
Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[40]

8-bit softcore microprocessor with dual accumulator designed
to be used in FPGA

Microprocesador softcore de 8 bits con doble acumulador diseñado
para ser usado en FPGA

William Sáenz Rodríguez1, Fernando Rivera Sánchez2, Fernando Martínez Santa3

Fecha de recepción: 3 de octubre de 2017 Fecha de aceptación: 23 de febrero de 2018

Cómo citar: Sáenz R., W., Rivera S., F.y Martínez S., F. (2018). Dual-accumulator softcore 8-bit microprocessor
designed to be used on FPGAs. Revista Tecnura, 22(56), 40-50. DOI: https://doi.org/10.14483/22487638.12976

1 Ingeniero Electricista, ElectroSanchez & Cía. Ingeniería Eléctrica S.A.S., ingeniero de diseño. Bogotá, Colombia.
Contacto: proyectos1@electrosanchez.com.co

2 Ingeniero Electricista, Alcaldía de Soacha, Ingeniero Alumbrado Público. Bogotá, Colombia. Contacto: hrivera.cto@alcaldiasoacha.gov.co
3 Magíster en Ingeniería Electrónica y de Computadores, ingeniero en Control Electrónico e Instrumentación. Profesor asistente Universidad

Distrital Francisco José de Caldas. Bogotá, Colombia. Contacto: fmartinezs@udistrital.edu.co

Tecnura
http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/907

DOI: https://doi.org/10.14483/22487638.12976

InvestIgacIón

Abstract
Context: This paper is presents the design and imple-
mentation of an 8-bit softcore RISC microprocessor
able to be run on space-optimized FPGA, in order to
be used for embedded applications.
Method: The design of this microprocessor was de-
veloped in Verilog hardware description language
and can be implemented in FPGA from different
manufacturers; therefore, the user has only to defi-
ne the input and output ports according to the type
of FPGA. This is an accumulator-type processor, but
it has two different accumulators that can be used
as pointers for indirect addressing. The processor is
Harvard with a RAM of 8x256 bits, and a ROM that
can be resized from 17x252 bits to 17x8K bits. Addi-
tionally, it has one 8-bit input port, one 8-bit output
port, and one 8-bit address port, which means that
the processor can address more than 256 8-bit ou-
tput and input ports/devices.
Results: The developed processor, named “ZA-
SUA,” was compared with PICOBLAZE softcore and
other three similar processors of free distribution in
the Web, and some improvements over those were

found. Criteria such as the Flip Flops used, occupied
LUTs, Slices in use, and maximum delay of each
processor were analyzed, all these results were ob-
tained from the implementation of the processors in
the Xilinx FPGAs.
Conclusions: The designed architecture is composed
by two accumulators, which can be used either as
source or destination for the operation of the ALU.
This fact gives some flexibility to the design, doing it
better than a single-accumulator processor, and get-
ting it closer to the register-based processors.
Keywords: Embedded microprocessor, Harvard Ar-
chitecture, RISC, Softcore, FPGA, Verilog, Dual
Accumulator.

Resumen
Contexto: Se diseñó e implementó un microprocesa-
dor softcore RISC de 8 bits para que funcionara sobre
dispositivos FPGA, y que estuviera optimizado en es-
pacio con el fin de usarlo en aplicaciones embebidas.
Método: El diseño de este microprocesador se de-
sarrolló en el lenguaje de descripción de hardwa-
re Verilog, y puede ser implementado en FPGA de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Distrital de la ciudad de Bogotá: Open Journal Systems

https://core.ac.uk/display/229170039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:proyectos1@electrosanchez.com.co
mailto:hrivera.cto@alcaldiasoacha.gov.co
mailto:fmartinezs@udistrital.edu.co

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[41]

