
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 1996 

Two Methods of Neural Network Controlled Dynamic Channel Two Methods of Neural Network Controlled Dynamic Channel 

Allocation for Mobile Radio Systems Allocation for Mobile Radio Systems 

Kelvin T. Erickson 
Missouri University of Science and Technology, kte@mst.edu 

Edward J. Wilmes 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
K. T. Erickson and E. J. Wilmes, "Two Methods of Neural Network Controlled Dynamic Channel Allocation 
for Mobile Radio Systems," Proceedings of the IEEE 46th Vehicular Technology Conference, 1996. Mobile 
Technology for the Human Race, Institute of Electrical and Electronics Engineers (IEEE), Jan 1996. 
The definitive version is available at https://doi.org/10.1109/VETEC.1996.501411 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229170308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1925&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/VETEC.1996.501411
mailto:scholarsmine@mst.edu


~- ~ ~ 

I 
I 
I 

THODS OF NEURAL NETWO IC 
NNEL ALLOCATION FOR MOBILE 

Edward J. Wilmes 
Omnipoint Corporation 
Colorado Springs, CO 80917 
ewilmes@omnipoint .com 

Abstract --Two methods of dynamic chmiel allocation using 
neural networks are investigated. Both methods continuously 
optimize the mobile network based on changes in calling 
traffic. The first method uses backpropagation model 
predictions to aid the channel allocator. Each cell contains a 
backpropagation model which provides the channel allocator a 
call traffic prediction allowing the channel allocator to 
effectively optimize the network. The second method uses the 
same backpropagation models along with actor-critic models 
to perform the channel allocation. The actor-critics learn to 
model traffic activity between adjacent cells real-time, and 
thereby learn to allocate channels dynamically between cells. 
The learning criterion is to minimize the number of subscribers 
lost from each cell. A comparison shows that both methods 
significantly outperform fixed channel allocation, even when 
the call traffic activity deviates from the praviously learned 
models of the call traffic activity. The implementation and 
continual adaptation characteristics are illustrated and 
discussed. 

I. INTRODUCTION 

Neural Networks have a characteristic ability to uncover 
relationships between very complex nonlinear patterns. 
Recent research has shown that neural networks can identify 
very complex patterns as well as make predictions based on 
historical results when a similar scenario ariises[2][6][8]. 

In this paper, neural networks are used to uncover trends in 
network calling traffic, which are used in channel resource 
allocation decisions. Two approaches are realized using a 41- 
cell simulated AMPS network. The fist approach uses 
backpropagation predictions to identify spatial traffic patterns 
as a function of the time of day.. Future traffic 
backpropagation predictions are fed into the channel allocator 
in fixed discrete time increments so that the (channel allocator 
can uncover emerging traffic trends over a short period of time 
and allocate resources accordingly. This algorithm further 
contains a direct feedback element to accommodate dramatic 
traffic deviations away from backpropagation model 
predictions giving the mobile network real-time adaptation 
characteristics. The second method builds on the f i s t  method 
by feeding the backpropagation predictiolns into a real-time 
learner, which learns a history of traffic activity between two 
adjacent cells, and makes the allocation decision accordingly. 
The decision result is immediately reinforced based on the 
actual traffic results obtained from feedback on lost calls and 
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lack of channel resources. The performance of both methods 
is described in this paper and is compared to fixed channel 
techniques. The results demonstrate the applicability of both 
approaches and illustrate a significant improvement over fixed 
channel allocation. 

11. EXPERIMENTAL SETUP 

Call Demand. The call demand is defined as the number of 
successfully assigned mobiles to valid channels in the cell plus 
the number of lost hand-offs and the number of lost 
assignments (new calls) to the cell per time of day. The 
equation follows: 

where CD is the Call Demand per time of day, CC is the 
number of current calls assigned to channels in the cell per 
time of day (CC consists of the number of existing calls in the 
cell plus the number of successful hand-offs to the cell plus the 
number of successful assignments to the cell), LA is the 
number of Lost Assignments per time of day, LH is the 
number of Lost Hand-offs to the cell per time of day. A hand- 
off is defined as an active mobile being switched from one 
channel to the next when a mobile leaves a cell and enters a 
new cell [l]. An assignment is defined as assigning a channel 
to a new mobile requester. 

