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Abstract – This paper presents an adaptive optimal control 

scheme for a grid independent photovoltaic (PV) system 
consisting of a PV collector array, a storage battery, and loads 
(critical and non-critical loads). The optimal control algorithm is 
based on the model-free Heuristic Dynamic Programming (HDP), 
an adaptive critic design (ACD) technique which optimizes the 
control performance based on a utility function. The HDP critic 
network is used in a PV system simulation study to train a 
neurocontroller to provide optimal control for varying PV system 
output energy and load demands. The emphasis of the optimal 
controller is primarily to supply the critical base load demand at 
all times. Simulation results are presented to compare the 
performance of the proposed optimal scheme with the 
conventional priority control scheme. Results show that HDP 
based control scheme performs better than a conventional 
priority control scheme. 
 

Index Terms — Adaptive Critic Designs, Battery Storage, 
Energy Management, Neural Networks, Optimal Control, 
Photovoltaic System 

I.  INTRODUCTION 

ITH the recent dramatic rise in the prices of fossil 
fuels, alternative energy sources are an intriguing way 

to reduce energy costs for heating, cooling, and meeting the 
general electrical needs of a residence or a facility. There are 
several alternative energy sources available, such as 
windmills, solar water heating (both for direct use and space 
heating), photovoltaic (PV) panels, and hydroelectric sources.  
Not all of these are as practical as one would hope, however; 
windmills require a windy location and hydroelectric systems 
need a large reserve of water stored at higher elevations.  
Solar energy is much more abundant, and can be harnessed 
much more easily (unless one lives near the poles or other 
areas which receive limited amounts of sunlight).   

The price of photovoltaic (PV) panels has fallen 
dramatically over the past 30 years [1] as improvements in 
technology are made.  Another contributing factor to the 
overall decline of the cost of PV systems is an increase in 
production volume.  And, when factoring in the rising costs of 
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fossil fuel generated electricity and heating, PV systems have 
become very competitive in certain markets such as 
California, New Jersey, Illinois, and Hawaii. 

Even though the prices of PV systems have fallen, they are 
still quite expensive: the payback time for a typical system 
can be 30 years (or more), depending on the size of the 
installation, type of equipment used and the solar radiation 
available.  Fortunately, the life of the PV arrays themselves is 
around 30 years.  And since they have no moving parts, 
maintenance requirements are very low. It is possible to 
reduce the overall costs of the PV system with an efficient 
control scheme determining when and how much of the 
electrical loads are to be supplied.  This will allow for more 
efficient use of the PV system components, and thus enable 
the designer to design a system with smaller (and less costly) 
PV arrays and batteries while still allowing the PV system to 
provide adequate coverage to the base (or critical) load. 

Traditionally, the control scheme that is used for PV 
systems is usually called a “PV Priority” control scheme [3].  
In this control scheme, the controller attempts to power the 
entire load (both critical and non-critical loads) and if there is 
any excess electrical energy it will try to charge the battery.  If 
there is not enough energy to power the loads, then it will 
draw energy from the battery to do so.  

In order to improve upon the PV priority scheme, an 
optimal controller can be designed such that the critical load 
is only powered when there is insufficient amount of energy 
from the PV arrays, for instance.  In this way, an optimal 
controller can conserve battery energy during times of 
reduced solar radiation so that it there will be energy available 
to power the critical load whenever required. An example of a 
critical load would be the refrigeration of vaccines and 
medication in remote locations without access to a reliable 
electrical grid. 

While there have been other attempts to create an optimal 
controller, they have either used Q-learning [3] or fuzzy logic 
[4].  In this paper, an optimal controller based on the Adaptive 
Critic Designs (ACDs) [5] approach is designed to optimally 
allocate distribute energy primarily to the critical load and 
then to the non-critical loads.  The Action Dependent 
Heuristic Dynamic Programming (ADHDP) approach is 
adopted for the optimal controller design [6, 7].  

The rest of the paper is organized as follows. Section II 
describes the PV system considered in this study. Sections III 
and IV describe the traditional PV priority control and the 

HDP based Optimal Control of a Grid 
Independent PV System  

Richard L. Welch and Ganesh Kumar Venayagamoorthy, Senior Member, IEEE 

W 

1-4244-0493-2/06/$20.00 ©2006 IEEE.