INTRODUCTION

At present time, more than 95% of the electronic
chips produced are used for embedded systems
(Narayanan and Xie 2006). Most electronic devices
that surround us such as televisions, radios, cars,
and aircraft, among others, contain embedded sys-
tems. In general, embedded systems are characte-
rized by being subject to size requirements, having
low power consumption, and being economically
cheap. Embedded systems have a hardware and sof-
tware part, which are used to create specific appli-
cations (Henzinger and Sifakis 2006; Plavec 2004).
In the market you can get embedded systems, such
as: FPGAs, CPLDs, microcontrollers, microproces-
sors, DSP, and others; and all these electronic de-
vices are designed to be programmed by the user.
FPGAs and CPLD have shown a huge flexibility
for designing custom applications (Garzón, Bare-
ño, and Jacinto 2010; Gómez, Plazas, and Restre-
po 2015; Martínez Sarmiento and Giral Ramírez
2017; Riaño, Ladino, and Martínez 2012).

The creation of FPGAs and CPLDs started the
term “soft-core processor,” which consists of wri-
ting a processor in a hardware description language

(HDL), and can be adapted to fulfill a certain func-
tion. These types of processors offer several ad-
vantages, such as reducing the cost, improving
flexibility, and more immunity to the obsolescence
(Tong, Anderson, and Khalid 2006).

In FPGAs, any type of processor can be imple-
mented regardless of the type of architecture and
instructions, whether it is CISC (Complex Instruc-
tion Set Computer) (Appel and George 2001) or
RISC (Reduced Instruction Set computer) (Hu et al.
2009). On the other hand, these architectures can
be implemented according to the distribution of
memory: they can be Harvard (Trivedi and Tripathi
2015) or Von Newman (Pastor and Sánchez 1997).
The RISC processors have been implemented as
Design and Performance Analysis of 8-bit RISC
Processor using Xilinx Tool (Uma 2012), designing
a low power 8-bit Application Specific Processor
(Samal and Samal 2014), and FPGA Implementa-
tion of MIPS RISC Processor (Kelgaonkar and Kod-
gire n.d.), FPGA Implementation of an 8-bit Simple
Processor (Ayeh et al. 2008), Asynchronous 8-Bit
Processor Mapped into an FPGA Device (Herrera
and Viveros 2014). Regarding CISC processors, the
design of an 8-bit CISC CPU based on FPGA has

diferentes fabricantes, de tal forma que el usuario
solo tenga que definir los puertos de entada y de
salida, según el FPGA utilizado. El procesador de-
sarrollado es de tipo acumulador, pero tiene dos
diferentes acumuladores que pueden ser usados
como apuntador para direccionamiento indirecto.
El procesador es Harvard, con una RAM de 8x256
bits y una ROM que puede ser redimensionada des-
de 17x252 bits hasta 17x8K bits. También, tiene un
puerto de entrada de 8 bits, uno de salida de 8 bits
y otro de direcciones de 8 bits, lo que significa que
puede direccionar hasta 256x8 bits puertos o dis-
positivos de salida y la misma cantidad de entrada.
Resultados: El procesador, denominado ZA-SUA,
fue comparado con el softcore Picoblaze y con otros
tres procesadores similares de libre distribución

en la Web, y se alcanzaron algunas mejoras sobre
ellos. Se analizaron criterios como número de flip
flops usados, LUT ocupadas, slices en uso y retardo
máximo de cada procesador, todos estos resultados
fueron obtenidos de la implementación de los pro-
cesadores en FPGA de Xilinx.
Conclusiones: La arquitectura diseñada está com-
puesta por dos acumuladores, los cuales pueden ser
usados como fuente o destino de las operaciones de
la ALU. Este hecho da cierta flexibilidad al diseño,
haciéndolo mejor que un procesador con un solo
acumulador, y acercándolo más a un procesador ba-
sado en registros.
Palabras clave: procesador embebido, arquitectura
Harvard, RISC, softcore, FPGA, Verilog, acumulador
dual.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[42]

been developed (Zhang and Bao 2011). It is impor-
tant to note that only the number of logical gates
the developed processor occupies determines the
capacity of the FPGA to be implemented.

