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The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such
as the dogfish Squalus acanthias is completely unknown. This investigation set out to
determine the expression and cellular and sub-cellular localization of Aqp4 protein in dog-
fish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these
showed somewhat different characteristics inWestern blotting and immunohistochemistry.
Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most
tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal
gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 pro-
tein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody
appeared much less specific in Western blots. Both antibodies were used in immunohis-
tochemistry and showed similar cellular localizations, although the AQP4/2 antibody had
a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to
be more specific for Aqp4. In kidney a sub-set of tubules were stained which may repre-
sent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized
to the same tubules segments in serial sections although the intensity and sub-cellular
distribution were different. AQP4/2 showed a basal or basolateral membrane distribution
whereas AQP4/1 was often distributed throughout the whole cell including the nuclear
region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but
again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies
stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody
stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane
or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich
transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or
V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4
was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is
expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.

Keywords: aquaporin 4, rectal gland, gill, stomach, kidney, dogfish

INTRODUCTION
Aquaporin 4 (AQP4) is a member of the water-selective sub-group
of aquaporin water channel cell-membrane proteins found in all
organisms so far investigated. This sub-group in mammals also
includes other aquaporins such as AQP0, AQP1, AQP2, AQP5, and
AQP6 (Ishibashi et al., 2009; Zelanina, 2010). Other subgroups
such as aquaglyceroporins (AQP3, AQP7, AQP9, and AQP10) have
additional transport properties (e.g., transport of urea and glyc-
erol, etc.). In mammals, AQP4 is widely expressed in a variety
of tissues including the brain (Zelanina, 2010), retina (Hirrlinger
et al., 2011), salivary gland (Delporte and Steinfeld, 2006), trachea
(Borok and Verkman, 2002), heart and muscle (Butler et al., 2006;
Wakayama, 2010), gastrointestinal tract (Ma and Verkman, 1999;
Xu et al., 2009), and kidney (Nejsum, 2005), but is not expressed
in the lung itself or liver tissues (Ishibashi et al., 2009). While
aquaporins such as AQP4 have been studied in a wide variety of
(mostly) higher vertebrates, no complete studies have yet been

published on the role of aquaporins in elasmobranch fish such as
the dogfish shark (Cutler et al., 2005; Cutler, 2006, 2007). A com-
panion paper (Cutler et al., 2012) has characterized aqp4 mRNA
expression in dogfish tissues, this article gives the first information
on the Aqp4 protein and its localization in tissues. In mammals
such as the rat, AQP4 appears as two bands on Western blots, a
non-glycosylated form of 30–32 kDa (sometimes splicoforms with
different N-terminal ends exist) and a putative 50 kDa glycosylated
form (Terris et al., 1995; Nicchia et al., 2008). Immunohisto-
chemical staining of mammalian epithelial cells generally yields
a basolateral localization for AQ4 proteins, however, AQP4 stain-
ing both within the cell and in the apical membrane is thought to
occur in some cells (Terris et al., 1995; Nejsum, 2005; Mobasheri
et al., 2011). As indicated in the companion paper (Cutler et al.,
2012), dogfish aqp4 mRNA expression in tissues is largely ubiq-
uitous. The questions this article sets out to address are, whether
Aqp4 protein expression is similarly ubiquitous and if so, where
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within the tissues that are important for the control of water bal-
ance in sharks (gills, kidney, rectal gland, etc.), is the Aqp4 protein
located?

MATERIALS AND METHODS
FISH
All animal experiments were performed in accordance with
IACUC regulations and had IACUC approval from both MDIBL
and Georgia Southern University. Animals for experiments were
held in a stock tank with running seawater at ambient temper-
ature and were sacrificed by decapitation followed by immediate
pithing of the spinal cord. Various tissues were then removed from
the animal by dissection for further processing in Western blotting
and immunohistochemistry experiments.

POLYCLONAL ANTIBODY PRODUCTION
Custom-made polyclonal antibodies were produced commer-
cially against peptides whose amino acid sequence was derived
from the dogfish aqp4 nucleotide sequence. The first of these
AQP4/1 (produced by ProSci, San Diego, CA, USA) was located
at the C-terminal end of the protein (at positions 329–346
of the amino acid sequence) and had the sequence NH2–
CGGNEEKKEKDATKELLSSV–COOH. As part of that sequence,
the two glycine amino acids were added as spacers at the N-
terminal end. The second antibody AQP4/2 (produced by Gen-
script, Piscataway, NJ, USA), was produced much more recently
and was located a little further in from the C-terminal end than
the first peptide (at positions 290–308 of the amino acid sequence),
and had the sequence NH2–CKSTQPSGDKYAEGEDNRSQ–
COOH. Peptides for both antibodies had an N-terminal cysteine
amino acid added for coupling to the protein carrier. The Aqp4
peptides were coupled to keyhole limpet hemocyanin (KLH) prior
to injections of the antigens into different pairs of rabbits. The
resulting anti-sera were affinity purified using the same pep-
tide (that was used for immunization), attached to a purification
column.