The Roject CO ncept. A simulation of a 41-cell network 
with 7 cells to a cluster (N=7) is used for the investigatigns. 
The simulation is first run in fixed channel mode with 5 ' 
channels per cell. Figure 1 illustrates the 41-cell network. 
Calls were generated mostly in the shaded areas during peak 

I 

io 1 

Figure 1 Forty-one cell network with cell numbers. Shaded area is 
the area of concentration for peak trafic. 
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calling times. Calls were distributed throughout the network 
during off-peak times. The call demand is measured per time 
of day (sampled every 10 minutes of simulated time) for one 
or more days of simulation. A daily model of the call demand 
in each cell is learned using backpropagation learning as 
described in Sections 111 and IV of this document. The 
backpropagation models are used to determine the call demand 
in each cell so that channels can be dynamically allocated to 
cells having a higher call demand from cells having a low call 
demand. This is the first experiment. The backpropagation 
predictions are then fed into actor-critics (adaptive heuristic 
critics) to determine whether or not a cell should lend its 
available channels to an adjacent requesting cell. The actor- 
critic is based on reinforcement learning and is described in 
Sections 111 and IV of this document [2][3]. Each cell contains 
an actor-critic for each of its adjacent cells. The actor-critics 
are punished if a cell does not have enough channels to handle 
its own call demand. This is the second experiment. 

The Gene ral Neural Network. The artificial neural network 
is a mathematical, electrical or other system model of the 
biological neural network (the brain). Neurons are the basic 
building blocks of the neural network. The model of a neuron 
consists of multiple inputs (each input multiplied by a weight 
factor) and one thresholded output based on the summation of 
the weighted inputs. The neuron is said to “fire” if the output 
is in the “turned on” state, i. e., the threshold function results in 
an “on” state. The neurons are usually interconnected in 
layers. There can be any number of layers; most neural 
networks have at least two layers-an input layer and an output 
layer[4]. 

111. LEARNING MODULES 

A. Call Demand Model Learner 
Theory. The backpropagation network learns patterns based 

on a minimization of the squared error between the expected 
output vector and the actual network output vector. 
Backpropagation learns off line using a training set consisting 
of an input-output vector set. This is known as supervised 
learning. “Neurons” are the basic building blocks of 
backpropagation and are interconnected to each other in layers. 
Neurons typically have the sigmoid hnction as the threshold 
function [4]. 

Representation. Forty-one two layer backpropagation 
networks are used to learn the call demand in each of the 41 
cells. Each network contains a 31 element input vector 
representing time, of which 24 components represent each 
hour of a day, 6 inputs represent 10 minute intervals within the 
hour, and 1 input to uncover any steady-state phenomena, 
which is always a value of one [2][3][4]. Each network has a 4 
element output vector; each element is mutually exclusive. 
The first neuron output represents the call demand of 0-4 calls 
requesting channels in the cell; the second neuron output 
represents 5 calls requesting channels in a cell (full capacity); 
the third neuron output represents 6-7 calls requesting channels 
in a cell; the forth neuron output represents 8 or more calls 
requesting channels in a cell. Each network has one hidden 

layer consisting olf 7 neurons and uses the sigmoid function as 
the threshold function. The backpropagation network training 
is stopped when the average root mean squared error [5] is 
sufficiently low. Once all of the networks are trained, they are 
used to quantify the call demand based on the time input 
vector. When considering all1 of the outputs of all of the 
networks, a spatial pattern emerges when looking at the large 
scale system. Thle resulting predictions are used as the input 
vector to the channel allocator and the Adjacent Cell Model 
Learners. 

B. Adjacent Cell Model Learner 
Theory. The actor-critic is a temporal difference method 

network [6]. Temporal difference method networks learn 
incrementally a n d  realize the prediction over a series of 
incremental input vectors. The output prediction is updated as 
more incremental inputs are added. Conventional methods 
must associate inlput-output vector pairs. In order to learn a 
sequence, the conventional metl iod must store the input-output 
vector pairs and learn them off-line at a later date [6]. 