Today several soft-core 8-bit processors have
been developed as mentioned above, and there
are 8-bit processors that have public or commer-
cial domain, such as Picoblaze (Xilinx 2011), V8-
uRISC, and Free-RISC8 (Santana Hernandez 2004),
among others. There is limited information that can
be found on the Internet on free code of softcore
processors with enough information to reproduce
them. Besides, they are fully functional and can be
implemented in any FPGA without importing the
manufacturer.

One of the best known 8-bit softcore proces-
sors with reproducible code is PICOBLAZE. Its
documentation can be downloaded from the Xi-
linx Website. This processor was developed in a
high-level language, which can only be run on
Xilinx devices, and it is developed in Verilog and
VHDL. It contains 16 data records, 64-position
data memory, 8-bit ALU, and has 1Kbits ROM (Xi-
linx 2011).

Another processor is the Free-RISC8, which is a
model designed in Verilog synthesizable in a sim-
ple 8-bit microcontroller and is compatible with
the code of the controller 16C57 Microchip com-
pany. It has a variety of software development tools
making this processor attractive for educational
purposes or even to use in an FPGA.

Regarding the V8-uRISC, it is a general-purpose
processor designed and optimized specifically for
programmable logic. It combines a small number
of gates with execution to a single cycle of clock
for many instructions; its objective is to deliver
high performance of the 8-bit microprocessor whi-
le occupying very little space in its implementa-
tion. It was developed in VHDL and Verilog (Hays
and Jshamlet 2016).

A more general solution for open source pro-
cessors is the OpenCores.org Web page. It is the
world’s largest community site for the develop-
ment of open source hardware cores. OpenCores.

org takes the source code for different digital pro-
jects and supports users with different tools, pla-
tforms, forums, and other useful information. The
drawback with this information is that most pro-
jects are not fully functional and therefore cannot
be reproduced. Or sometimes they are reproduci-
ble but do not present the respective documenta-
tion to be understood.

The following is the design and results of the
implementation of an 8-bit softcore processor op-
timized in size, which work with devices of many
manufacturers, and will be published in the Web
for free: the code will be left open with the res-
pective guide information so that it can be repro-
duced and modified by any user. (Clayton 2014;
Crabtree 2009; Guzman 2012; Hays and Jshamlet
2016; Riedel 2009).

Methodology

General Description
The softcore 8-bit processor ZA-SUA is a Harvard
RISC processor, featuring a new dual-accumula-
tor design; This processor contains 28 instructions
which can be used to perform direct, indirect, or
immediate addressing; it also has the ability to de-
velop external interruption. ZA-SUA means “night
or day,” referring to both accumulators used in the
design, which can be used as simple accumula-
tors or as index registers indifferently. The name
ZA-SUA was taken from the dead language Muysc
cubun, in homage to the Muisca (usually called
Chibcha) indigenous community of the central re-
gion of Colombia.

The double accumulator is represented by the
letters A and B (See Figure 1), which allows to
save the results that come from the Arithmetic Lo-
gic Unit (ALU) or the reading data of a port. They
allow to select the operand of the ALU if A or B
is desired, and these two accumulators can also
be used like pointers for instructions with indirect
addressing.

On the other hand, the instruction encoding is
17 bits length, which is stored in the instruction

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[43]

register (IR-Instruction Register); the ROM (Read
Only Memory) is scalable and can be varied from
256, 512, 1024, 2048, 4096 and 8192 positions; it
also contains a stack (STACK) of 13 bits and 8 posi-
tions. Finally, the RAM (Random Access Memory)
is 8-bits length and has 256 positions.