TISSUE CELL-MEMBRANE PREPARATION
Dogfish tissues for Western blotting experiments were kept briefly
on ice and then homogenized in Tris (25 mM), sucrose (0.25 M)
buffer, also containing 78 mg/ml dithiotheritol (DTT), and either
protease inhibitor cocktail I (Research Product International,
Mount Prospect, IL, USA) or Halt protease inhibitor cocktail
(Pierce), was used according to manufacturers instructions. Hard
tissues such as muscle, kidney, liver, and rectal gland, etc., were
homogenized using a polytron homogenizer (Kinematica, Luzern
Switzerland). Soft tissues such as brain or scraped epithelia were
homogenized using a syringe and 16 gage needle. Epithelia were
scraped from gill arches using a single sided razor blade and from
intestine and esophagus/cardiac stomach using a glass microscope
slide.

Homogenized samples were then sieved through several layers
of cotton gauze. The filtrate was then centrifuged in a SS-34 (Sor-
vall, Asheville, NC, USA) rotor at approximately 50,000 g max for
1 h at 4˚C. The resulting crude membrane pellet was then resus-
pended in the same buffer as previously used and measured for
protein content using a Bradford’s protein assay (Boston Bioprod-
ucts, Ashland, MA, USA). Crude membrane homogenates were

stored frozen at −20 or −80˚C prior to use in Western blotting
experiments.

WESTERN BLOTTING
Crude protein homogenates (300 μg protein/lane) were separated
based on their size, on 10% Laemmli SDS-polyacrylamide gels
(Laemmli, 1970) using a Protean II gel apparatus (Biorad). The gel
was then transferred to a methanol-activated high protein capacity
sequi-blot PVDF filter (Biorad) using a trans-blot cell electroblot-
ter (Biorad, Taunton, MA, USA), at 30 V overnight. The resulting
filters were then cut into strips for each experiment. Filter strips
were incubated in TNT buffer [10 mM tris (pH 8.0), 150 mM NaCl,
0.05% Tween 20], containing 5% Blotto (fat-free dry milk pow-
der) for 30 min room temperature. They were then washed four
times in TNT buffer and primary antibody added (in TNT buffer)
at 1 in 400 dilution (or 1 in 4000 dilution for peptide-blocking
experiments; used because there can be a problem blocking high
antibody concentrations sometimes due to the limits of peptide
antigen solubility. Lower antibody concentrations allows the same
result to be obtained with less peptide for 1 h at room tempera-
ture. The filters were then washed four times in TNT buffer and
incubated in 1 in 4000 dilution of alkaline phosphatase enzyme
cross linked – highly cross-absorbed – donkey anti-rabbit IgG sec-
ondary antibody for 1 h at room temperature. Filters were washed
again twice in TNT buffer and twice in 10 mM tris (pH 8.0),
150 mM NaCl, and finally incubated in NBT/BCIP (nitro blue
tetrazolium chloride/5-bromo-4-chloro-3′-indoly phosphate p-
toluidine salt) alkaline phosphatase enzyme substrate containing
1 mM levamisole endogenous alkaline phosphatase inhibitor. The
presence of the bound secondary antibody/alkaline phosphatase
enzyme yielding a purple/blue colored product.

IMMUNOHISTOCHEMISTRY
Dissected tissues were fixed in filtered standard phosphate
buffered saline (PBS; Oxoid, Lenexa, KS, USA) containing 4%
paraformaldehyde, for 1 h at room temperature. Tissues were then
cut into segments to fit in standard histological cassettes. The cas-
settes were rinsed twice in PBS and then dehydrated through a
series of alcohols (50, 70, 85, 95, and 100% ethanol), 1 h in each.
Subsequently, cassettes were placed twice in histochoice clearing
medium (Amresco, Solon, OH, USA) and then into molten paraf-
fin wax three times (Paraplast) held between 56 and 58˚C in an
oven, 1 h each wax solution. The tissue pieces were then placed in
stainless steel molds, which were filled with molten wax and were
finally mounted with the back of the cassette placed on top. Once
the wax had cooled and set, the molds were removed, revealing
the wax-embedded tissue blocks for section cutting. Five micron
thick sections were cut using a microtome (Leica,Buffalo Grove, IL,
USA), these were placed on the surface of a warm waterbath (37˚C)
and floated onto glass microscope slides (Superfrost plus). The
slides were heated at 37˚C for 1 h to adhere tissue sections to the
positively charged surface of the slide. Slides for experiments were
then taken back through two incubations (5 min each) in histo-
choice clearing agent to remove the wax and through a descending
series of alcohol concentrations (5 min each; 100, 95, 85, 70, 50
ethanol) to re-hydrate the tissue. Finally slides were incubated in
PBS.
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Slides were then placed horizontally in a slide box that had moist
tissue in the bottom for humidification. The tissue on the slides
was ringed using a hydrophobic barrier pen (to retain subsequent
solutions on the tissue) and a solution of PBS with sodium chlo-
ride (17.5 g/l) and 0.02% Tween 20 detergent was added for 10 min
to permeabilize the tissue. The slides were washed twice with PBS
and then incubated for 5 min in PBS containing (2.68 g/l) ammo-
nium chloride, to block any free aldehyde groups of the fixative.
The slides were washed again twice in PBS and then incubated
in Image-iT FX blocking solution (Invitrogen, Grand Island, NE,
USA) for 30 min. The slides were washed again twice in PBS and
then incubated in a second blocking solution of PBS contain-
ing (10 g/l) bovine serum albumin (BSA; Promega, Madison, WI,
USA) and (1 g/l) gelatin (Boston Bioproducts) for 10 min. The
slides were washed again twice in PBS and then incubated in 1
in 100 dilution of primary antibody in PBS for 1 h, room tem-
perature. The slides were then washed four times in PBS and then
incubated in 1 in 1000 dilution of secondary antibody (Alexa 488-,
Dylight 549-, or Alexa 555-labeled, highly cross-absorbed-anti-
rabbit) in PBS for 1 h, room temperature. From this point onward
slide boxes were kept closed in a draw between manipulations, to
reduce light exposure. The slides were then washed four times in
PBS and then were mounted in Prolong Gold mounting medium
containing the nuclear counterstain, DAPI (Invitrogen). The slides
were then covered with a coverslip ready for microscope viewing.

