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Abstract-A new space-time adaptive processing algorithm
is proposed for clutter suppression in phased array radar
systems. In contrast to the commonly used normalized least
mean square (NLMS) algorithm which uses the second order
moments of the data for adaptation, the proposed method uses
the lower order moments of the data to adapt the weight
coefficients. The normalization is also performed based on the
data sample dispersion rather than the variance. Processing
results using simulated and measured data show that the
proposed algorithm converges faster than the NLMS algorithms
in Gaussian and non-Gaussian clutter environments. It also
provides better clutter suppression than the NLMS algorithm
under heavy-tailed, impulsive, non-Gaussian environments. It
in turn improves the target detection performance.

I. INTRODUCTION

Space-time adaptive processing refers to combined spatial
beamforming and temporal Doppler filtering of radar returns
in phased array antenna systems. It uses multiple antenna el-
ements followed by tapped-delay-lines to coherently process
multiple pulses thus providing superior ability to suppress
jammers and clutters while preserving desired signal target
[1]. Since its introduction in 1973, STAP has been rigorously
researched and has been proven to provide significant perfor-
mance gain in interference suppression and target detection.
With the recent advance in digital signal processors (DSP),
STAP has found wide spread application in airborne and ship-
borne radar systems and space-borne satellites.
Many STAP algorithms dealt with common scenarios

where clutters and noises are complex Gaussian, which leads
to mathematically tractable solutions [2]. However, recent
studies and field measurements have found [3]- [9] that
heavy-tailed non-Gaussian clutters and noises often occur in
backscatters from mountain tops, dense forest canopy, rough
sea surfaces, and manmade concrete objects, etc. These radar
clutters are spiky, impulsive in nature and cause significant
performance degradation in STAP and target detection. Many
technical issues still remain unsolved for non-Gaussian envi-
ronments.

Several statistical models have been used to describe the
impulsive non-Gaussian clutter environment including the
compound K [3], [4] and complex alpha-stable [6]-[8]. The
compound complex Gaussian model is a popular approach,
where the clutter/noise process is the product of two random
processes: X = V/T G, with T being the texture and G
the speckle If T follows the Gamma distribution and G is
complex Gaussian, then the envelop of X = V/T G will
be the compound K distribution with the probability density
function (pdf) given as [3], [4]

fi(r) ()= K-1 (i-) (1)

where K>,() is the modified Bessel Function of the second
kind of order v, and v is the shape parameter. The function

Q() is a Gamma function. The pdf of the compound K
distribution is plotted in Fig. 1. The tails of the compound K
pdfs are much higher than the Rayleigh distribution which is
the envelope pdf of the complex Gaussian process.

Complex alpha-stable laws are used to model clutters with
even heavier impulsiveness and their envelope pdf curves
exhibit heavier tails, also shown in Fig. 1. This type of
clutters have been reported in many scenarios [5], [6], [8]. It
is also found [4] that high resolution sea clutters also have
heavier tails than the compound K distribution. A complex
symmetric alpha-stable (SaS) process is often described by
its characteristic function [7]:

4b(w) = exp {yw1} (2)

where w1 = + w2. The parameter 0 < a < 2 is the
characteristic exponent directly related with the heaviness of
the pdf tail, and a > 0 is the dispersion controlling the
spread of the distribution similar like the variance of the
gaussian distribution. When a = 2, the symmetrical alpha-
stable distribution becomes the Gaussian distribution.

To combat heavy-tailed non-Gaussian clutters, a fraction-
ally lower-order moments (FLOM) adaptive algorithm has
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been proposed in [10] for space-time adaptive processing
(STAP). The FLOM algorithm differs from the commonly
used Minimum Variance distortionless Response (MVDR)
beamformers in that it minimizes the p-th order moment
(0 < p < 2) of the output signal rather than its variance.
It has been shown that the FLOM algorithm performs better
than the conventional MVDR processors in heavy-tailed
clutter environments. However, the standard FLOM algorithm
suffers from the difficulty of noise amplification similar to the
standard Least Mean Square (LMS) algorithm. Besides, there
was no guideline for choosing the step size that ensures the
convergence.

In this paper, we reformulate the original FLOM algo-
rithm into a normalized FLOM (N-FLOM) algorithm. The
normalization is also based on the p-th order moments of
the input vector rather than its power. The NLMS algorithm
is a special case of the N-FLOM algorithm when setting
p = 2. The convergence property of the N-FLOM algorithm
is investigated and conditions for selecting step size are
provided.