The “DEC” is a decoder to control three “MUX”
multiplexers, which are: MUX 1, MUX 4 and MUX
5. The others are controlled by the IR. The “PC” (Pro-
gram Counter) is the program counter. The conti-
nuous cables shown in Figure 1 are the internal
connections of the processor, whereas non-conti-
nuous cables are some of the main input and ou-
tput ports. The MUX 1 performs the function of
letting the instruction register data pass if an instruc-
tion that handles an immediate or literal addressing

is activated and if it does not let the read data of
the RAM pass; this occurs when an instruction has
an address direct. With respect to MUX 4, it works
when an instruction has an indirect addressing and
it discovers with which it wants to develop it with A
or B. MUX 5 is used to let the output data of the mul-
tiplexer 4 (MUX 4) pass if there is indirect addres-
sing; if it does not, the multiplexer lets the data of
the instruction register go through to develop a task
directly. MUX 2 selects whether to store the ALU or
the value that is present on the processor input port.
If a task is performed with the ALU using the MUX
3, the operand is either A or B. Regarding the ALU, it
has 16 instructions, which are linked to variables of
ZERO and CARRY; this allows the accumulation and
storage of data in the operations it performs.

MUX

2

RAM

8X256

CONTROL

ROM

17X256

.

.

17X8K

IR PC

DEC

PILA

(STACK)

13X8

MUX

1

MUX

3

BA

MUX

5

MUX

4

ALU

Data Port IN
Data Port OUT

Port Address

Figure 1. Block diagram of the ZA-SUA 8-bit soft-core processor

Source: own work.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[44]

Instruction Set
The processor has a total of 28 instructions. Table
1 shows the instructions that the ALU handles. A
brief description is given to explain what each ins-
truction does, its respective encoding, and mne-
monic. Also, if the instruction affects carry (C) and
zero (Z), it is represented with ‘1’, and if it does not
modify, it is represented with ‘0’. Table 2 shows the
instructions not handled by the ALU, a brief des-
cription of them, and their respective coding and
mnemonic.

Coding instructions
The instruction encoding is 17 bits (detailed in
Table 3). The most significant bits are those con-
taining the instruction, the following 8 bits of
“General”, point to a Constant, a RAM address,
or a port address, which vary according to the
type of instruction. The 2 bits of “Address” refer
to the type of address that has the instruction. The

“Source” bit selects the value of the accumulator
A or B with which you want to develop an opera-
tion of the ALU or write a data in a position of the
RAM. The least significant bit is the “Destination”,
which is where you want to save the data, which
can be stored in the accumulator A or in the ac-
cumulator B. The instruction encoding is defined
for all instructions as indicated in Table 3, minus
the jump instructions. JFIZ, JFIC, JUMP and CALL
are organized as shown in Table 4. As evidenced
by the 4 most significant bits is the instruction and
the least significant is the number that replaces
increasing or decrementing the PC, which refers
to the number of lines you want to skip. Table 5
shows other instructions and the bits needed to
define them, as well as the not needed bits, which
are crossed out. The OUTPUT and INPUT instruc-
tions can support 256 input and output ports; this
is used to connect different modules in the ZA-
SUA processor.

Table 1. ALU Instructions

Description Mnemonic Coding
Affects

Z C
Addition ADD 00000 1 1
Addition with carry ADDC 00001 1 1
Subtraction SUB 00010 1 1
Subtraction with carry SUBC 00011 1 1
Increment INC 00100 1 1
Decrement DEC 00101 1 1
Shift left (without carry) SHL 00110 1 0
Shift right (without carry) SHR 00111 1 0
Rotate left (with carry) ROL 01000 1 1
Rotate right (with carry) ROR 01001 1 1

Logic
operations

AND 01010 1 0
OR 01011 1 0

XOR 01100 1 0
NOT 01101 1 0

Load a value in an accu-
mulator

LOAD 01110 1 0

Move values between
accumulators

MOVE 01111 1 0

Source: own work.

Table 2. Non-ALU Instructions

Description Mnemonic Coding
Jump if Zero flag is true JIFZ 1000
Jump if Carry flag is
true

JIFC 1001

Unconditional jump JUMP 1010
Subroutine calling CALL 1011
Stores an accumulator
in RAM

STORE 11000

Subroutine
return

RETURN 11001

Port reading INPUT 11010
Port writing OUTPUT 11011
Enable
interrupts

EINT 11100

Disable
interrupts

DINT 11101

Interruption
return

RETI 11110

Relative jump JUMPR 11111

Source: own work.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[45]

Table 3. Instructions coding

Instructions Coding

5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

Source: own work.