Reinforcement Learning. The actor-critic has an external 
input (reinforcement) which is used for punishment or reward. 
The reinforcement affects the actor-critic in this way: if an 
action given by the critic is satisfactory, reward the critic. This 
increases the tendency to reproduce that action, given similar 
inputs to the critiic [7]. If an action given by the critic is 
unsatisfactory, then punish the critic. Punishment suppresses 
the same action firom being produced given similar inputs to 
the critic. When concerning systems in which there are long- 
term consequences from the current action (a long time-delay 
between action and feedback), the rewardpunishment is 
formulated such that at each the-step there is some result to 
reward or punish based on the current action [SI. 
(Reinforcement hi this project was immediate). The critic 
handles the delayed feedback (reinforcement) by computing 
the difference between successive predictions and by using 
eligibility traces [‘9]. Eligibility traces give the actor-critic a 
degenerating history that aids the algorithm in learning a 
delayed feedback circumstance [9]. 

Input Represent ia .  Actor-Critics were used to determine 
whether or not a given home cell should lend a channel to a 
requesting adjacent cell based on the call demand of both cells 
projected over a 310 minute period into the future. One actor- 
critic was assigned for each adjacent cell to the home cell. If 
there were six adjacent cells to the home cell, the home cell 
contained six actor-critics. The home cell backpropagation 
output vector and the adjacent cell backpropagation output 
vector were concatenated to form the input vector for the 
actor-critic. This produced an input vector of 24 elements for 
the actor-critic. The first 12 elements of the input vector were 
always the 3 sets of backpropagation output vectors from the 
home cell at T+lOlmin, T+20min, and T+30min respectively. 
(Recall that there is a 4 element output vector from each 
backpropagation algorithm). The second 12 elements of the 
input vector were always the 3 sets of backpropagation output 
vectors from the adjacent cell requesting the channel at 
T+lOmin, T+20min, and T+30m in respectively. This ordering 
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of inputs allowed the actor-critic to learn ithe call demand 
activity between the home cell and the adjacent cell [lo]. 
Interfering cells were polled for open channels prior to the 
home cell-adjacent cell lending decision. If, and only if, there 
was an open channel in the interfering cell( s) to block, then an 
actor-critic decision was made regarding lending a channel to 
the adjacent cell. The interfering cells were removed from the 
actor-critic decision criteria. Channel borrowing, channel 
blocking, channel lending, and caller activity in interfering 
cells could not be adequately related to the decision in the 
home cell-adjacent cell lending criteria. 
h. The output of the 

actor-critic was interpreted in the following way: If the output 
was - 1 , do not lend a channel to the adjacent cell. If the output 
was 1, lend the channel to the adjacent celll. The feedback to 
the actor-critic was formed by whether or not the home cell 
contained enough channels to handle the call demand. The 
number of channels in the home cell blocked by extemal cells 
was removed from the channel calculation for the feedback. 
Blocked channels in the home cell could not be related to the 
properties of the call demand in the adjacent cellhome cell 
actor-critic decision. The feedback (reinforcement) was only 
given to actor-critics who previously made a lending decision. 
The reinforcement to the actor-critic is as follows: -1 
(punishment) was given if there were not enough channels for 
the call demand in the home cell averaged over 10 minute 
periods; 0 otherwise. The equation for fmding the number of 
lost calls over a 10 minute interval is as folilows: 

where L C ~ ~ ~ ~ ~  is the number of lost calls over a 10 minute 
period, BC is the number of blocked channels and is the 
time at sample s. There are 20 samples taken in a 10 minute 
period. Therefore, the lost calls per sample is ~c10,,,iflo. If 
~ ~ ~ ~ ~ ~ ~ / 2 0 > 0 ,  the reward is -1, 0 otherwise. This reinforcement 
is similar to the method employed by Franklin [2][3]. 

IV. DYNAMIC CHANNEL ALLOCATION 

A. Dynamic Allocation Using the Call’ Demand Model 
Learner 

t o n .  The call demand 
data from the fixed channel allocation simulation was used for 
the call demand model learner training data. Once the off-line 
learning took place, the adaptive simulation was run using the 
call demand model learner outputs as predictions for allocating 
channels 10 minutes into the future, see Figure 2. The 41 cells 
were polled by inputting the time vector at T+lOmin time into 
each cell’s call demand model learner and storing the 
predictions for later use. The 41 cells were polled to see if any 
of the cells were predicted to have low call demand (low 
traffic), meaning that they would have an excess of channels to 
lend. Once a “home” cell with available channels was found, 
the adjacent cells to the “home” cell were then checked to see 
if they were requesting any channels. If channels were being 

block? T+ 1 Omin. 
T+ 1 Omin. (Backpropagation) 