 2 

ACD based optimal control schemes respectively. Section V 
presents some simulation results. Finally, the conclusion and 
future work is given in Section VI. 
 

II.  PHOTOVOLTAIC  SYSTEM MODEL 

The photovoltaic system model is made up of the following 
components: PV array, maximum power point tracker, 
controller, battery charge controller, batteries, critical load 
(refrigerator, standby lighting, etc), non-critical load (TV, 
extra lights, etc). In the case of the maximum power point 
tracker, battery charge controller, and batteries, it is assumed 
that they are 100% efficient (and so the maximum power 
point tracker and charge controller are omitted in the 
simulation model).  

Photovoltaic arrays generally range in efficiency from 6% 
to 30%, with costs varying tremendously.  Usually, the 30% 
efficiency arrays are used for space applications because of 
their power generation density (and radiation tolerances), 
while arrays with 6% to 15% efficiency are used for typical 
terrestrial applications.  In this paper, the simulated efficiency 
of the PV array is set to 11% (to account for dust on the array, 
wiring losses, alignment issues, etc). A block diagram of this 
PV system setup is shown in Fig. 1. 
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Fig. 1.  Block diagram of the PV system model. 

 
 

III.  PV PRIORITY CONTROLLER 

In the conventional controller (called the “PV Priority” 
scheme), no analysis of current state is performed while 
making decisions.  Instead, energy (provided from the solar 
arrays) is first supplied to meet the critical load demand, any 
excess energy left is then supplied to meet the non-critical 
loads; an finally, any available energy after supplying the 
loads is used for charging the storage batteries.  Conversely, if 
there is not enough electrical energy to first power the critical 
load and then the non-critical load, the balance of energy is 
taken from the batteries.  If the batteries have already been 
depleted, then all load(s) will not be met since there will 
insufficient energy to power them. 

This scheme works well in climates where there is an 
abundance of solar insolation and utility rates are relatively 

high, but in an environment where there is lack for abundance 
of solar insolation (or anywhere cost is a major constraint) 
then a more optimal method of controlling the PV system is 
desirable. 

 

IV.  OPTIMAL CONTROLLER 

Adaptive critic designs (ACDs) are neural network designs 
capable of optimization over time under conditions of noise 
and uncertainty. A family of ACDs was proposed by Werbos 
[5] as a new optimization technique combining the concepts 
of reinforcement learning and approximate dynamic 
programming. For a given series of control actions that must 
be taken sequentially, and not knowing the effect of these 
actions until the end of the sequence, it is possible to design 
an optimal controller using the traditional supervised learning 
neural network.  

The adaptive critic method determines optimal control laws 
for a system by successively adapting two neural networks, 
namely, an action network (which dispenses the control 
signals) and a critic network (which learns the desired 
performance index for some function associated with the 
performance index). These two neural networks approximate 
the Hamilton-Jacobi-Bellman equation associated with 
optimal control theory. The adaptation process starts with a 
non-optimal, arbitrarily chosen control by the action network; 
the critic network then guides the action network toward the 
optimal solution at each successive adaptation. During the 
adaptations, neither of the networks needs any “information” 
of an optimal trajectory, only the desired cost needs to be 
known. Furthermore, this method determines optimal control 
policy for the entire range of initial conditions and needs no 
external training, unlike other neuro-controllers [6]. 

The design ladder of ACDs includes three basic 
implementations: Heuristic Dynamic Programming (HDP), 
Dual Heuristic Programming (DHP) and Globalized Dual 
Heuristic Programming (GDHP), in the order of increasing 
power and complexity. The interrelationships between 
members of the ACD family have been generalized and 
explained in [7]. In this paper, an Action dependent HDP 
(ADHDP) approach is adopted for the design of a PV optimal 
controller. Action dependent adaptive critic designs do not 
need system models to develop the optimal control policy 
(action network output). 