Table 4. Jump Instruction coding

Jump Instruction coding

4 bits 13 bits

Instruction Absolute program memory address (PC)

Source: own work.

Table 5. Coding for all the instructions

ALU
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

JIFZ, JIFC, JUMP y CALL
4 bits 13 bits

Instruction Absolute program memory address (PC)

OUTPUT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

STORE
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

RETURN y RETI
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

INPUT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

JUMPR
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

EINT y DINT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

Source: own work

Addressing modes
The 8-bit soft-core processor has 3 addressing mo-
des: direct, indirect, and immediate. The following
are the modes of addressing, associated with their
correspondent instructions:

• Indirect addressing: the instructions that develop it
are STORE, OUTPUT, and all the ALU instructions.

• Immediate addressing: they are developed by the
instructions found in the ALU and by the instruc-
tions RETI and RETURN.

• Direct addressing: the instructions that develop it
are STORE, INPUT, OUTPUT, and all the instruc-
tions handled by the ALU.

The 2 bits of “Address” are decoded as shown
in Table 6. As for the coding of “Source” and “Des-
tination”, both of them present a homogeneous or-
ganization: the 0 directs to the accumulator A and
the 1 directs to the accumulator B.

Table 6. Addressing bits coding

Coding Description
00 Direct addressing

01 Immediate addressing

10
Indirect addressing with the accumulator A as
index

11
Indirect addressing with the accumulator B as
index

Source: own work.

Processor state machine
Figure 2 shows the state machine of the Softcore
8-bit Processor “ZA-SUA”. The first state is the RE-
SET. In each clock cycle it is checked to know if it
is active; if it is, reset all the main registers as: pro-
gram counter, stack address counter, and the accu-
mulators. In the state of SEARCH, the instruction
to be executed is read. In DECODE, each instruc-
tion is decoded to enable and disable the proces-
ses that need to be executed for each instruction.
INSTRUCTIONS state executes the instruction

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[46]

process. The processes that are enabled and disa-
bled during the DECODE state must remain active
during the INSTRUCTIONS state because there is
a delay in the clock cycle.

The delay occurs because the processor execu-
tes tasks in parallel in each cycle of clock. If a pro-
cess like saving a value in the pile is activated in
the first cycle of a clock, this process cannot be
executed. This happens because the pile was not
active at the beginning of the first clock cycle, it
will only be executed in the second clock cycle if
this process is still active during this clock cycle,
for this reason each task activated or deactivated
has to be enabled the state before it will be used.

In the INSTRUCTIONS state (see Figure 2) the
following instructions are executed: all ALU’s, JFIZ,
JFIC, JUMP, CALL, STORE, RETURN, INPUT, OU-
TPUT, EINT, DINT, RETI and JUMPR.

In the DECODE state (Figure 2) three lines emer-
ge. These represent the thirteen states mentioned
above (for practical purposes).

RESET

SEARCH

DECODE

INSTRUCTIONS

WAIT

JUMP

INT

INT

Figure 2. Finite state machine of the control unit

Source: own work.

It should be noted that the thirteen states emer-
ge from the INSTRUCTIONS state but converge in
the WAIT state (Figure 2) since it is mandatory that
these states pass through the state to initiate the
next state.

As noted in the above listing, all ALU instruc-
tions (Table 1) are controlled by this state. It is wor-
th mentioning that it is not necessary to develop a
decoder to select the instructions presented by the
ALU since the instructions that arrive at DECODE
are the same delivered by it at the end, for which it
does not perform decoding.