Four-color immunohistochemical co-localization studies, were
carried out as above with the following modifications. A rab-
bit anti-sculpin V-type ATPase antibody (a gift from Dr. J.
B. Claiborne) was used initially and detected using a highly
cross-absorbed Alexa 488 (green) fluorescently labeled anti-rabbit

secondary antibody. The secondary antibody was then blocked
using normal rabbit serum (sections incubated for 1 h at room
temperature). The rabbit anti-dogfish AQP4/1 antibody was
directly labeled with a (red) Dylight 633 fluorescent dye (using a
Pierce microscale antibody labeling kit) and then used on sections.
Subsequently, a mouse anti-Na, K-ATPase a5 antibody (Develop-
mental Studies Hybridoma Bank, Iowa City, IA, USA) was used and
detected using a highly cross-absorbed (orange) Alexa 555 anti-
mouse secondary antibody. A DAPI nuclear counterstain (blue)
was also utilized as before.

RESULTS
Western blotting of crude membrane protein extracts from a vari-
ety of different dogfish tissues and using the AQP4/1 antibody
showed that Aqp4 is expressed ubiquitously in all the tissues stud-
ied (Figure 1A). In most tissues, there were two protein bands on
the blot with estimated molecular weights of 35.5 and 49.5 kDa
respectively, and this tissue distribution was similar to that of
aqp4 mRNA (see companion paper; Cutler et al. (2012)). Addi-
tionally visible in the sample from rectal gland, there were two
other faint bands of 37.5 and 38.5 kDa (see also Figure 3). Also
in liver there was another strongly staining band at 57 kDa. The
35.5 kDa band common to most tissues is similar in size to the
estimated molecular weight of the protein (37.2 kDa) based on
the amino acid sequence derived from the gene sequence. The
larger 49.5 kDa band was considerably more abundant in the rectal
gland and appeared to be absent in the brain. The second AQP4/2
antibody was also used in Western blotting of tissue crude mem-
brane extracts (Figure 1B). This blot showed a lot more bands than
when using AQP4/1 antibody, although the 49.5 kDa was present

FIGURE 1 | Western blots showing the staining in dogfish tissues using

the AQP4/1 (A) or AQP4/2 (B) antibodies. Three hundred micrograms of
each tissue homogenate were used including stomach (S), esophagus/cardiac
stomach (E/CS), intestine (I), gill (G), kidney (K), rectal gland (RG), liver (L), and

brain (B). Bands were somewhat uneven, but this is normal when using
relatively large amounts of protein per lane for detection purposes. Sizes
were determined using kaleidoscope pre-stained molecular weight marker
proteins (M).
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in each tissue similar to the AQP4/1 antibody blot, except that the
49.5 kDa protein band was also present in the brain. There was
also some indication of the 35.5 kDa band on the AQP4/2 blot,
but the intensity of this was variable between tissues. There were
additionally some higher molecular weight bands of 99 kDa and
around 140 kDa suggesting the presence of dimers or Aqp4 aggre-
gates. There was no indication of 37.5 and 38.5 kDa bands in the
rectal gland sample as seen with the AQP4/1 antibody.

To test whether the antibody staining was specific, various con-
trol blots were performed (Figure 2). While the staining appeared
as in the tissue blot (Figure 1) when using the AQP4/1 or AQP4/2
antibody alone, when the antibody was pre-blocked using its pep-
tide antigen, staining was almost entirely abolished in the case
of either antibody. Additionally, there was no similar staining
when using either serum taken from the rabbit prior to immu-
nization with the Aqp4 antigens (pre-immune serum) or from the
secondary antibody used on its own (no primary Aqp4 antibody).

