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InvestIgacIón

Abstract
Context: This paper is presents the design and imple-
mentation of an 8-bit softcore RISC microprocessor 
able to be run on space-optimized FPGA, in order to 
be used for embedded applications. 
Method: The design of this microprocessor was de-
veloped in Verilog hardware description language 
and can be implemented in FPGA from different 
manufacturers; therefore, the user has only to defi-
ne the input and output ports according to the type 
of FPGA. This is an accumulator-type processor, but 
it has two different accumulators that can be used 
as pointers for indirect addressing. The processor is 
Harvard with a RAM of 8x256 bits, and a ROM that 
can be resized from 17x252 bits to 17x8K bits. Addi-
tionally, it has one 8-bit input port, one 8-bit output 
port, and one 8-bit address port, which means that 
the processor can address more than 256 8-bit ou-
tput and input ports/devices. 
Results: The developed processor, named “ZA-
SUA,” was compared with PICOBLAZE softcore and 
other three similar processors of free distribution in 
the Web, and some improvements over those were 

found. Criteria such as the Flip Flops used, occupied 
LUTs, Slices in use, and maximum delay of each 
processor were analyzed, all these results were ob-
tained from the implementation of the processors in 
the Xilinx FPGAs. 
Conclusions: The designed architecture is composed 
by two accumulators, which can be used either as 
source or destination for the operation of the ALU. 
This fact gives some flexibility to the design, doing it 
better than a single-accumulator processor, and get-
ting it closer to the register-based processors.
Keywords: Embedded microprocessor, Harvard Ar-
chitecture, RISC, Softcore, FPGA, Verilog, Dual 
Accumulator.

Resumen
Contexto: Se diseñó e implementó un microprocesa-
dor softcore RISC de 8 bits para que funcionara sobre 
dispositivos FPGA, y que estuviera optimizado en es-
pacio con el fin de usarlo en aplicaciones embebidas.
Método: El diseño de este microprocesador se de-
sarrolló en el lenguaje de descripción de hardwa-
re Verilog, y puede ser implementado en FPGA de 
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INTRODUCTION

At present time, more than 95% of the electronic 
chips produced are used for embedded systems 
(Narayanan and Xie 2006). Most electronic devices 
that surround us such as televisions, radios, cars, 
and aircraft, among others, contain embedded sys-
tems. In general, embedded systems are characte-
rized by being subject to size requirements, having 
low power consumption, and being economically 
cheap. Embedded systems have a hardware and sof-
tware part, which are used to create specific appli-
cations (Henzinger and Sifakis 2006; Plavec 2004). 
In the market you can get embedded systems, such 
as: FPGAs, CPLDs, microcontrollers, microproces-
sors, DSP, and others; and all these electronic de-
vices are designed to be programmed by the user. 
FPGAs and CPLD have shown a huge flexibility 
for designing custom applications (Garzón, Bare-
ño, and Jacinto 2010; Gómez, Plazas, and Restre-
po 2015; Martínez Sarmiento and Giral Ramírez 
2017; Riaño, Ladino, and Martínez 2012).

The creation of FPGAs and CPLDs started the 
term “soft-core processor,” which consists of wri-
ting a processor in a hardware description language 

(HDL), and can be adapted to fulfill a certain func-
tion. These types of processors offer several ad-
vantages, such as reducing the cost, improving 
flexibility, and more immunity to the obsolescence 
(Tong, Anderson, and Khalid 2006).

In FPGAs, any type of processor can be imple-
mented regardless of the type of architecture and 
instructions, whether it is CISC (Complex Instruc-
tion Set Computer) (Appel and George 2001) or 
RISC (Reduced Instruction Set computer) (Hu et al. 
2009). On the other hand, these architectures can 
be implemented according to the distribution of 
memory: they can be Harvard (Trivedi and Tripathi 
2015) or Von Newman (Pastor and Sánchez 1997). 
The RISC processors have been implemented as 
Design and Performance Analysis of 8-bit RISC 
Processor using Xilinx Tool (Uma 2012), designing 
a low power 8-bit Application Specific Processor 
(Samal and Samal 2014), and FPGA Implementa-
tion of MIPS RISC Processor (Kelgaonkar and Kod-
gire n.d.), FPGA Implementation of an 8-bit Simple 
Processor (Ayeh et al. 2008), Asynchronous 8-Bit 
Processor Mapped into an FPGA Device (Herrera 
and Viveros 2014). Regarding CISC processors, the 
design of an 8-bit CISC CPU based on FPGA has 