The N-FLOM algorithm is also extensively evaluated un-
der Gaussian and SaS clutters for its beampattems, signal-
to-interference-and-noise-ratio (SINR), and target detection
performance. The results show that, as the order p decreases,
the convergence rate of the N-FLOM improves at the expense
of increased residual errors. The N-FLOM or standard FLOM
algorithms provide better SINR gains than the NLMS or
MVDR processors. When the dispersion of the SaS clut-
ters/noises are small, better target detection performances are
also achieved by the N-FLOM algorithm followed by a linear
Matched Filter (MF) detector. However, when the dispersion
of the heavy-tailed clutters/noises are similar to the target
signal power, the N-FLOM or FLOM algorithm combined
with linear MF detectors does not provide significant im-

provement on the detection performance in the low false
alarm region. We note that, under heavy-tailed non-Gaussian
clutters, nonlinear detectors are more effective, especially in
the low false alarm region.

II. STAP AND CONVENTIONAL BEAMFORMING

Consider an arbitrary radar array antenna consisting of
M elements with the m-th element located at xm =

(rm, 0m, Om) in a spherical coordinate system, where rm,
0m and (Pm denote the radial distance, azimuth angle, and
elevation angle, respectively. The radar transmits coherent
bursts of K pulses at a constant pulse repetition frequency
(PRF) fr = /Tr, where Tr is the pulse repetition interval
(PRI). Radar returns are collected over a coherent processing
interval (CPI) of length KTr. Within each PRI, there are
L time (range) samples collected to cover the range inter-
val. This multidimensional data set can be visualized as a
M x K x L cube of complex samples [1]. Each sample is
denoted Ul,k,m(t), for I = 1, 2, , L, k = 1, 2, , K, and
M =1, 2,... M, and t is the sampling time index. The
data at a certain range bin I corresponds to a slice ofM x K
space-time CPI samples.

Let N = M x K and denote Ui (t) the N x 1 concatenated
space-time sample vector at range bin 1. We have

Ul (t)

Ul,k (t)

where superscript T denotes transpose and ul,k(t) is the
received sample vector at the antenna array. For notational
convenience, we drop the subscript I with the understanding
that the STAP is performed for the space-slow-time domain.

The radar return vector U(t) is a mixture of the target echo
(Us) with the uncorrelated interference or jammers (Uj),
uncorrelated clutters (U,), and white background noises
(Un):

U(t)
Us (t)

UJ (t)

Uc (t)

Us(t) + UJ(t) + UC(t) + Un(t),
S(t)b(ws) (9 a(Es),
NJ

S Sjigji a(Eji)
i=l

NC

5 Scib(wci) X a(Eci).
i=l

(5)

where the point target S(t) is at location e),
(rS,s0,q5) and with Doppler frequency fo. And b(s) =

[1,... ejkw ,... , ej(K-1)w ]T is the temporal steering vec-
tor at the normalized Doppler frequency Ws = 27Ffs/fr,
while a(Es) = [1, eiQ(T2,-Tj), ... jeQ(TM,-Ti) T is the
spatial steering vector for location O5. The operator X de-
notes the Kronecker matrix product, and Tins = em-s /c
is the propagation delay from the signal source to the m-
th array element with c being the wave propagation speed,

C,

%' 4; .Z :. - - -

,\

IUT, (t) .... . UT (t) ... . UT (t)]T. (3)1, 1,k 1,K

[Ul, k, 1 (t), Ul, k, 2 (t), - - -

. Ul, k, M(t)]T, (4)



and Q is the operation frequency. Also assume that there
are NJ jammers SJi at locations Oji with amplitude vector
gji = [gji(1),. , gji(k),... , gji(K)]T. There are also
NC independent clutter sources uniformly distributed in a
circular ring/sphere around the radar platform [1] with the
i-th clutter patch located at e i and having the normalized
Doppler frequency of w i. The Doppler frequency of a clutter
is proportional to its angular location. The receiver noise
U, has no structure in time or space, and thus appears as a
uniform noise floor throughout the angle-Doppler plane.

The STAP system consists of tapped-delay-lines attached
to each antenna element. Let W be the concatenated weight
vector of the STAP processor, then the output of the STAP
y(t) can be expressed in matrix form as

y(t) = WHU(t),
where the superscript (.) H represents complex conjugate
transpose.