As the exact nature of the 49.5 and 57 kDa bands on the
AQP4/1Western blot was worth further investigation, it was
decided that, heat denaturation of the samples might cause some
kind of aggregation (of the 35.5 kDa protein) to occur. Rec-
tal gland crude membrane homogenate protein samples were
therefore produced and blotted, that were either heated (as nor-
mal) and not heated (ambient temperature incubation, Figure 3).
The lack of heat denaturation in comparison to normal had no
effect on the 35.5 or 49.5 kDa bands, but the minor 37.5 and
38.5 kDa bands were absent in the un-heated protein sample lane
and another diffuse band of around 32 kDa appeared instead.
To further test whether any of the protein bands identified with
the AQP4/1 antibody were glycosylated forms, crude membrane
protein homogenates were treated with the enzyme PNGase F
(New England Biolabs), which removes core N-glycosylated moi-
eties from glycoproteins reducing their apparent molecular weight
(Figure 4). However in either rectal gland or liver samples, PNGase
F had no effect on the mobility of proteins identified by the
AQP4/1 antibody, in comparison to similarly incubated control
samples (no enzyme). This suggests that none of the protein bands
represent glycosylated forms of Aqp4.

When the AQP4/1 and AQP4/2 antibodies were used for
immunohistochemical staining of tissues, somewhat similar
images were obtained with both antibodies but there were some
differences, with the AQP4/2 antibody appearing to be more spe-
cific. In kidney (Figure 5), both antibodies labeled a sub-set of
renal tubules both in the packed areas of the lateral bundle zone
(Figures 5A–C) and in the sinus zone (Figure 5D). However, the
AQP4/1 antibody (as is typical for other tissues also) stained the
whole of the cell cytoplasm including in the region of the DAPI
stained cell nucleus. Staining in renal tubule cells also was some-
what more intense toward the apical pole of the cell but was
otherwise uniform throughout the cell. With the AQP4/2 anti-
body, fluorescence localized to the cytoplasm excluding the nuclear
area stained by DAPI. Also there appeared to be no staining to the
apical side of the nucleus in many cells. Serial sections stained
with either AQP4/1 (Figure 5E) or AQP4/2 (Figure 5F) showed
that the two antibodies stain the same segments of the similar
renal tubule, although the type and intensity of staining was some-
times different between the two antibodies. With either antibody

FIGURE 2 | Control Western blots using tissue homogenates (300 μg)

from rectal gland (RG) and/or liver (LIV). Normal Western blots used
either AQP4/1 (A) or AQP4/2 (B) primary antibodies (Aqp4 Antibody).
Control Western blots used either the Aqp4 antibody pre-blocked with the
peptide antigen used to raise it (Aqp4 Antibody + peptide antigen), no
primary antibody, i.e., only TNT buffer (secondary antibody alone) or serum
taken from the rabbit before immunization with dogfish Aqp4 antigen
(pre-immune serum). Control blots used the same primary or secondary
antibody concentrations as in the normal blots. All blots were incubated
1 min in NBT/BCIP substrate. Sizes were determined using kaleidoscope
pre-stained molecular weight marker proteins (M).

there appeared to be a sub-set of renal tubules (approximately
1–10% of the total stained) that showed basolateral membrane
staining but with little or no cytoplasmic staining (Figure 6). In
Figure 6B, a tubule has been cut through in longitudinal section
but due to the depth of the section (5 μm), the bottom of the
tubule is also visible. Interestingly, the membranes of an apparent
stellate-shaped tubule cell have also been stained by the AQP4/1
antibody.

Similar to the situation in renal tubule cells, in the rectal gland
both antibodies fluorescently labeled all the secretory tubules of
the gland. As in renal tubules AQP4/1 antibody stains the whole
cell including the DAPI stained nuclear region with more intense
labeling near the apical pole in many tubule cells (Figures 7A,B).
The AQP4/2 antibody also stains the cytoplasm of tubule cells but
with more intense staining toward the basal and apical poles of
the cell and with lower intensity in the vicinity of the nucleus
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FIGURE 3 | Western blot using rectal gland tissue homogenates

(300 μg/lane) with samples either heated for 5 min at 100˚C prior to

running on the gel (heat) or without being heat treated (no heat). The
blot was incubated with the AQP4/1 primary antibody and otherwise
processed as usual.

(Figures 7C,D). Major staining was also seen in tubule-like
structures in dogfish cardiac stomach (Figure 8). Again both anti-
bodies stained these tubules strongly although there was also some
less intense staining in cells underlying the epithelium (e.g., see
Figures 8A,C). In these putative cardiac stomach secretory tubules,
again the AQP1/4 antibody stained the whole of the cell with more
intense staining toward the apical pole. Staining with the AQP4/2
antibody was somewhat more patchy and diffuse in the cytoplasm
(than with the AQP1/4 antibody) but was of lower intensity in the
nuclear region.