No 

Call Demand / i  
Model Learner I 

I I 
I a Call demand training off-line using k 

traffic data from previous day. ---.I 

Figure 2 Mobile Telephone Switching Ofice with the Call Demand 
Model Learner. 

requested by an adjacent cell, then the cochannel cells to the 
“home” cell closest to the adjacent requesting cell were 
checked for channels which could be blocked. Lending a 
channel causes severe interference in cochannel cells, so the 
same channels in the cochannel cells need to be disabled. The 
cochannel cells were checked using the polling data and 
present data, which was a prediction from the call demand 
model learner 10 minutes into the future. Once it wa$ known 
that there were open channels in the cochannel cells to block, a 
check was made to see if the channeIs were the same 
frequency as the home cell. If the channels were different, 
hand-offs were made within the cochannel cells to free up the 
particular channel targeted for blocking. (The hand-offs were 
made with channels in the same cell.) The “home” cell then 
loaned the channel to the requesting adjacent cell and blocked 
out the corresponding frequencies in the cochannel interfering 
cells. This pattern was repeated for each cell until all cells 
were checked and available channel resources were exhausted. 
This series of events was repeated every 10 minutes in the 
simulation. Prior loaned channels were returned to their 
“home” cells when the predictions in the borrowing cells were 
to not borrow, i.e. call demand <= 5 .  Channels were returned 
to their “home” cells and blocked channels in the cochannel 
cells were re-enabled as soon as the borrowed channels were 
released from ongoing mobiles. 

B. Dynamic Channel Allocation with the Call Demand 
Model Learner and the Adjacent Cell Model Learner. 

:. The adjacent 
cell model learner (actor-critic) was consulted after the 
previously mentioned loaning criteria was satisfied, i.e., a 
home cell channel was available to lend and the cochannel , 
cells could block out the same channel, see Figure 3. There 
was one adjacent cell model learner for each of the adjacent 
cells to the home cell. The actor-critics were trained prior to 
being incorporated into the system to either lend channels all i 
of the time or to not lend at all. This is similar to the initial 1 
training performed by Franklin [2]. All of the actor-critics 
learned these patterns successfully. The actor-critics were 
integrated into the same system as mentioned in the Call 
Demand Model Learner Implementation section. When a I 
home cell was found with available channels to lend and an I 
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forcement of -1 or 0. 

I -- traffic data fiom previous day. 
Call demand training off-line using 

1 I 
Mobile Telephone Switching Office with Backpropagation and 
ActorCritic. 

Figure 3 

adjacent cell was requesting channels from the home cell, the 
cochannel cells were checked as mentioned previously. If 
these checks all passed, the output prediction from the 
backpropagation was fed into the actor-critic to determine 
whether or not to lend the channel. The lending took place as 
mentioned previously. The performance was compared to that 
of the fixed channel allocation system, and the results are 
discussed in the following section. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Call Demand Model Learner Channel Allocation. 
100% of the Calls During Peak Time Periods in 75% of the 

Peak Geoyrap hical Areas. The backpropagation networks 
were trained to this call traffic scenario and were not retrained 
for the rest of the project for any of the other experiments 
(including those containing actor-critics). Figure 4 shows the 
call demand generated by the simulation. The Fixed Channel 
Allocation (FCA) and Dynamic Channel Allocation (DCA) 
one day simulations placed 100% of the peak calls in 75% of 
the peak geographic areas (refer to Figure 1). The constancy 
in the simulations allows a direct comparison of the results. 
The plot in Figure 5 shows the lost calls per time of day for the 
FCA. Figure 6 shows the lost calls per time of day for the 
same simulated day but with the call demand model learners 
(backpropagation) in place. Notice that during the peak 
periods (around 500 minutes and 1100 minutes) the number of 
lost calls per time of day was reduced by about 20 mobiles per 
time of day, resulting in an increased network capacity. The 
total number of lost calls for the day was reduced from 3071 

I I FCA Call Demand (All Cells) 

I 200 , , I  
I I W W I  

I 
0 200 400 800 800 IWO 1200 1400 1600 

Time (minutes) 

L I 
Figure 4 Typical Call Demand for the experiments. 

