. The red dots represent cal-
culated results through the characteristic matrix of the sen-
sor; the black dots are reference data for comparison.10 As
shown in Fig. 5, the calculated results agreed well with
the reference data in terms of trend of changing in RI as

temperature increased. As a result, the proposed sensor
can be used for simultaneous measurement of temperature
and RI after proper calibration.

3 Conclusion
In summary, we proposed and demonstrated an in-fiber sin-
gle probe using a PS-LPFG for simultaneous measurement of
temperature and external RI. This type of sensor is easily
immerged into liquid and is more compact and robust to oper-
ate; plus, the axial strain or bending crosstalk is eliminated
automatically. The proposed device is simple to fabricate,
potentially low-cost, mechanically robust and miniaturized
in size, which makes it very attractive for a refractive-index
sensing probe with temperature compensation. The possibil-
ity to yield more dips in the spectrum offers opportunities for
simultaneous multiparameter detection.
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