Lastly, strong staining was seen in large “chloride cell”-like
cells of both the filament epithelium and the lamellae of the
gill (Figure 9). The AQP4/1 antibody gave uniform cytoplasmic
staining in many of these cells, and staining localized more to
the plasma membrane and in the nuclear region in a minority
of the other stained cells (Figures 9C,D). The AQP4/2 antibody
also stained large cells in the primary filament epithelium and the
secondary lamellae of the gill (Figures 9E,F) but here the stain-
ing in many of these cells was localized entirely in the region
of the plasma membrane, while in others there was also some
cytoplasmic staining.

FIGURE 4 | Western blots performed using AQP4/1 antibody and tissue

homogenates (300 μg) from rectal gland (RG) or liver (LIV), incubated

either with (+) or without (−) the enzyme PNGase F (5500 units) for

1 h at 37˚C prior to electrophoresis. Sizes were determined using
kaleidoscope pre-stained molecular weight marker proteins (M).

Previously, Piermarini and Evans (2001), and Wilson et al.
(2002), showed that there are different large mitochondria-rich
(MR) or “chloride cell”-like cells present in elasmobranch gill,
that stained either for the ion transport enzyme Na+, K+-ATPase,
or V-type ATPase. Thus a four-color localization study was per-
formed to determine whether the cells staining with the Aqp4
antibodies co-localize with either transport enzyme (Figures 10
and 11). Initial studies using AQP4/1,Na+,K+-ATPase,andV-type
ATPase antibodies on serial dogfish gill sections suggested some
co-localization of the three antibodies (data not shown). However,
four-color staining with all the antibodies on the same section
clarified the situation. Although it is not clear from the wide-field
image of the gill (Figure 10), essentially all of the cells staining
with the AQP1/4 antibody (red) co-localize with either Na+, K+-
ATPase (orange), or V-type ATPase (green) fluorescence. Only one
cell was seen that appeared to express Aqp4 alone (and this one
may have occurred as a consequence of the sectioning technique
used). An example higher magnification image (Figure 11), clearly
shows the co-localization of AQP4/1 fluorescence with the Na+,
K+-ATPase, or V-type ATPase staining. Additionally this study also
showed that most of the V-type ATPase expressing cells were local-
ized predominantly in the primary filament epithelium, with only
a few cells on the secondary lamellae, whereas the majority of the
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FIGURE 5 | Immunohistochemistry of 5 μm cross-sections

through the dogfish kidney. These were incubated with the AQP4/1
antibody, an Alexa 488 anti-rabbit secondary antibody (green) and
viewed with a Zeiss 510 Meta confocal microscope (A,B). Or
incubated with AQP4/2 antibody, an Alexa 555 anti-rabbit secondary

antibody (orange) and viewed with a Zeiss Axiovert microscope
(C,D,F). Or incubated with AQP4/1 antibody, an Alexa 555 anti-rabbit
secondary antibody and viewed with a Zeiss Axiovert microscope (E).
Nuclear counterstain, DAPI (blue). See scale bars for magnification.
BS, blood sinus.

Na+, K+-ATPase expressing cells were on the secondary lamellae
with only a few cells in the primary filament epithelium.

DISCUSSION
This study utilized two polyclonal antibodies that were raised
against peptide antigens whose sequences were located in different
non-overlapping regions of the dogfish Aqp4 derived amino acid
sequence. Work with custom polyclonal antibodies is not always
straightforward as they are often are more specific in immunohis-
tochemistry than Western blotting or vice versa, or sometimes only
work in one of those techniques. In this case, a second independent
antibody was raised (AQP4/2) because unlike with the Western
blot results with the AQP4/1 antibody, the immunohistochemical

sub-cellular localizations, being largely cytoplasmic but also show-
ing a nuclear location, were highly unusual for AQP4, which is
normally a plasma membrane protein. To test the veracity of these
results, AQP4/2 antibody was made and while it produces a larger
array of bands in Western blotting (see Figure 1), as far as can
be determined in this study, it produces staining in the same cells
as the AQP4/1 antibody but shows a much more restricted sub-
cellular localization, in particular showing either no or greatly
reduced nuclear staining. It is possible to propose hypotheses that
would explain the differences in results between the two antibodies
(for example, it may be that only versions of Aqp4 with the C-
terminal end removed (i.e., the region used to raise AQP4/1) can
associate to form higher molecular weight dimers, trimers, and
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FIGURE 6 | Immunohistochemistry of 5 μm cross-sections through the

dogfish kidney showing basolateral (BL) plasma membrane staining in

around 1–10% of stained tubule segments, viewed with a Zeiss

Axiovert microscope. (A,B) Stained with the AQP4/1 primary and a Dylight
549 anti-rabbit secondary antibody (orange). (C) Stained with the AQP4/2
primary and a Alexa 555 anti-rabbit secondary antibody (orange). Nuclear
counterstain, DAPI (blue). N =Aqp4 staining throughout the cells of the
tubule. Arrows indicate the extent of the cell processes of a stellate cell (S).

tetramers, hence explaining the high molecular weight banding
seen with AQP4/2 (see Figure 1). However, the most parsimo-
nious explanation is that the AQP4/1 binding is less specific in
immunohistochemistry than AQP4/2, but that the opposite is true
in Western blotting.