For Gaussian clutter and noise environment, the Minimum
Variance Distortionless Response(MVDR) method is com-
monly used for adapting the weight vector W.

minE { y(t)l2}, subject to CHW =h, (6)w

where E { y(t)l2}= WHRUuW with RUU being the
covariance matrix of the concatenated input vector U and
Et } the expectation operator. The matrix C is the set of
linear constraints and h is the desired response vector. For
example, a simple point constraint [11], [12] may be chosen
as C = b(5) Oa()) and h = 1, which enforces a unit gain
response at the target location e), and the Doppler frequency
f5. The optimal solution to the constrained minimization
problem is well-known assuming that the covariance matrix
RUU has full rank:

Wopt = (CHRU-IC)- RU-ICh (7)

Direct implementation of (7) requires the knowledge of
the covariance matrix of the array input vector. Alternatively,
the optimal weight vector W,pt can be decomposed into
two orthogonal components: a fixed beamformer Wq and
an unconstrained adaptive weight vector Wa They are
determined by

Wq = C(CHC)-lh, (8)

Wpl = (CHRuuCa) CHRuuWq, (9)

where Ca is termed the signal blocking matrix. It is orthogo-
nal to C satisfying CHCa = 0. This decomposition is known
as the Generalized Sidelobe Canceller (GSC) and Wa can

be iteratively adapted by the Normalized Least Mean Square
(NLMS) algorithm as

Wa(t + 1) = Wa(t) + xax(t)e (t) (10)XLH(t)X(t)I

where x(t) Ca'U(t), e(t) is the error signal defined by
e(t) = [Wq CaWa]HU(t), and t is the index of iteration.
The step size Ha controls the rate of change of the weight
vector and 0 < ,a < 2 guarantees the convergence when the
algorithm is normalized by the sample covariance xH (t)x(t)
in (10).

III. THE NORMALIZED FRACTIONALLY LOWER-ORDER
MOMENT (N-FLOM) ALGORITHM

In severe, impulsive clutter and noise environments, the
conventional STAP suffers from performance loss due to
the fact that the sample covariance are often very large.
A fractionally lower-order moment (FLOM) algorithm is to
minimize the p-th order moment rather than the variance of
the STAP output [7]

minE{fy(t)lP}, subjectto CHW =h,
w (1 1)

There is no closed-form solution for the optimal coefficients
that minimizes the cost function. When 1 < p < a, the cost
function is convex and a gradient descent method has been
proposed [7], [10] to solve for the coefficients as

W(O)
B

Wq = C(CHC)-lh,
I C[CHC] CH,

W(t+1) = B[W(t)+,uy(t)P-2y* (t)U(t)]+Wq(12)
Similar to the standard form ofLMS algorithm, the FLOM

algorithm described by (12) experiences the difficulty of
gradient noise amplification when the input signals are large.
Besides, the standard FLOM algorithm is difficulty to identify
suitable step size ,u that can guarantee the convergence.
To overcome these problems, we propose a Normalized
Fractionally-Lower Order Moment (N-FLOM) algorithm

W(t + 1) = B'W(t) + p Iy(t) 2y (t)U(t) 1+W 1

where ui(t) are the elements of U(t).
In the GSC implementation of STAP, the proposed N-

FLOM algorithm can be expressed as

Wa(0) = 0,

Wa(t + 1) = Wa(t) + Pa e(p2*x(t)x(t)

where xi(t) are the elements of x(t).
Note that the N-FLOM algorithm reduces to the NLMS al-

gorithm when p = 2. Theoretical analysis of the convergence
property for a fractional p is difficult because of no closed-
form solutions of the optimum coefficients. We conduct
numerical analysis and find that the N-FLOM algorithm is
guaranteed to converge if 0 < ,u < p. We also find that
the smaller the order p, the faster the convergence rate and
the higher the residual errors. These are demonstrated in the
examples in the next section.



IV. PERFORMANCE EVALUATION

A linear phased array is used to demonstrate the per-
formances of the proposed N-FLOM algorithm. The array
consists of 10 equally spaced elements at half wavelength
of the operation frequency. The coherent pulse interval is
CPI=7. The target signal has a power of 0 dB and is located
at angle of arrival (AoA) 200 with a normalized Doppler
frequency of 0.25. The noises are independent among antenna
elements and CPI taps. It is assumed to be Gaussian or
alpha-stable with 0 dB power or dispersion. There are two
wideband jammers at AoA of -200 and +50°, respectively.
Each jammer has full Doppler spectrum and with 15 dB
power. There are many clutters at the same range bin from
different AoAs. The AoA of the clutters is a random variable
uniformly distributed between -1800 and 1800. The Doppler
frequencies of the clutters depend on their AoAs. The clutters
may also be Gaussian or alpha-stable with total power (or
dispersion) of 30 dB.

