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ABSTRACT 

Echo cancelers which cover longer impulse responses (2 64 ms) 
are desirable. Long responses creatc a need for more rapidly con- 
verging algorithms in order to mect the specifications for nctwork 
ccho cancclers deviscd by ITU (International Telecommunication 
Union), In general, faster convergence implies a higher scnsitiv- 
ity to near-end disturbances, especially "double-talk:' Recently, a 
fast converging algorithm called Proportionate NLMS (Normal- 
ized Least Mean Squarcs) algorithm (PNLMS) has been proposed. 
'This algorithm exploits the sparseness of the echo path. In this pa- 
per we propose a method for making lhe PNLMS algorithm more 
robust against double-talk. The slower divergence rate of these 
robust algorithms in combination with a standard Gcigel double- 
talk detector improves the performance of a network echo cancelcr 
considcrablyduring double-talk, This results in the robust PNLMS 
algorithm which diverges much slower than PNLMS and standard 
NLMS. A generalization of the robust PNLMS algorithm to a ro- 
bust proportionate Affine Projection Algorithm (APA) is also prc- 
sented. It converges very fast, and unlike PNLMS, is not as de- 
pendent on the assumption of a sparse echo path response. Trade 
off between convergence and divergence rate is easily tuned with 
one parameter and the added complexity is about 7 instructions per 
sample. 

1. INTRODUCTION 

Thereisaneedfor networkechocancelersforechopathswith long 
impulse responses (2 64 ms). However, longer impulse responses 
slow down the convergencerate, [l, 21, thus rendering traditional 
algorithms like NLMS inadequate. It will therefore, be desirable 
to implement fast-converging algorithms in future echo cancelers. 
In [2,3], faster converging algorithms called Proportionate NLMS 
(PNLMS) and PNLMS++ respcctively are proposed. Thcse algo- 
rithms achieve higher convergencc rate by using thc fact that the 
active part of a nctwork echo path is usually much smaller (4-8 
ms) compared to 64-128 ms of the wholc echo path that has to be 
covered. 

Besides convergencerate and complexity issues, an important 
aspect of an ccho cancelcr is its performance during "doublc-talk" 
(i.e. simultaneous far- and near-end speech). A high convergence 
rate is usually accompanied by a high divergence rate in the pres- 
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ciice of double-talk. This mode in a conversation perturb thc adap- 
tivc filter of the ccho canceler (EC) so that it does not attenuate 
thc echo sufficiently. To inhibit the divergcnce of the EC the staii- 
dard procedure is lo use a level bascd double-talk detector (DTD) 
141. Whenevcr double-talk is deteclcd Uie step-size of the adaptive 
liltering algorithm is set to zcro Ihus inhibiting thc adaptation. Uii- 
fortunately, during the lime requiredbg the DTD to detect double- 
talk, the echo canceler open diverges. This is because U few (e.g. 
< 5)  undetected large aniplhude samples perturb the echo path 
estimate considerably. 

This work focuses on how to decelerale the divergence of algo- 
rithm duc to undetected double-talk while maintaining good con- 
vergence ratc of the cancelcr. Our approach bas its roots in the the- 
ory of robust statistics and is bascd on introducing a scaled nonlin- 
earity into the adaptive algorithm. The nonlinearity limits the im- 
pact of large disturbanccs on the coefficient sctting. This idea was 
developed for a subband echo cancelcr in [ 5 ]  and showed promis- 
ing results. However, neither the trade off between robustness and 
convergence rate nor the performance [or fullband adaptive filters 
were studied in that paper. The robust algorithm developed here 
combines the PNLMS++ algorithm with the appropriate nonlin- 
carity. 

The robustPNLMS++ algorithm is also gcncralized to a robust 
Proportionate Affine Projection Algorithm (PAPA), - an algorithm 
which is a combination of Affine Projection Algorithm, [6 ] ,  and 
the propurlionate step-size technique. 

2. ADAPTIVE ALGORITHMS 

In dcrivations and descriplions the following notations are used, 
see also Fig. 1. 

where xn is the far-end speech signal. vn is the background noisc 
and iiin is the near-end speech (double-talk). The near-cnd signal, 
i.e. echo and noise possibly near-end speech, is denoted yn. The 
residualechoise, = yn-hTx, whereh, = [hn,,,, . . . , h ~ - i . ~ ]  
is the estimated echo path. Here L is the length of the adaptive fil- 
ler. The PNLMS algorithm was proposedin [2]. For line ccho can- 
cellation, it is reasonable to assume that the ccho path is sparse,i.e. 
many coefficients are zero, and try lo identify only the non-zero 
active coefficicnts. This is the idea behind the PNLMS algorithm 
which is a modification of the NLMS algorithm. In PNLMS, an 
adaptive individual step-size is assigned to each filter coeflicicnt. 