As with the tissue distribution of dogfish aqp4 mRNA expres-
sion (see Cutler et al., 2012), dogfish Aqp4 protein expression

was ubiquitous and consequently dogfish Aqp4 is more widely
expressed than is the case in mammals (Ishibashi et al., 2009). In
particular, unlike in mammals, Aqp4 is expressed in dogfish gill
and liver.

The AQP4/1 antibody produced two bands (49.5 and 35.5 kDa)
in Western blots, which are essentially similar to the two bands
obtained with mammalian AQP4 (Terris et al., 1995). The abun-
dance of the 35.5 kDa protein band was similar between tissues
but there was somewhat more Aqp4 protein in rectal gland, liver
and brain, and with lower levels in (pyloric) stomach and kidney.
In the case of mammalian AQP4, the larger band was suggested
to be a glycosylated form of AQP4. While the Aqp4 amino acid
sequence from dogfish as well as other species, possess putative
consensus N-glycosylation sites, often glycoproteins on gels/blots
yield broad diffuse bands and the 49.5 kDa band here and the
50 kDa AQP4 band in mammals are both discrete bands. It would
also be expected that if the 49.5 kDa proteins were glycosylated,
these bands would have their molecular weights reduced by the
enzyme PNGase F, and this was not the case in this study (see
Figure 4). There is some evidence from unpublished work from
this laboratory concerning eel aquaporins expressed in Xenopus
oocytes (i.e., the presence of dimers, trimers and tetramers), that
standard Laemmli SDS-reducing gels do not abolish all interac-
tions between proteins and also that some proteins appear to run
apparently smaller than their molecular weight, suggesting incom-
plete unfolding (Lignot et al., 2002). Consequently it would seem
likely that the 49.5 kDa band either represents Aqp4 with an acces-
sory protein still attached to it, or an Aqp4 dimer that has run
much smaller than its expected size (74.4 kDa). Lastly the 49.5 kDa
band could represent a dimer that has undergone partial protease
digestion. Similarly the 57 kDa protein seen in liver homogenates
is likewise likely to occur due to one of the three aforementioned
options. Finally it is not clear why the 37.5 and 38.5 kDa bands
were absent from the un-heated rectal gland crude membrane
homogenates (see Figure 3), but its likely the diffuse 32 kDa band
present instead, represents some form of folded Aqp4 protein that
when heat denatured runs at a larger more accurate molecular
weight. It is also not clear why the 37.5 and 38.5 kDa bands were
absent when using the AQP4/2 antibody on blots of rectal gland
crude homogenates, although the region of Aqp4 used as an anti-
gen to raise the AQP4/2 antibody, contains predicted serine and
tyrosine kinase phosphorylation sites (NetPhos 2.0; Blom et al.,
1999) and if 37.5 and 38.5 kDa represent phosphorylated Aqp4
proteins, then the AQP4/2 antibody might not be able to bind
them.

KIDNEY
Clearly from the immunohistochemistry performed with either
antibody, dogfish Aqp4 is expressed in a sub-set or particular parts
of renal tubules. Marine elasmobranch renal tubules are complex
with two loops [with various neck (I–II), proximal (I–IV), inter-
mediate (I–VI), distal (I–II), and collecting duct (I–II) segments]
compared to the single loop of Henle found in mammals (Lacy
and Reale, 1995). There are also lateral bundle zones with tightly
packed tubules and sinus zones with blood sinuses seen as open
areas. Based on the work of Lacy and Reale (1995), very tentative
localizations for dogfish renal Aqp4 staining can be made. The
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FIGURE 7 | Cross-sections through dogfish rectal gland stained with

AQP4/1 (A,B) or AQP4/2 (C,D). A, lower magnification image acquired
with a Zeiss 510 Meta confocal microscope showing tubule staining and
the gland’s central duct (RD). (B) Higher magnification image using a Zeiss
Axiovert microscope, showing AQP/1 – Alexa 488 secondary antibody

(green) staining throughout the cytoplasm of tubule cells with higher
intensity in the apical pole (arrows). (C,D) Images showing AQP4/2 – Alexa
555 secondary antibody (orange) staining using a Zeiss Axiovert
microscope, and showing stronger staining toward the basal pole of cells.
Nuclear counterstain, DAPI (blue).