diferentes fabricantes, de tal forma que el usuario 
solo tenga que definir los puertos de entada y de 
salida, según el FPGA utilizado. El procesador de-
sarrollado es de tipo acumulador, pero tiene dos 
diferentes acumuladores que pueden ser usados 
como apuntador para direccionamiento indirecto. 
El procesador es Harvard, con una RAM de 8x256 
bits y una ROM que puede ser redimensionada des-
de 17x252 bits hasta 17x8K bits. También, tiene un 
puerto de entrada de 8 bits, uno de salida de 8 bits 
y otro de direcciones de 8 bits, lo que significa que 
puede direccionar hasta 256x8 bits puertos o dis-
positivos de salida y la misma cantidad de entrada. 
Resultados: El procesador, denominado ZA-SUA, 
fue comparado con el softcore Picoblaze y con otros 
tres procesadores similares de libre distribución 

en la Web, y se alcanzaron algunas mejoras sobre 
ellos. Se analizaron criterios como número de flip 
flops usados, LUT ocupadas, slices en uso y retardo 
máximo de cada procesador, todos estos resultados 
fueron obtenidos de la implementación de los pro-
cesadores en FPGA de Xilinx. 
Conclusiones: La arquitectura diseñada está com-
puesta por dos acumuladores, los cuales pueden ser 
usados como fuente o destino de las operaciones de 
la ALU. Este hecho da cierta flexibilidad al diseño, 
haciéndolo mejor que un procesador con un solo 
acumulador, y acercándolo más a un procesador ba-
sado en registros.
Palabras clave: procesador embebido, arquitectura 
Harvard, RISC, softcore, FPGA, Verilog, acumulador 
dual.
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been developed (Zhang and Bao 2011). It is impor-
tant to note that only the number of logical gates 
the developed processor occupies determines the 
capacity of the FPGA to be implemented.

Today several soft-core 8-bit processors have 
been developed as mentioned above, and there 
are 8-bit processors that have public or commer-
cial domain, such as Picoblaze (Xilinx 2011), V8-
uRISC, and Free-RISC8 (Santana Hernandez 2004), 
among others. There is limited information that can 
be found on the Internet on free code of softcore 
processors with enough information to reproduce 
them. Besides, they are fully functional and can be 
implemented in any FPGA without importing the 
manufacturer.

One of the best known 8-bit softcore proces-
sors with reproducible code is PICOBLAZE. Its 
documentation can be downloaded from the Xi-
linx Website. This processor was developed in a 
high-level language, which can only be run on 
Xilinx devices, and it is developed in Verilog and 
VHDL. It contains 16 data records, 64-position 
data memory, 8-bit ALU, and has 1Kbits ROM (Xi-
linx 2011).

Another processor is the Free-RISC8, which is a 
model designed in Verilog synthesizable in a sim-
ple 8-bit microcontroller and is compatible with 
the code of the controller 16C57 Microchip com-
pany. It has a variety of software development tools 
making this processor attractive for educational 
purposes or even to use in an FPGA.

Regarding the V8-uRISC, it is a general-purpose 
processor designed and optimized specifically for 
programmable logic. It combines a small number 
of gates with execution to a single cycle of clock 
for many instructions; its objective is to deliver 
high performance of the 8-bit microprocessor whi-
le occupying very little space in its implementa-
tion. It was developed in VHDL and Verilog (Hays 
and Jshamlet 2016).

A more general solution for open source pro-
cessors is the OpenCores.org Web page. It is the 
world’s largest community site for the develop-
ment of open source hardware cores. OpenCores.

org takes the source code for different digital pro-
jects and supports users with different tools, pla-
tforms, forums, and other useful information. The 
drawback with this information is that most pro-
jects are not fully functional and therefore cannot 
be reproduced. Or sometimes they are reproduci-
ble but do not present the respective documenta-
tion to be understood. 