3' The excitation vector is denoled xn = [zn, . . . , X ~ ~ - L + I ]  

T 
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Figure 1: Block diagram of the echo canceler and double-talk de- 
tector. 

Thc step-sizes are calculated from the lasl estimate of the filter co- 
efficients so that a larger coefficient receives a larger weight, thus 
increasing thc convergence rate of that coefficient. This has the ef- 
fect that active coefficients are adjusted faster than non active co- 
cfficients (i.e. small or zero coefficients). The PNLMS algorithm 
is describcd by the following equations: 

h, = hn-i + G,,x,e,, (1) xZG,x,, 4- 6 
G , ,  = diag{go .n,... ,sL-w).  (2) 

G ,  is a diagonal matrix which adjusts the step-sizes of the indi- 
vidual taps of the filter, p is the overall step-size parameter, and 6 
is a regularization parameter which prevents division by zero and 
stabilizes the solution when speech is used as input signal. Thc 
diagonal elements of G,,+i are calculated as follows, 121, 

~ i . ~ + l  = max{pmax{$, Iho..l,. . . , / J ~ L - I . ~ / } ,  I ~ I , ~ I X ~ )  

Parameters 6, and p are posilive numbers with typical valucs SP = 
0.01, p = 5 / L .  p prevents coefficients from stalling when thcy 
are much smaller than thc largesl coefficient and 6,  rcgularizes tbe 
updating when all cocfficients are zero at initialization. 

A variant of this algorithm called the PNLMS++, [3], is the 
onc we will consider hcrc. In this algorithm, for odd-numbered 
time steps the matrix G ,  is derived as abovc, while for even- 
numbered steps it is chosen to bc thc identity matrix (G,  = I) 
which results in an NLMS iteration. The alternation between NLMS 
and PNLMS iterations has several advantages compared to using 
just the PNLMS technique, e.g. it makes the PNLMS++ algorithm 
much less sensitive to the assumption of a sparsc impulse response 
without sacrificing performance. 

2.1. Geigel DTD 

A double-talk detector is used to suppress adaptation during peri- 
ods of simultaneous far- and near-end speech. A simple and ef- 
ficient way of detecting double-talk is to compare the magnitude 
of the far-end and near-end signals and declare double-talk if the 
near-end magnitudc becomes larger than a value set by the far-end 
speech. A proven algorithm that has been in commercial use for 
many years is the Ccigcl DTD, [41. In this algorithm, doublc-talk 
is declared if 

ly-1 t dmax{lz:,,l, lzn-lI, . . .  , I s ~ - L + I I } .  ( 5 )  

The dctcctor threshold, 19, is sct to 0.5 i l  the hybrid attcnuation is 
assumed to he 6 dB, and to 0.71 if the attcnuation is assumed to 
he 3 dB. A so-called hangover time, TholC~, is also spccified such 
that if double-talk is detected, then the adaptation is inhibited for 
this duration beyond the detected end of double-talk. Although 
this detector works fairly well, detection errors do occur, and these 
result in large amounts of divergencc of the adapted filtcr coef- 
ficicnts, which in turn give risc to large amounts of uncancelled 
echo. One way to modcl these large disturbances logether with 
the background noise, is to use an outlier-contaminated stochastic 
process. Note that an outlier-contaminated model is not valid for 
the residual error in the absence o ra  Geigel DTD, because without 
the DTD the residual consists of long-lasting bursts of near-end 
speech. Hencc the DTD is an essential component in the robust 
PNLMS++ algorithm to bc described in the next section. 

3. THE ROBUST ALGORITHMS 

The NLMS and the PNLMS++ algorithm can both he inadc ro- 
bust to large disturbances by modification of the criteria on which 
thcse algorithms arc bascd. In general, however, such modilica- 
tions lower the convergence rate. The digicult problem of robust 
echo cancellation is to devise an algorithm that diverges slowly in 
response to double-talk, yet is able to rapidly track changes of the 
echo path when they occur: These two requirements are contradic- 
t q y ,  The key to the solution to this problem is a combination of a 
DTD with traditional robust statislics and a delicately tuned scale 
variable, s. 