FIGURE 8 | Cross-sections through dogfish cardiac stomach stained with

AQP4/1 (A,B) and acquired with a Zeiss 510 Meta confocal microscope or

with AQP4/2 (C,D) and acquired with a Zeiss Axiovert microscope. (A)

Lower magnification image showing tubule staining and the cardiac stomach
lumen (L). (B) Higher magnification image, showing AQP4/1 – Alexa 488

secondary antibody (green) staining throughout the cytoplasm of tubule cells
with higher intensity in the apical pole. (C,D) Images showing AQP4/2 – Alexa
555 secondary antibody staining (orange), and showing patchy cytoplasmic
staining but with less staining in the vicinity of the nucleus than in the case of
the AQP4/1 antibody. Nuclear counterstain, DAPI (blue).
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FIGURE 9 | Longitudinal sections cut through the dogfish gill,

stained with the AQP4/1 antibody and an Alexa 488 secondary

antibody (green), and viewed with a Zeiss 510 Meta confocal

microscope (A–D). Further sections were stained with the

AQP4/2 antibody and an Alexa 555 secondary antibody (orange), and
viewed with a Zeiss Axiovert microscope (E,F). Nuclear counterstain,
DAPI (blue). Where F, filament, L, lamellae, and EE, external
environment.

majority of tubules segments staining are reminiscent of interme-
diate tubule segments, such as In-IV and In-V (or possibly In-II
though In-IV) of the second renal tubule loop. This is because the
Aqp4 antibodies stain open tubules without any apparent brush
border (found in proximal segments) and these stained tubules
are largely found in the lateral bundle zone. The In-IV segment is
known as the “diluting segment” due to the occurrence of sodium
chloride re-absorption in this region of the nephron (Friedman
and Hebert, 1990). The presence of Aqp4 in this region would
be curious as its thought to have low water permeability (Fried-
man and Hebert, 1990). If Aqp4 was trafficked into the basolateral

membrane as occurs with some AQPs in mammals, provided their
was no apical water conduit this would be consistent with low
tubule water permeability. Additionally this would suggest Aqp4
may be involved in cell volume regulation in this segment. Because
some tubules showing Aqp4 staining are also found in the sinus
zone this suggests that these regions are likely to be other interme-
diate segments (i.e., the first part of In-VI or less likely In-I). The
presence of Aqp4 in the In-VI would make sense, as this segment
is thought to have high water permeability and may be involved
in osmotic equilibration due to water egress from the renal tubule
(Friedman and Hebert, 1990). However Aqp4 would have to reside
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FIGURE 10 | Wide-field view of a longitudinal section cut through the

dogfish gill, stained with the AQP4/1 antibody directly labeled with

Dylight 633 (red), a rabbit anti-sculpin V-ATPase antibody detected

with highly cross-absorbed Alexa 488 secondary antibody (green), a

mouse Na, K-ATPase monoclonal antibody detected with highly

cross-absorbed anti-mouse Alexa 555 secondary antibody (orange)

and nuclear counterstain, DAPI (blue). Image viewed with a Zeiss 510
Meta confocal microscope, where PF = primary filament and
SL = secondary lamellae. The arrow indicates the only cell staining with
AQP4 but not V-ATPase or Na, K-ATPase antibodies.

in the plasma membrane for this to be the case and its currently not
clear that that is the case. Again regulated trafficking of Aqp4 to the
plasma membrane might also be an explanation for that as men-
tion above. Additionally, the very occasional tubule showing Aqp4
staining, did appear to have some brush border material present,
this suggests Aqp4 may also stain a small part of the proximal
tubule. Lastly, the tubule segments showing basolateral staining
probably represent a different part of the intermediate segment
(In-III?). However the localization of Aqp4 to particular tubule
segments currently remains difficult. Different renal tubule seg-
ments have been identified using various lectins (Althoff et al.,
2006) but the results of this study suggest it would not be trivial
to reliably localize Aqp4 (or other proteins) to particular tubule
segments using their methods, and that is therefore beyond the
scope of the current article.

RECTAL GLAND
The fact that Aqp4 was expressed in the dogfish rectal gland is
also of interest as the gland has been a major model tissue histor-
ically for studies involving fluid secretion (Burger and Hess, 1960;
Bonting, 1966; Hayslett et al., 1974; Epstein et al., 1983; Greger
et al., 1988; Riordan et al., 1994; Forest, 1996; Silva et al., 1996;
Evans, 2010). Despite the many studies concerning ion transport,
the only study to look at water permeability of the gland suggested
that it probably did not express aquaporins due to low apparent
membrane water permeability (Zeidel et al., 2005). However, a