The following is the design and results of the 
implementation of an 8-bit softcore processor op-
timized in size, which work with devices of many 
manufacturers, and will be published in the Web 
for free: the code will be left open with the res-
pective guide information so that it can be repro-
duced and modified by any user. (Clayton 2014; 
Crabtree 2009; Guzman 2012; Hays and Jshamlet 
2016; Riedel 2009).

Methodology

General Description
The softcore 8-bit processor ZA-SUA is a Harvard 
RISC processor, featuring a new dual-accumula-
tor design; This processor contains 28 instructions 
which can be used to perform direct, indirect, or 
immediate addressing; it also has the ability to de-
velop external interruption. ZA-SUA means “night 
or day,” referring to both accumulators used in the 
design, which can be used as simple accumula-
tors or as index registers indifferently. The name 
ZA-SUA was taken from the dead language Muysc 
cubun, in homage to the Muisca (usually called 
Chibcha) indigenous community of the central re-
gion of Colombia.

The double accumulator is represented by the 
letters A and B (See Figure 1), which allows to 
save the results that come from the Arithmetic Lo-
gic Unit (ALU) or the reading data of a port. They 
allow to select the operand of the ALU if A or B 
is desired, and these two accumulators can also 
be used like pointers for instructions with indirect 
addressing. 

On the other hand, the instruction encoding is 
17 bits length, which is stored in the instruction 
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register (IR-Instruction Register); the ROM (Read 
Only Memory) is scalable and can be varied from 
256, 512, 1024, 2048, 4096 and 8192 positions; it 
also contains a stack (STACK) of 13 bits and 8 posi-
tions. Finally, the RAM (Random Access Memory) 
is 8-bits length and has 256 positions. 

The “DEC” is a decoder to control three “MUX” 
multiplexers, which are: MUX 1, MUX 4 and MUX 
5. The others are controlled by the IR. The “PC” (Pro-
gram Counter) is the program counter. The conti-
nuous cables shown in Figure 1 are the internal 
connections of the processor, whereas non-conti-
nuous cables are some of the main input and ou-
tput ports. The MUX 1 performs the function of 
letting the instruction register data pass if an instruc-
tion that handles an immediate or literal addressing 

is activated and if it does not let the read data of 
the RAM pass; this occurs when an instruction has 
an address direct. With respect to MUX 4, it works 
when an instruction has an indirect addressing and 
it discovers with which it wants to develop it with A 
or B. MUX 5 is used to let the output data of the mul-
tiplexer 4 (MUX 4) pass if there is indirect addres-
sing; if it does not, the multiplexer lets the data of 
the instruction register go through to develop a task 
directly. MUX 2 selects whether to store the ALU or 
the value that is present on the processor input port. 
If a task is performed with the ALU using the MUX 
3, the operand is either A or B. Regarding the ALU, it 
has 16 instructions, which are linked to variables of 
ZERO and CARRY; this allows the accumulation and 
storage of data in the operations it performs.

MUX

2

RAM

8X256

CONTROL

ROM

17X256

.

.

17X8K

IR PC

DEC

PILA

(STACK)

13X8

MUX

1

MUX

3

BA

MUX

5

MUX

4

ALU

Data Port IN
Data Port OUT

Port Address

Figure 1. Block diagram of the ZA-SUA 8-bit soft-core processor

Source: own work.
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Instruction Set
The processor has a total of 28 instructions. Table 
1 shows the instructions that the ALU handles. A 
brief description is given to explain what each ins-
truction does, its respective encoding, and mne-
monic. Also, if the instruction affects carry (C) and 
zero (Z), it is represented with ‘1’, and if it does not 
modify, it is represented with ‘0’. Table 2 shows the 
instructions not handled by the ALU, a brief des-
cription of them, and their respective coding and 
mnemonic.