First, the beampattem of the STAP is evaluated, which is
defined by

''(e,f d) = |WjPtb(fd) X a(e)|2 (15)

The beampattems of the conventional MVDR processor are
evaluated under Gaussian and alpha-stable environments and
are plotted in Fig. 2. The location of the target is indicated
by the small circle on the angle-Doppler plane at fd = 0.25
and AoA = 200. When the noise and clutters are Gaussian,
the MVDR processor can effectively suppress the clutters and
jammers by placing deep nulls at jammer location and clutter
ridge, as shown in Fig. 2(a). In contrast, when the clutters and
noises are heavy-tailed non-Gaussian, the MVDR processor
can neither maintain deep nulls at the jammer locations nor
suppress the entire clutter ridge, as shown in Fig. 2(b). This
is because the conventional MDVR processor uses too many
degrees of freedom on the few outliers in the non-Gaussian
clutter/noise samples thus sacrifices performance elsewhere.

The conventional iterative NLMS algorithm also exhibits
performance loss under non-Gaussian clutter environments,
as shown in Fig. 3(a). When the outlier samples of the
non-Gaussian clutter/noise occurs, the NLMS also loses the
ability to suppress jammers resulting in high interference
power leaking to the STAP output. The proposed N-FLOM
algorithm place less weights on the non-Gaussian clutters
thus maintains deep nulls at jammer locations and clutter
ridge, as shown in Fig. 3(b). The converged output of N-
FLOM has 3 dB higher SINR than that of the NLMS
algorithm.

The convergence of the NLMS and N-FLOM algorithms
are plotted in Fig. 4. With the same step size, the NLMS al-
gorithm converges much slower than the N-FLOM algorithm
in both Gaussian and non-Gaussian environments, as shown
in Fig. 4(a). The smaller the order p in the N-FLOM, the
faster the convergence. But the smaller the p, the higher the
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Fig. 2. Beampatterns of the MVDR STAP in Gaussian/non-Gaussian
clutters and noises.

residue errors. Large spikes in the tails of the convergence
curves in Fig. 4(b) indicate that outliers occur at those time
indexes. The N-FLOM with a smaller p exhibits smaller
spikes indicating better robustness against outliers.

The converged outputs of the NLMS and N-FLOM algo-
rithms are fed to target detectors for further evaluation of
their detection performances. When a linear matched filter
detector is used, the region of operation curves in Fig. 5
plots the probability of detection (PD) versus the probability
of false alarm (PFA) for both Gaussian and alpha-stable
clutter environments. In Gaussian clutters, the NLMS and
N-FLOM with p = 1.7 provide similar performance as the
optimal MVDR processor. The N-FLOM with p = 1 suffers
significant detection loss due to its high residual errors. In
the heavy-tailed non-Gaussian environment, the ROC curves
degrade significantly for all algorithms, especially at low
false alarm rate PFA < 10-1. The N-FLOM algorithm
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essentially performs the same as the NLMS algorithm. This
is because the number of outliers leaked into the outputs of
the two algorithms are more or less the same even though
the amplitudes of them may be different. But they all cause

significantly high false alarm rate at low input SNR. The
MVDR and N-FLOM with p = 1.0 perform even worse due
to higher interference in their outputs.
What if the output SINR of the STAP is higher? The linear

MF detector still performs poorly in low false alarm regions
under heavy-tailed non-Gaussian environments, as show in
Fig. 6. The higher the SINR at the detector input, the steeper
the drop of the detection rate in low false alarm regions. On
the other hand, if nonlinear detectors are used, such as hole
puncher or hard clipper [7], then the performance is much
better than linear detectors, as shown in Fig. 7

This means that the linear detector inherently suffers sig-
nificant performance loss in heavy-tailed clutters. The FLOM

Fig. 4. Convergence curves of the N-FLOM algorithm compared with the
NLMS algorithm.

type of algorithms only provide very limited improvement on

target detection. Non-linear detectors are more effective for
heavy-tailed clutter environments.

V. CONCLUSION

A normalized FLOM adaptive algorithm has been investi-
gated for space-time adaptive processing (STAP) of phased
array radar systems. The algorithm differs from the com-

monly used NLMS algorithm in that the weight adaptation
is proportional to the p-order moment of the error rather than
the mean squared error. The normalization is also based on

the p-th order moments of the input vector rather than its
power. The NLMS algorithm is a special case ofthe N-FLOM
algorithm when p = 2.

The N-FLOM algorithm has been extensively evaluated
for its beampattems, convergence rate, and target detection
performance. The results have shown that the convergence
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rate of the N-FLOM improves as the order p decreases at the

expense of increased residual errors. However, the N-FLOM

algorithm provides limited improvement on the detection

performance of linear target detectors under heavy-tailed non-
Gaussian clutters. Nonlinear detectors are more effective in

low false-alarm regions.
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