The WAIT state is the state of waiting for the
instructions to be executed, which enables the
reading of the following instruction (ROM). After
exiting the WAIT state, it is checked whether or
not there was an interruption (INT). If there is no
interruption, the program will go to the SEARCH
state. On the contrary, if an interruption occurs,
the task of storing the program counter value in
the stack is enabled during this state. In the JUMP
INT state, it jumps to the memory location of the
ROM, where the tasks that are performed during
the interruption started.

In order for the interruption to develop (INT),
it must have passed the state of EINT and will
only be executed when the instruction is fini-
shed. During this process the CARRY is tempora-
rily archived. If the user wishes to save the value
of the accumulators, he must store them at the
beginning of the interruption (INT) at the desired
RAM position. When the RETI instruction is exe-
cuted, the CARRY returns to the value it had prior
the interrupt.

JUMPR is used to perform relative jumps for se-
lecting a value from a records table, which is de-
signed at will of the user, who will have to use the
RETURN instruction to achieve implementation.
Each state is executed in a clock cycle, all internal
processor instructions are developed in 4 clock cy-
cles, except the external ones as shown in Figure 2,
the RESET is executed in two clock cycles and the
interrupt (INT) is executed in 3 clock cycles.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[47]

RESULTS

Comparison of Technical Criteria
To make an appropriate comparison, five crite-
ria were chosen for four processors: one is PICO-
BLAZE and the other three were taken from the
OpenCores.org page (see Table 7).

Comparative of the results
The following are the results obtained from the im-
plementation of the “ZA-SUA” processor and the
other chosen processors. It is noteworthy that the
processors were implemented in a SPARTAN-3AN
Starter Kit FPGA card, and the results below are
obtained from the “Design Summary” of the Xi-
linx 14.7 software. On the other hand, the ROM,
RAM, ALU, STACK, IR, and Control, in the proces-
sors PICOBLAZE, Tiny 8, and NATALIUS, are di-
vided into blocks; while in the ZA-SUA and TISC

processors all parts are integrated in a single code,
which helps to give a better idea of the total space
occupied by the processor. The information obtai-
ned in the tables described above is summarized
below (Table 8).

It can be observed that the processor that occu-
pies less resources is the TISC (in terms of flip-flops
used), but it should be clarified that it does not have
RAM and is the processor with less instructions.

Regarding LUTs (LOOKUP TABLE), or search
tables used, it was found that the processor that
uses less resources is the PICOBLAZE, using only
1.49% of the total of the available tables because it
is written in a language of High level, which ensu-
res that it can only be used in Xilinx devices.

By analyzing the occupied SLICES, it is found
that the processor that occupies less resources is
the PICOBLAZE again and the one with the most
resources is the TINY8 (See Figure 3).

Table 7. Technical specifications of the compared processors

ZA-SUA PICOBLAZE15 NATALIUS21 TINY820 TISC19

Bus size [Bits] 8 8 8 8 8

RAM [Bytes] 32 64 4 32 -

Instructions number 28 57 29 - 14

Bits per instruction 17 18 16 16 12

ROM [Words] 256-8K 1K - - -

Source: own work.

Table 8. General comparative results

Flip-Flops LUTs Slices Frequency
Processor Used [%] Used [%] Used [%] Maximum delay [us] Maximum freq. [MHz]

ZA-SUA 75 0,64 421 3,58 223 3,79 1076 929

PICOBLAZE 76 0,65 176 1,49 98 1,66 1220 817

NATALIUS 158 1,34 416 3,53 270 4,58 1130 888

TINY8 301 2,55 1493 12,67 823 13,97 1100 910

TISC 54 0,46 189 1,61 111 1,88 1070 936

Source: own work.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[48]

Finally, by comparing the maximum execution
frequencies of the processor, it was obtained that
the one with the highest performance is the TISC
and, in contrast, the one with the lowest perfor-
mance is the PICOBLAZE (Figure 3).

CONCLUSION

According to Figure 3, it can be concluded that
the ZA-SUA processor occupies less flip-flops
than NATALIUS and TINY8, but it presents almost
the same number of flip-flops as the PICOBLAZE,
which affirms that the ZA-SUA processor is optimi-
zed in size compared to these processors.