The PV optimal controller is developed to optimally 
dispatch energy to power certain loads and/or charge the 
batteries (so that the batteries can be used to power the loads 
later on).  This technique utilizes two neural networks: one 
(called the action network) takes a set of inputs (energy 
availability, critical and non-critical load demands) and 
provides optimal energy distribution as its output and the 
second of the two neural networks (called the critic) critiques 
the action network performance over time in order to 
maximize the total energy supplied over time, especially to 
the critical load maintaining the battery charge within a 
certain threshold.  This action-critic networks’ interaction 
eventually leads to an optimal control strategy for the system. 
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Figure 2 illustrates the ADHDP architecture for the 
development of the PV optimal controller. The critic and 
action neural networks and their trainings are described in 
following subsections. 

 

Action Network

PV System

Critic Network γ +

-

A(t)

J(t-1)

J(t)

1

X(t)

Σ
+

U(t)

∂J(t)/∂A(t)

Critic Training Signal E(t)

Action Training Signal

Action NetworkAction Network

PV System

Critic NetworkCritic Network γγ +

-

A(t)

J(t-1)

J(t)

1

X(t)

ΣΣ
+

U(t)

∂J(t)/∂A(t)

Critic Training Signal E(t)

Action Training Signal  
Fig. 2.  Structure of the ADHDP based PV optimal controller design. 
 

A.  Critic Neural Network 
The critic network is a multilayer feedforward network 

trained with the standard backpropagation (BP) training 
algorithm. The numbers of neurons in the input, hidden and 
output layers are chosen to be nineteen (linear), forty 
(sigmoidal) and one (linear) respectively. The inputs to the 
critic network are the outputs and inputs of the action 
network, A, at time t, t-1 and t-2.  These are shown below in 
Fig. 3. 

The output of the critic network is the estimated cost-to-go 
function J of Bellman’s equation of dynamic programming, 
which is given by (1). 
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Where γ is the discount factor for finite horizon problems with 
the range of [0, 1] and is chosen to be 0.8 in this study. U(t) is 
known as the utility function or the local cost. This utility 
function guides the critic in critiquing the actor’s 
performance, in order to create an optimal control policy.  In 
this study, U(t) is chosen to be function of critical load (CL), 
battery charge status (BC) and non-critical load (NCL) and is 
given in (2). 
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Where: 
ECL = Energy Dispatched to the Critical Load 
CL = Critical Load 
MCL = Maximum Critical Load 
EB = Energy Dispatched to the Battery 
MBC = Maximum Battery Charge 
CBC = Current Battery Charge 
ENCL = Energy Dispatched to the Non Critical Load 
NCL = Non Critical Load 
MBCL = Maximum Non Critical Load 
M = Multiplier (used to ensure divisor is non-zero; for this 
experiment, a value of 0.1 was used). 

 
Fig. 3.  Critic neural network. 
 
 

In the U(t) function given in (2), a higher priority is given 
to meeting the critical load at all times over the batteries being 
charged or the non-critical load being supplied by assigning 
different weightings - 15/23 to the CL term, 5/23 to the BC 
term and 3/23 to the NCL term. 

In the training of the critic network, the objective is to 
minimize (3) given below. 
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The weight change and update equations for the critic network 
using the standard backpropagation is given by (5) and (6) 
respectively. 
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Where ηc and Wc are the learning rate and the weights of the 
critic neural network respectively.  
 

B.  Action Neural Network 

The action network is a multilayer feedforward network 
trained with the BP algorithm. The number of neurons in 
input, hidden and output layers is four (linear), forty 
(sigmoidal) and three (linear) respectively. The inputs to the 
action network is the available PV energy, the critical load as 
a percentage of the total load, state of charge of the batteries 
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and a constant bias value of 1, and its outputs are energy 
supplied to the battery, to the critical load and to the non-
critical load.  The action neural network is shown in Fig. 4. 
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Fig. 4.  Action neural network. 
 

The change in the action network weights ∆WA are 
calculated by backpropagating a ‘1’ through the trained critic 
network as shown in Fig. 2 to obtain ∂J/∂A. The error in the 
action network output is given by (7). 