series of illuminating studies by Solomon et al. (1984a,b, 1985)
showed that ion secretion by the rectal gland was not stimulated
when animals were perfused with hypertonic shark ringer solution
(plasma salinity was raised without changing body fluid vol-
ume), but was stimulated when body fluid volume was increased
using isotonic shark ringer. This strongly suggests that the prin-
ciple function of the rectal gland is actually to remove excess
water but due to the fact that water transport is passive, ions
have to be transported to allow the water to follow by osmo-
sis. Additionally, almost every example of secretory tissues/cells
investigated has shown that the cells involved (in fluid secretion)
invariably express some kind of aquaporin isoform. So it might
be expected that elasmobranch rectal gland secretory tubule cells
would express aquaporins. However, in the case of the staining
with either of the AQP4/1 or AQP4/2 antibodies, with the respec-
tive apical or basal staining, in neither case does staining appear be
present in the plasma membrane itself to any great extent, and
this may explain why the study of Zeidel et al. (2005), found
no significant water permeability associated with rectal gland
plasma membranes. However, the question would be, why have
Aqp4 then? The dogfish used in this study were normal unfed
animals whose rectal glands are unlikely to have been particu-
lar active. The answer to the question therefore may be that a
significant amount of Aqp4 may not reside in the plasma mem-
branes of tubule cells until the gland is stimulated to secrete,
whereupon Aqp4 may be inserted into the plasma membrane.
Regulated insertion of aquaporins has been shown to occur in
mammals and is a particularly important mechanism for renal
AQP2 (Nejsum, 2005). The possibility of regulated trafficking of
dogfish rectal gland Aqp4 may be tested by further experiments in
the future.

CARDIAC STOMACH
During a screen of different dogfish tissues to see where Aqp4 was
expressed, particularly strong staining was found in the cardiac
stomach, which is an extension of the esophagus (anterior to the
pyloric stomach) that has a totally distinct morphology in com-
parison to the esophagus itself (smooth brown epithelium rather
than a surface covered with white cartilaginous conical structures).
The Aqp4 staining appears to be localized particularly to secre-
tory tubule structures that are likely to represent acid secreting
gastric glands. The cardiac stomach of dogfish has been shown
to have an acidic lumen with a pH in the range of 2–4 (Wood
et al., 2007). Elasmobranchs have also been shown to express the
H+, K+-ATPase enzyme in proximal stomach, which is associ-
ated with stomach acid secretions in mammals (Smolka et al.,
1994; Choe et al., 2004; Shin et al. (2009)). As often occurs with
ion secretions, they usually represent fluid secretions and conse-
quently water is also secreted. This may move via the paracellular
pathway, but a transcellular route via aquaporin water channels is
more easily controlled. In dogfish cardiac stomach gastric glands,
the immunohistochemical results in this study suggest fluid secre-
tion may well involve Aqp4, but again there is no particular staining
clearly associated with the gland cell plasma membranes although
the AQP4/1 antibody shows staining toward the apical pole of cells.
As mentioned previously, the dogfish in this study were unfed and
it may be that Aqp4 is only inserted into the plasma membranes
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FIGURE 11 | High magnification image of a longitudinal section cut

through the dogfish gill primary filament epithelium, stained with the

AQP4/1 antibody directly labeled with Dylight 633 (red), a rabbit

anti-sculpin V-ATPase antibody detected with highly cross-absorbed

Alexa 488 secondary antibody (green), a mouse Na, K-ATPase

monoclonal antibody detected with highly cross-absorbed anti-mouse

Alexa 555 secondary antibody (orange) and DAPI nuclear stain (blue).

Image viewed with a Zeiss 510 Meta confocal microscope.

after secretion is stimulated by feeding. This is therefore another
avenue for further study.

GILL
Another location showing strong Aqp4 staining was the epithelial
cells of the gill. Studies in the even more ancient Agnathan hag-
fish show staining for Aqp4 only in the gill but not other tissues,

suggesting this may be the original cell localization for Aqp4 in ver-
tebrates (Nishimoto et al. (2007)). In these cyclostomes, however,
Aqp4 was found only in the pavement cells of lamellae. In this
study, Aqp4 staining was found in both the filament epithelium
and the in lamellae, in large “chloride cell”-like or “MR”-like cells.
In particular with the AQP4/2 antibody (but also to some extent
the AQP4/1 antibody) there were two different staining patterns
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in these large cells, staining either located exclusively in the plasma
membrane, or in the plasma membrane and interior cytoplasmic
regions of the cell. Previous work has shown that there are two dif-
ferent types of “chloride cell”-like or “MR”-like cells which express
either of the ion transporting enzymes,Na+,K+-ATPase,orV-type
H+-ATPase (Piermarini and Evans, 2001; Wilson et al., 2002). To
determine whether either of these cell types corresponded to the
cells expressing Aqp4, a four-color localization study was under-
taken and this showed that Aqp4 staining localizes to both the
Na+, K+-ATPase, and the V-type H+-ATPase expressing cells.
While the function of these cells has still not been determined,
a similar situation exists in the gill of freshwater teleosts, where
the V-type H+-ATPase expressing (HR) cells are thought to be
concerned with acid–base balance, whereas the Na+, K+-ATPase
(NaR) expressing cells are involved in calcium transport (Hwang,

2009). Whether the Aqp4-expressing dogfish gill cells have the
same functions and transport properties as these teleost gill cells
remains to be determined.
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