Recall that the LMS is an iterativc algorithm to adjust thc 
estimated impulse response so as to minimize the cost function, 
E{le,lZ},  i.c., the mean square error. Each itcration updates the 
current estimate of h, by px,e,, which is a step in the direc- 
tion of a stochastic approximation to the gradient of E{le.lz}. To 
make the algorithm insensitive to changes of the level of input Big- 
nal, xn, the propottionate factor p is normalized, resulting in the 
NLMS algorithm. It is well known, [8], that other gradient algo- 
rithms can be derived by changing the cost function to 

wherc e(.) is any symmetric function with a monotonically non- 
decrcasingderivalive (with respect to its argument)'. s is the very 
important scale factor. m e  resulting algorithm, analogous to thc 
steepest-descent method is 

h, = h,-i -pVh<J.  (7) 

The algorithm can he made robust by a proper choico of J ,  which 
must he chosensuch that lime,,, lVhe(f)l < 00. Following 
suggestions in [71, we choosc thc gradient Vh J(e , )  = 
E { - x , s i g n ( e , ) $ ( ~ ) s } ,  where $(.) is a limiter, 

The effect of this scale factor, and the manner in which it is adapted 
are discussed in Section 3.1. Using a stochastic approximation of 

'Mare generally as discussed in [7], onc can use M-estimators which 
are defined as J = E, o ( y ) .  The choice used in (6)  makes the dcriva- 
tion of the iterative algorithm more consistent with the derivation of the 
LMS algorithm. 
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the gradient normalizing the step-size in the Same manner as in 
standard NLMS we get the robust NLMS algorithm, 

The PNLMS algorithm given in (1) can be madc robust in an ex- 
actly analogous manner, yielding the updatc equation, 

Alternating the ilcralions with G, as given in (3) and the identity 
matrix then yiclds thc robust PNLMS++ algorithm. 

3.1. Estimating the scale factor 

The estimate of the scale factor, s, should reflect the background 
noise level at the near-end, he robust to short burst disturbances 
(double-talk) and track long term changes of the residual error 
(echo path changes). To fulfill these requirements we havc cho- 
sen the scale factor cstimatc as, 

proposed in [IO]. As evident, PAPA is obtained by combining APA 
with the proporlionate step-sire of PNLMS. We can omit the ma- 
trix G,, in the definition ofR,,,, to rave compulations. Inclusion 
of the matrix requires a significantp2L multiplications per sam- 
ple, but according to our simulalions, the effect on performance 
and stability is minimal. 
A robust version of PAPA (and hence of' APA) is obtained straight- 
forwardly, by applying the principles presented previously: 

*(en) = [ m i n { E ,  ko}Osign(e,)ls,,-i where0 denotesele- 
mentwise mulliplicalions and 1 . I in le, I operates on the individual . .  
elements. 
Additionallv most of the comnutational orocedures of the Fast Affine 
Projection (PAP) algorithm, [ I  1, 121, can he incorporated in order 
to redncc the computational complexity of PAPA. 

4. SIMULATIONS 

The purpose 01 these simulations is lo show the aerformance of 

where 3- I = uG. The choice of this method of estimaling s is jus- 
tified in [9] .  With this choice, the current estimate OS s is governed 
by the level of the error signal in the immediate past over a time 
interval roughly equal to l/(l - A). When the algorithm has not 
yet converged, s is large. Hence the limiter is in its linear portion 
and therefore the rohust algorithm behaves like the conventional 
NLMS or PNLMS algorithms. When double-talk occurs, the error 
is determined by the limiter and by the scale ofthe error signal dur- 
ine the recent past of the enor si!mal hefore the double-talk occu~s.  
Thus divergence ratc is rcducedfor a iuration of about 1/(1- A). 
This gives ample time for thc DTD to act. If there is a system 
change, the algorithm will not track immediately. However, as 
the scale estimator tracks the larger error signal the nonlinearity is 
scaled up and convergence rate accelerates. The trade oft'betwccn 
robustness and tracking rate of the adaptive algorithm is thus gov- 
erned by the tracking rate ofthe scale estimator which is controlled 
by one single parameter, A. As with the Geigel DTD, it is useful 
to introduce a hangover time for control of scale updating. When 
the DTD detects double-talk, adaptation of yn should he inhibited 
for a specific time, preferable as long as the DTD hangover time, 
ZlOld. 