0 200 400 600 800 1wO 1200 1400 IS00 
Time (minutes) 

1 

Figure 5 Lost calls per time of day for fixed channel allocation. 

DCA Lost Calls (All Cellls) 
(Baickpropagation only) 

120 L I 

0 200 400 600 800 IO00 1200 1400 1600 
Time (minutes) 

I 
Lost calls per time of day for dynamic channel allocation with 
the call demand model Iewners (backpropagation). 

lost calldl 172 1 total calls to 2 15 1 lost calls/l 1234 total calls 
(refer to Figure 7). Further experimentation was performed by 
changing the distribution of traffic spatially and by time- 
shifting the call demand generation function[ 1 11. The results 
are highlighted in the section VI. 

Figure 6 

Percent of Lost Calls Over One Day 
(DCA Baickpropagation only) 

15 - 

FCA Lost Calls I 
Figure7 Comparison between the total daily lost calls for dynami 

channel allocation versus fixed channel allocation. 

B. Adjacent Cell Model Lea" and Call Demand Learner 
Channel Alllocation. 

100% of the Callls During Peak Time Periods in 75% of the 
Peak Geog raphical Areas. The call demand for this 
experiment was similar to that i u ~  Figure 4. The actor-critics 
were trained to eitlher lend channels all of the time or not lend 
at all prior to this experiment. The backpropagation networks 
were not retrained for this project; the same weights were used 
as in the first DCA experiment. The call demand for both 
simulations is similar. The reduction was from 3071 lost 
calldl 1721 total calls to 2399 lost calls/l 1344 total calls. This 
is about a 5% reduction in the total lost calls. Figure 8 shows 
the lost calls for the DCA with backpropagation and actor- 
critic (compare with Figures 5 and 6). The differences in total 
lost calls are showin in Figure 9 (:compare with Figure 7). The 
lost call reduction amount, however, was less than that of the 
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DCA Lost Calls (All Cells) 
(Actor-Critic & Backpropagation) 

120 , 
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previous DCA experiment with only the backpropagation in 
place, with 100% of the peak calls being placed in 75% of the 
peak areas. Further experimentation was performed by time- 
shifting the call traffic[ 1 11. The results are summarized in the 
next section. 

Lost calls for dynamic channel allocation with both the cal 
demand model learners and the adjacent cell model learners. 

1 Total Lost Calls Over One Day 
(DCA Backpropagation and Actor-Critic) 

30 - 

FCA Total Lost Calls - 1 DCA Total Lost Calls I 
igure 9 Comparison of the lost calls between fixed channel allocation 

and dynamic channel allocation with both the call demand 
model learners and the adjacent cell model learners. 

VI. SUMMARY 

A. Results of DCA with Backpropagation. 
The 4 1 backpropagation networks were trained successfully 

using traffic (call demand) data from a simulated day. Once 
the traffic models were trained, they were incorporated into the 
Mobile Telephone Switching Office (MTSO) and used for 
dynamically allocating channels spatially lo cells having a high 
traffic load. Further experimentation illustrated adaptation to 
traffic changes. The MTSO successfully accommodated 
spatial changes in the calling traffic from the learned patterns. 
The traffic time shift experiment did not adapt as well to the 
traffic changes when compared to the DCA containing just the 
backpropagation algorithms, however, it still outperformed 
Fixed Channel Allocation (FCA). Several models of call 
demand were successfblly developed using 41 different 
learned backpropagation networks, demonstrating the 
applicability of this method. These experiments illustrate the 
use of conventional learning methods which rely on 
input/output training sets in a dynamical large scale cellular 
network. While these results look promising, more 
experimentation is needed, especially conceming adaptation 
(the ability of the MTSO to adapt to different call demand 
traffic patterns, different from the training data patterns.) 

B. Results of DCA with Backpropagation and Actor-Critic. 
The actor-critics were successfully trained off-line and 

incorporated along with the backpropagation models into the 
MTSO. The results further illustrated that improvements to the 
feedback would improve the system performance. Further 
experimentation gave evidence that the MTSO containing the 
actor-critics showed a favorable response to the call traffic 
time shift. The MTSO showed no further degradation in the 
network capacity from the time shift compared to the 
experiment without the time shifted traffic. More 
experimentation is needed to increase the confidence of these 
results, particularly, the adaptation to geographical traffic 
changes and time related changes in traffic. 
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