On the other hand, the ZA-SUA processor oc-
cupies less LUTs than TINY8, fewer SLICES than
NATALIUS and TINY8, and has higher performan-
ce than the PICOBLAZE, NATALIUS, and TINY8
processors (see Figure 3). ZA-SUA guarantees the
superiority in the design of the processor in com-
parison to these processors.

Although the results indicate that the PICO-
BLAZE processor has better performance in ge-
neral terms, it can only be implemented in Xilinx
devices; contrary to the ZA-SUA processor, which
is more versatile because it can be reproduced in
FPGAs from different manufacturers.

Although the TISC processor provides favorable
results regarding the use of resources, it should be
clarified that it has no RAM and has 14 instructions
less than the ZA-SUA processor.

Finally, it is analyzed that the NATALIUS pro-
cessor, although having an instruction more than
the ZA-SUA, does not have INTERRUPT instruc-
tion, which limits the possibility of executing basic
tasks as this is a fundamental requirement for the
development.

Future work

In first instance, a C-language compiler is to be
developed for the 8-bit softcore processor ZA-
SUA, with the aim that the user needing the pro-
cessor can program it easily without having to
resort to the source code of the processor. Se-
condly, various applications will be implemented
with the compiler to experiment with all available
processor resources. Performance benchmarking
software (Benchmark) will be performed to study
the maximum capacities of the ZA-SUA proces-
sor. Finally, it is possible to modify the code so
that the capacity of the processor can be increa-
sed to 16 bits.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

Flip	Flops	 LUTs	 Slices	 Delay	

Features	comparison	

ZA-SUA	 PICOBLAZE	 NATALIUS	 TINY8	 TISC	

Figure 3. Size and performance criteria comparison among processors

Source: own work.

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[49]

References

Appel, Andrew W. and Lal George. 2001. “Optimal Spi-
lling for CISC Machines with Few Registers.” Pp.
243–53 in ACM SIGPLAN Notices, vol. 36. ACM.

Ayeh, E., K. Agbedanu, Y. Morita, O. Adamo, and P. Gu-
turu. 2008. “FPGA Implementation of an 8-Bit Sim-
ple Processor.” Pp. 1–5 in Region 5 Conference,
2008 IEEE. IEEE.

Clayton, Jhon. 2014. “risc16f84 :: Overview.”
OpenCores. Retrieved (http://opencores.org/
project,risc16f84).

Crabtree, Vincent. 2009. “Tiny Instruction Set Compu-
ter :: Overview.” OpenCores. Retrieved (https://
opencores.org/project,tisc).

Garzón, Víctor Alonso Bravo, Jesús Jair Navarro Bare-
ño, and Edwar Jacinto. 2010. “Diseño E Implemen-
tación de Un Codec Digital de Audio Con FPGA,
En Formato PCM, de 2 Canales Con Interfaz Para
Usuario.” Tecnura: Tecnología y Cultura Afirmando
el Conocimiento 14(26):56–68. Retrieved (http://
revistas.udistrital.edu.co/ojs/index.php/Tecnura/
article/view/6687/8270).

Gómez, Edwar Jacinto, Donovan Camilo Platero Pla-
zas, and Mario Fernando Robayo Restrepo. 2015.
“Voltimetro True-Rms Sobre Fpga Basado En Algo-
ritmo Cordic.” Revista Tecnura 19:129–36. Retrie-
ved (http://revistas.udistrital.edu.co/ojs/index.php/
Tecnura/article/view/9619/10827).

Guzman, Fabio. 2012. “Natalius 8 Bit RISC :: Over-
view.” OpenCores. Retrieved (http://opencores.org/
project,natalius_8bit_risc).

Hays, Kirk and Jshamlet. 2016. “Open8 uRISC :: Over-
view.” OpenCores. Retrieved (http://opencores.org/
project,open8_urisc).