Coding instructions
The instruction encoding is 17 bits (detailed in 
Table 3). The most significant bits are those con-
taining the instruction, the following 8 bits of 
“General”, point to a Constant, a RAM address, 
or a port address, which vary according to the 
type of instruction. The 2 bits of “Address” refer 
to the type of address that has the instruction. The 

“Source” bit selects the value of the accumulator 
A or B with which you want to develop an opera-
tion of the ALU or write a data in a position of the 
RAM. The least significant bit is the “Destination”, 
which is where you want to save the data, which 
can be stored in the accumulator A or in the ac-
cumulator B. The instruction encoding is defined 
for all instructions as indicated in Table 3, minus 
the jump instructions. JFIZ, JFIC, JUMP and CALL 
are organized as shown in Table 4. As evidenced 
by the 4 most significant bits is the instruction and 
the least significant is the number that replaces 
increasing or decrementing the PC, which refers 
to the number of lines you want to skip. Table 5 
shows other instructions and the bits needed to 
define them, as well as the not needed bits, which 
are crossed out. The OUTPUT and INPUT instruc-
tions can support 256 input and output ports; this 
is used to connect different modules in the ZA-
SUA processor.

Table 1. ALU Instructions

Description Mnemonic Coding
Affects

Z C
Addition ADD 00000 1 1
Addition with carry ADDC 00001 1 1
Subtraction SUB 00010 1 1
Subtraction with carry SUBC 00011 1 1
Increment INC 00100 1 1
Decrement DEC 00101 1 1
Shift left (without carry) SHL 00110 1 0
Shift right (without carry) SHR 00111 1 0
Rotate left (with carry) ROL 01000 1 1
Rotate right (with carry) ROR 01001 1 1

Logic 
operations

AND 01010 1 0
OR 01011 1 0

XOR 01100 1 0
NOT 01101 1 0

Load a value in an accu-
mulator

LOAD 01110 1 0

Move values between 
accumulators

MOVE 01111 1 0

Source: own work.

Table 2. Non-ALU Instructions

Description Mnemonic Coding
Jump if Zero flag is true JIFZ 1000
Jump if Carry flag is 
true

JIFC 1001

Unconditional jump JUMP 1010
Subroutine calling CALL 1011
Stores an accumulator 
in RAM

STORE 11000

Subroutine 
return

RETURN 11001

Port reading INPUT 11010
Port writing OUTPUT 11011
Enable 
interrupts

EINT 11100

Disable 
interrupts

DINT 11101

Interruption
return

RETI 11110

Relative jump JUMPR 11111

Source: own work.



Dual-accumulator softcore 8-bit microprocessor designed to be used on FPGAs

Sáenz R., W., RiveRa S., F.y MaRtínez S., F.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 22 No. 56 • Abril - Junio de 2018 • pp. 40-50
[ 45 ]

Table 3. Instructions coding

Instructions Coding

5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

Source: own work.

Table 4. Jump Instruction coding

Jump Instruction coding

4 bits 13 bits

Instruction Absolute program memory address (PC)

Source: own work.

Table 5. Coding for all the instructions

ALU
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

JIFZ, JIFC, JUMP y CALL
4 bits 13 bits

Instruction Absolute program memory address (PC)

OUTPUT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

STORE
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

RETURN y RETI
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

INPUT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

JUMPR
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

EINT y DINT
5 bits 8 bits 2 bits 1 bit 1 bit

Instruction General Addressing Source Destination

Source: own work

Addressing modes
The 8-bit soft-core processor has 3 addressing mo-
des: direct, indirect, and immediate. The following 
are the modes of addressing, associated with their 
correspondent instructions:

• Indirect addressing: the instructions that develop it 
are STORE, OUTPUT, and all the ALU instructions.

• Immediate addressing: they are developed by the 
instructions found in the ALU and by the instruc-
tions RETI and RETURN.

• Direct addressing: the instructions that develop it 
are STORE, INPUT, OUTPUT, and all the instruc-
tions handled by the ALU.

The 2 bits of “Address” are decoded as shown 
in Table 6. As for the coding of “Source” and “Des-
tination”, both of them present a homogeneous or-
ganization: the 0 directs to the accumulator A and 
the 1 directs to the accumulator B.