 
       )t(A/)t(J)t(AE ∂∂=                          (7) 

 
The change in the action network’s weights ∆WA obtained 
using the standard backpropagation algorithm and update 
weight equations are given by (8) and (9) respectively. 
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Here ηA and WA are the learning rate and the weights of the action neural 
network respectively. 

C.  Actor/Critic Training 

The flowchart in Fig. 5 outlines the training steps for both 
the critic and action networks.  During the iterative training 
phase, several metrics can be use to determine if the actor’s 
performance is increasing.  For this study, the simple sum of 
the utility function for each cycle of the training action 
network is used.  This means that when the sum of the utility 
function is decreasing, the performance of the action network 
is improving.  As soon as the sum of the utility function 
increases, the training is terminated and weight that resulted 
in the minimum sum is stored. 

After the best action network weights were found, these 
weights were then used for to optimally dispatch energy to the 
critical load, the non-critical loads and the battery. 

V.  RESULTS 

One year simulation of the PV system for Springfield, MO 
area is carried out using the data from the TMY2 database 
[2].  The solar profile (or global horizontal radiation) for a 
typical year for this region is illustrated in Fig. 6.  Figure 7 

shows the PV array output over a period of 4 days in early 
January (5th through 9th). 

 
Fig. 5.  Critic/Action network training steps. 

 
The PV energy captured by the solar array is optimally 

dispatched to power a time varying load (as shown in Fig. 8 as 
the sum of both the critical and non-critical loads).  When 
there is insufficient energy from the PV array to supply the 
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Step 2: Pre-train action network to learn the 
conventional PV priority controller’s 
performance. 

Step 3: Pre-train/train critic network with the pre-
trained/trained action network output with the 
setup as in Fig. 2 using a discount factor of 0.8.  

Step 4: Train pre-trained action network from step 
2 further with the setup as in Fig. 2 using the 
pretrained critic network from step 3. Back-
propagate a ‘1’ through the critic network to 
obtain dJ(t)/dA(t). Use online training to update 
the weights of the action weight based on 
dJ(t)/dA(t) using the standard backpropagation 
algorithm. 
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loads, energy from the battery is dispatched.  The states of the 
battery charge when the PV system is controlled by the ACD 
optimal controller and the PV priority controller for the entire 
12 month period is shown in Fig. 9. 

As it can be observed from Fig. 9, with the PV priority 
controller, the state of charge of the battery falls from the 
initial full charge (100%) to 30% and remained at this level 
until the spring and partly into early summer months. During 
the summer, the battery charge rises close to 100% and then 
falls again as the available solar energy decreased during the 
winter months.  During the same period, the battery charge 
with the optimal controller is maintained close to 100% 
though there is still a dip during the winter months. Overall, 
the state of the battery charge is better with the ACD 
neurocontroller compared to that with the PV priority 
controller. 

If there was adequate solar energy available during the 
previous day, then generally both schemes were able to meet 
the base load (and at least some of the non-critical load) the 
next day.  However, once again the optimal controller worked 
much better.  It was able to nearly always power the critical 
load and non-critical loads.  This is evident from Fig. 10. 
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Fig. 6.  Global horizontal radiation for Springfield, MO. 

  
Fig. 7.  Power output of the PV array. 
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Fig. 8. Daily time varying load profile. 
 

 
Fig. 9.  State of charge of the battery for two controller types over a period of 12 
months.   
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the load supplied by the PV priority controller. 
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VI.  CONCLUSION 

A new optimal control scheme based on adaptive critic 
designs for the photovoltaic system is developed and 
compared with the conventional priority control scheme used 
today. The ACD method optimizes the control policy over 
time to ensure that the critical load demand is met primarily 
all the time and then the non-critical load demands. The state 
of the battery charge is also maintained as high as possible to 
ensure energy supply to the critical loads during nights and 
the winter months. This in turn provides the benefit of 
extended battery life. The comparison between the two 
control schemes show that the neurocontroller satisfies the 
critical load and most of the non-critical loads demand better 
than the priority control scheme.  

Future work will involve investigations to try to further 
optimize the controller to more closely follow the load 
profiles and provide even better performance, as well as trying 
out the proposed controller design on various TMY2 database 
solar radiation profiles. 
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