Henzinger, Thomas A. and Joseph Sifakis. 2006. “The
Embedded Systems Design Challenge.” Pp. 1–15
in International Symposium on Formal Methods.
Springer.

Herrera, Moises and Francisco Viveros. 2014. “Asyn-
chronous 8-Bit Processor Mapped into an FPGA
Device.” Pp. 1–7 in Communications and Compu-
ting (COLCOM), 2014 IEEE Colombian Conference
on. IEEE.

Hu, Weiwu et al. 2009. “Godson-3: A Scalable Multi-
core RISC Processor with x86 Emulation.” IEEE mi-
cro 29(2).

Kelgaonkar, Pranjali S. and Shilpa Kodgire. n.d. “Pipeli-
ned 32bit RISC MIPS Processor on Spartan-6 FPGA.”
International Journal of Science, Engineering and Te-
chnology Research (IJSETR), ISSN 2278–7798.

Martínez Sarmiento, Fredy Hernán and Diego Armando
Giral Ramírez. 2017. “OpenRRArch: Una Arquitec-
tura Abierta, Robusta Y Confiable Para El Control de
Robots Autónomos.” tecnura 21(51):96–104.

Narayanan, Vijaykrishnan and Yuan Xie. 2006. “Reliabi-
lity Concerns in Embedded System Designs.” Com-
puter 39(1):118–20.

Pastor, Enric and Fermín Sánchez. 1997. “La Máquina
Rudimentaria: Un Procesador Pedagógico.” III Jor-
nadas de Enseñanza Universitaria sobre Informáti-
ca (JENUI’97), Madrid, Spain 395–402.

Plavec, Franjo. 2004. Soft-Core Processor Design. Uni-
versity of Toronto.

Riaño, José, César Ladino, and Fredy Martínez. 2012.
“Implementación de La Transformada FFT Sobre
Una FPGA Orientada a Su Aplicación En Conver-
tidores Electrónicos de Potencia.” Tekhnê 9:21–32.
Retrieved (http://revistas.udistrital.edu.co/ojs/in-
dex.php/tekhne/article/view/8925/10297).

Riedel, Ulrich. 2009. “tiny8 :: Overview.” OpenCores.
Retrieved (http://opencores.org/project,tiny8).

Samal, Lopamudra and Chiranjibi Samal. 2014. “De-
signing a Low Power 8-Bit Application Specific
Processor.” Pp. 1–5 in Green Computing Communi-
cation and Electrical Engineering (ICGCCEE), 2014
International Conference on. IEEE.

Santana Hernandez, Gladis Elizabeth. 2004. “Diseño
de Un Procesador Usando Lenguajes de Descrip-
ción de Hardware.” Instituto Politécnico Nacional,
Mexico DF.

Tong, Jason G., Ian D. L. Anderson, and Mohammed
A. S. Khalid. 2006. “Soft-Core Processors for Embe-
dded Systems.” Pp. 170–73 in Microelectronics,
2006. ICM’06. International Conference on. IEEE.

Trivedi, Priyanka and Rajan Prasad Tripathi. 2015. “De-
sign & Analysis of 16 Bit RISC Processor Using Low
Power Pipelining.” Pp. 1294–97 in Computing,

Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[50]

Communication & Automation (ICCCA), 2015 In-
ternational Conference on. IEEE.

Uma, R. 2012. “Design and Performance Analysis of 8–
bit RISC Processor Using Xilinx Tool.” International
Journal of Engineering Research and Applications
2(2):53–58.

Xilinx. 2011. “PicoBlaze 8-Bit Embedded Microcon-
troller User Guide.” IP documentation 1–120.

Retrieved (http://www.xilinx.com/support/docu-
mentation/ip_documentation/ug129.pdf.).

Zhang, Yunjie and Lei Bao. 2011. “The Design of an
8-Bit CISC CPU Based on FPGA.” Pp. 1–4 in Wi-
reless Communications, Networking and Mobile
Computing (WiCOM), 2011 7th International Con-
ference on. IEEE.