3.2. Generalizetion of PNLMS to the Affine Projection Algo- 
rithm 

Lety, = (yn . . .  yn-,+~]T,beavectorofsamplesy,andX, = 
[xn, . . . , x ~ - ~ + L ]  the excitation matrix where p is the projection 
order. A residual echo vector e, = yn - Xzh,, A proportionate 
affine projection based algorithm (PAPA) is then given by, 

whereG, is asdeiinedinthcSection2 andR;:,, = (XzG,,X,t 
&I)-' is a weighted estimate ofthe inverse correlation matrix of 
the input signal. This matrix "whitens" the inpul data, X,, and 
thus the convergence ratc of the adaptive filter is increased. With 
G, = I and 6 = 0, equation (12) reduces to the slandard APA, 
first introduced in [6] .  The regularization parameter in (12) was 
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" 
used as excitation signal. The order p is chosen as 2 in order to 
compromise between complexity and performance. 

The paramcter settings chosen for the simulations are: li = 
0.2, L = 612(64ms),6 = %lo5 (NLMS,PNLMS++),6 = 1.10' 
(PAPA), 6, = 0.01, p = 0.01. U= = 1900, SNR= 39 dB (echo- 
to-noise ratio). Avcrage far-end to douhlc-talk ratio is 6 dB. The 
hybrid attenuation is 20 dB and the Geigcl detector assumes 6 dB 
attenuation. Parameters for the robust algorithm are, (A, ko) = 
(0.997, 1.1). This choice results in f l  Y 0.60666. h-, = 0. 
s-I = 1000. The scale estimate in (11). snr is never allowed to 
become lower than 2. This inhibits had behavior in low noise sit- 
uations. All algorithms arc tuned to achieve the same minimum 
misalignment in order to fairly compare convergence ntc. The 
misalignment is given hy, E = Ilh - h.pll/llhepll where h,, is the 
true echo path. The impulse response and corresponding magni- 
tude function of the hybrid is shown in Fig. 2a, b. Figure 3 shows 
far-end signal, double-talk and the misalignment of the three 81- 
gorithms. Initial convergence rates of PNLMS++ and PAPA are 
clearly superior to that of NLMS. While the non-robust NLMS 
(with Geigel detector!) diverges to a misalignment of i-5 dB thc 
robust algorithms are much less affected and nevcrperlorm worse 
than -10 dB misalignment during double-talk. The slow recon- 
vergence of NLMS and robust PNLMS++ after the double-talk sc- 
quence is causcd by poor excitation of the speech signal, i.e. this 
segmcnt is highly correlated. 

Figure 4 shows the behavior afLer an abrupt system change 
where the impulse response is shifted 200 samples at 1 second. 
The robust algorithms outperform NLMS in this case. 

S. CONCLUSIONS 

A scaled nonlinearity combined with a Geigel DTD increases the 
robustness of the echo canceler. The scaled nonlinearity operates 
in the same manner as varying the step-size b), i.e., bounding 
the error signal can be interpreted as a reduction of the step-size 
parameter. What differentiates the approaches is that traditional 
variable step-size methods try to detect periods of double-talk and 
then take action, while the robust technique uses the signal before 
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Figurc 2: Impulse response (a) and magnitude (b) respcctively of 
the frequency response of the hybrid in the simulation. Hybrid 
attenuation: 20 dB. 

- .  
m 4 

Figure 3: Pctiormance for speech signal during double-talk. 
Far-end (upper) and near-end (lower) signals. Average far- to 
ncar-end ratio: 6 dB (1.125-3.625 s) (a). Misalignment (b), 
X = 0.997, kn = 1.1, hybrid attenuation: 20 dB. Solid linc: Ro- 
bust PNLMS++, Dashed line: NLMS, Dotted line: Robust PAPA. 

double-talk in order to be prepared for it. Due lo this fact Ihc robust 
technique is faster and more efficicnt. Another major advantage is 
that only a fcw instructions and little memory is required to imple- 
ment the robust principle. 

Thc complexity of PNLMS and PAPA is in the order o l4L 
multiplications per sample which is about twicc that of NLMS. 
However, thc convergencc rate of PNLMS and PAPA is consid- 
erably higher. It is shown in this paper that the robust version 
of PNLMS and PAPA converge faster than NLMS and perform 
significantly better, Simulations not shown here confirm reliable 
performance of the robust algorithms for different double-talk sit- 
uations. The principle of robustness works at all stages of con- 
vergence of the robust algorithms. They rcsist divergence dur- 
ing double-talk even though they have not yet fully converged. 
It should also he mentioned, that the pctiormance loss using the 
nonlinearity for robustness is only minor. 

Figure 4: Performance for spcech signal after abrupt hybrid 
changcs occurring at 1 s. Other conditions same as in Fig. 3. 
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