Table 6. Addressing bits coding

Coding Description
00 Direct addressing

01 Immediate addressing

10
Indirect addressing with the accumulator A as 
index

11
Indirect addressing with the accumulator B as 
index

Source: own work.

Processor state machine
Figure 2 shows the state machine of the Softcore 
8-bit Processor “ZA-SUA”. The first state is the RE-
SET. In each clock cycle it is checked to know if it 
is active; if it is, reset all the main registers as: pro-
gram counter, stack address counter, and the accu-
mulators. In the state of SEARCH, the instruction 
to be executed is read. In DECODE, each instruc-
tion is decoded to enable and disable the proces-
ses that need to be executed for each instruction. 
INSTRUCTIONS state executes the instruction 
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process. The processes that are enabled and disa-
bled during the DECODE state must remain active 
during the INSTRUCTIONS state because there is 
a delay in the clock cycle.

The delay occurs because the processor execu-
tes tasks in parallel in each cycle of clock. If a pro-
cess like saving a value in the pile is activated in 
the first cycle of a clock, this process cannot be 
executed. This happens because the pile was not 
active at the beginning of the first clock cycle, it 
will only be executed in the second clock cycle if 
this process is still active during this clock cycle, 
for this reason each task activated or deactivated 
has to be enabled the state before it will be used.

In the INSTRUCTIONS state (see Figure 2) the 
following instructions are executed: all ALU’s, JFIZ, 
JFIC, JUMP, CALL, STORE, RETURN, INPUT, OU-
TPUT, EINT, DINT, RETI and JUMPR.

In the DECODE state (Figure 2) three lines emer-
ge. These represent the thirteen states mentioned 
above (for practical purposes).

RESET

SEARCH

DECODE

INSTRUCTIONS

WAIT

JUMP

INT

INT

Figure 2. Finite state machine of the control unit

Source: own work.

It should be noted that the thirteen states emer-
ge from the INSTRUCTIONS state but converge in 
the WAIT state (Figure 2) since it is mandatory that 
these states pass through the state to initiate the 
next state.

As noted in the above listing, all ALU instruc-
tions (Table 1) are controlled by this state. It is wor-
th mentioning that it is not necessary to develop a 
decoder to select the instructions presented by the 
ALU since the instructions that arrive at DECODE 
are the same delivered by it at the end, for which it 
does not perform decoding.

The WAIT state is the state of waiting for the 
instructions to be executed, which enables the 
reading of the following instruction (ROM). After 
exiting the WAIT state, it is checked whether or 
not there was an interruption (INT). If there is no 
interruption, the program will go to the SEARCH 
state. On the contrary, if an interruption occurs, 
the task of storing the program counter value in 
the stack is enabled during this state. In the JUMP 
INT state, it jumps to the memory location of the 
ROM, where the tasks that are performed during 
the interruption started.

In order for the interruption to develop (INT), 
it must have passed the state of EINT and will 
only be executed when the instruction is fini-
shed. During this process the CARRY is tempora-
rily archived. If the user wishes to save the value 
of the accumulators, he must store them at the 
beginning of the interruption (INT) at the desired 
RAM position. When the RETI instruction is exe-
cuted, the CARRY returns to the value it had prior 
the interrupt.

JUMPR is used to perform relative jumps for se-
lecting a value from a records table, which is de-
signed at will of the user, who will have to use the 
RETURN instruction to achieve implementation. 
Each state is executed in a clock cycle, all internal 
processor instructions are developed in 4 clock cy-
cles, except the external ones as shown in Figure 2, 
the RESET is executed in two clock cycles and the 
interrupt (INT) is executed in 3 clock cycles.
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RESULTS

Comparison of Technical Criteria
To make an appropriate comparison, five crite-
ria were chosen for four processors: one is PICO-
BLAZE and the other three were taken from the 
OpenCores.org page (see Table 7).

Comparative of the results
The following are the results obtained from the im-
plementation of the “ZA-SUA” processor and the 
other chosen processors. It is noteworthy that the 
processors were implemented in a SPARTAN-3AN 
Starter Kit FPGA card, and the results below are 
obtained from the “Design Summary” of the Xi-
linx 14.7 software. On the other hand, the ROM, 
RAM, ALU, STACK, IR, and Control, in the proces-
sors PICOBLAZE, Tiny 8, and NATALIUS, are di-
vided into blocks; while in the ZA-SUA and TISC 

processors all parts are integrated in a single code, 
which helps to give a better idea of the total space 
occupied by the processor. The information obtai-
ned in the tables described above is summarized 
below (Table 8).

It can be observed that the processor that occu-
pies less resources is the TISC (in terms of flip-flops 
used), but it should be clarified that it does not have 
RAM and is the processor with less instructions. 

Regarding LUTs (LOOKUP TABLE), or search 
tables used, it was found that the processor that 
uses less resources is the PICOBLAZE, using only 
1.49% of the total of the available tables because it 
is written in a language of High level, which ensu-
res that it can only be used in Xilinx devices.

By analyzing the occupied SLICES, it is found 
that the processor that occupies less resources is 
the PICOBLAZE again and the one with the most 
resources is the TINY8 (See Figure 3).

Table 7. Technical specifications of the compared processors

ZA-SUA PICOBLAZE15 NATALIUS21 TINY820 TISC19

Bus size [Bits] 8 8 8 8 8

RAM [Bytes] 32 64 4 32 -

Instructions number 28 57 29 - 14

Bits per instruction 17 18 16 16 12

ROM [Words] 256-8K 1K - - -

Source: own work.

Table 8. General comparative results

Flip-Flops LUTs Slices Frequency
Processor Used [%] Used [%] Used [%] Maximum delay [us] Maximum freq. [MHz]

ZA-SUA 75 0,64 421 3,58 223 3,79 1076 929

PICOBLAZE 76 0,65 176 1,49 98 1,66 1220 817

NATALIUS 158 1,34 416 3,53 270 4,58 1130 888

TINY8 301 2,55 1493 12,67 823 13,97 1100 910

TISC 54 0,46 189 1,61 111 1,88 1070 936

Source: own work.
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Finally, by comparing the maximum execution 
frequencies of the processor, it was obtained that 
the one with the highest performance is the TISC 
and, in contrast, the one with the lowest perfor-
mance is the PICOBLAZE (Figure 3).

CONCLUSION

According to Figure 3, it can be concluded that 
the ZA-SUA processor occupies less flip-flops 
than NATALIUS and TINY8, but it presents almost 
the same number of flip-flops as the PICOBLAZE, 
which affirms that the ZA-SUA processor is optimi-
zed in size compared to these processors.

On the other hand, the ZA-SUA processor oc-
cupies less LUTs than TINY8, fewer SLICES than 
NATALIUS and TINY8, and has higher performan-
ce than the PICOBLAZE, NATALIUS, and TINY8 
processors (see Figure 3). ZA-SUA guarantees the 
superiority in the design of the processor in com-
parison to these processors.

Although the results indicate that the PICO-
BLAZE processor has better performance in ge-
neral terms, it can only be implemented in Xilinx 
devices; contrary to the ZA-SUA processor, which 
is more versatile because it can be reproduced in 
FPGAs from different manufacturers.

Although the TISC processor provides favorable 
results regarding the use of resources, it should be 
clarified that it has no RAM and has 14 instructions 
less than the ZA-SUA processor.

Finally, it is analyzed that the NATALIUS pro-
cessor, although having an instruction more than 
the ZA-SUA, does not have INTERRUPT instruc-
tion, which limits the possibility of executing basic 
tasks as this is a fundamental requirement for the 
development.

Future work

In first instance, a C-language compiler is to be 
developed for the 8-bit softcore processor ZA-
SUA, with the aim that the user needing the pro-
cessor can program it easily without having to 
resort to the source code of the processor. Se-
condly, various applications will be implemented 
with the compiler to experiment with all available 
processor resources. Performance benchmarking 
software (Benchmark) will be performed to study 
the maximum capacities of the ZA-SUA proces-
sor. Finally, it is possible to modify the code so 
that the capacity of the processor can be increa-
sed to 16 bits.
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Figure 3. Size and performance criteria comparison among processors

Source: own work.
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