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Reinforcement Learning Neural-Network-Based
Controller for Nonlinear Discrete-Time

Systems With Input Constraints
Pingan He and S. Jagannathan, Senior Member, IEEE

Abstract—A novel adaptive-critic-based neural network (NN)
controller in discrete time is designed to deliver a desired tracking
performance for a class of nonlinear systems in the presence of
actuator constraints. The constraints of the actuator are treated in
the controller design as the saturation nonlinearity. The adaptive
critic NN controller architecture based on state feedback includes
two NNs: the critic NN is used to approximate the “strategic”
utility function, whereas the action NN is employed to minimize
both the strategic utility function and the unknown nonlinear
dynamic estimation errors. The critic and action NN weight up-
dates are derived by minimizing certain quadratic performance
indexes. Using the Lyapunov approach and with novel weight
updates, the uniformly ultimate boundedness of the closed-loop
tracking error and weight estimates is shown in the presence of
NN approximation errors and bounded unknown disturbances.
The proposed NN controller works in the presence of multiple
nonlinearities, unlike other schemes that normally approximate
one nonlinearity. Moreover, the adaptive critic NN controller does
not require an explicit offline training phase, and the NN weights
can be initialized at zero or random. Simulation results justify the
theoretical analysis.

Index Terms—Approximate dynamic programming, neural net-
work control, optimal control, reinforcement learning.

I. INTRODUCTION

ADAPTIVE control schemes, both in continuous and dis-
crete time, were developed in the past several decades

[1], [9], [13], [17]. Discrete-time implementation of controllers
is of importance since all the controllers have to be imple-
mented on today’s embedded hardware. Discrete-time adaptive
control design is more complex than continuous-time due pri-
marily to the fact that discrete-time Lyapunov derivatives are
quadratic in state [7], not linear as in the continuous case. This
has led to traditional techniques where parameter identification
is decoupled from control using the so-called certainty equiv-
alence (CE). Moreover, adaptive control schemes require that
the nonlinear systems under consideration satisfy the linear-in-
the-unknown-parameter (LIP) assumption.

Manuscript received January 21, 2006; revised May 9, 2006 and July 5, 2006.
This work supported in part by National Science Foundation Grants ECCS
0296191, 0378777, and 0621924 and in part by the Intelligent Systems Center.
This paper was recommended by Associate Editor F. Lewis.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Missouri-Rolla, Rolla, MO 65409 USA (e-mail: ph8p5@
umr.edu; sarangap@umr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2006.883869

In recent years, learning-based control methodology using
neural networks (NNs) has become an alternative to adaptive
control since NNs are considered as general tools for mod-
eling nonlinear systems. Work on adaptive NN control using
the universal NN approximation property is now pursued by
several groups of researchers, e.g., [4], [5], [10], and [14].
However, work so far on NN control is accomplished us-
ing either supervised training [14], where the user specifies
a desired output, or classical adaptive control ideas [4], [5],
[10], [14], where a short-term system-performance measure is
defined by using the tracking error at the current time instant.
Additionally, the control of nonlinear systems is attempted by
most of these works in continuous time, whereas a few results
[5], [14] are available for discrete time. Lyapunov stability
is demonstrated for closed-loop systems in many of these
works [4], [5].

Adaptive actor-critic NN-based control has emerged as a
promising NN approach due to its potential to find approximate
solutions to dynamic programming. In the actor-critic NN-
based control, a long-term system-performance measure can be
optimized, in contrast to the short-term performance measure
used in classical adaptive and NN control. There are many
variants of adaptive critic NN-based control schemes [2], [16],
[18], [19], [21], [22], namely 1) heuristic dynamic program-
ming (HDP), 2) dual HDP (DHP), and 3) globalized DHP
(GDHP). Lyapunov stability is rarely addressed in adaptive
critic designs [3], [11], [12], [15], [20]. Moreover, an offline
training scheme is usually employed, except in [20]. In [3]
and [20], the convergence issue based on recursive stochastic
algorithms is presented, where convergence with a probability
of one is achieved. In [11], the critic is used to approximate
the Hamilton–Jacobi–Bellman equation, and error convergence
for a linear time-invariant discrete system is only addressed. In
[12], “hard computing techniques” were utilized to verify the
stability for nonlinear systems in continuous time. An algorithm
is presented in [15] in order to approximate the Lyapunov
function by using an adaptive critic NN method.

A novel adaptive NN controller consisting of an action plus
a critic NN is developed in this paper to control a class of
nonlinear discrete-time systems. The proposed approach uti-
lizes a supervised actor-critic NN methodology [23], where an
additional signal is used to evaluate the action NNs (or actors).
The critic NN approximates a certain “strategic” utility function
that is similar to a standard Bellman equation, which is taken as
the long-term performance measure of the system. The action

1083-4419/$25.00 © 2007 IEEE
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NN weights are tuned online by both the critic NN signal
and the filtered tracking error to minimize the strategic utility
function and uncertain system dynamic estimation errors so
that the action NN can generate the optimal control signal. This
optimal action NN control signal combined with an additional
outer-loop conventional control signal is applied as the overall
control input to the nonlinear discrete-time system. The outer-
loop conventional signal allows the action and critic NNs to
learn online while making the system stable. This conventional
signal that uses the tracking error is viewed as the “supervisory”
signal [23].

By selecting the appropriate objective functions for both
critic and action NNs, the closed-loop stability using Lyapunov
is inferred in the presence of NN approximation errors and
unknown yet bounded disturbances for the overall nonlinear
discrete-time system. The selection of such a Lyapunov func-
tion in this paper is a critical part of the stability proof in
comparison with the existing works [3], [11], [12], [15], [20],
and it is rarely straightforward.

Available adaptive critic NN controllers, for instance [21],
employ a backpropagation NN learning scheme to tune the
weights of the action-generating and critic NNs so that an
explicit offline training phase is used, whereas with the pro-
posed scheme, the initial weights can be selected at zero
or random, and they can be tuned online. Additionally, the
“actuator constraints” are considered in this paper, in contrast
with the previous adaptive critic designs. The actuator con-
straints are treated as saturation nonlinearity and introduced
as an auxiliary linear system that is similar to [8], where such
constraints are considered for a linear system. By appropriately
selecting the NN weight updates based on a quadratic perfor-
mance index, an optimal/suboptimal control sequence can be
generated.

In [24], a novel reinforcement-based “output” feedback
controller design was introduced recently for multi-input multi-
output nonlinear discrete-time systems by using Lyapunov
stability analysis. In contrast, the proposed NN controller is
developed for a different class of nonlinear discrete-time sys-
tems by using “state” feedback. The critic and action NN de-
signs are altogether different in the proposed controller design
when compared to [24]. In short, the nonlinear system under
consideration, the overall NN controller design, development,
and associated Lyapunov stability analysis are quite different
here than in [24]. The net result is the simultaneous compensa-
tion of multiple nonlinearities such as unknown dynamics and
actuator constraints, in contrast with all the existing NN con-
troller works [2]–[5], [10]–[12], [14]–[16], [18]–[23], where a
single nonlinearity is normally compensated.

This paper is organized as follows. Section II provides
background on the universal approximation property of NNs,
the definition of uniformly ultimately bounded (UUB), and the
filtered tracking error dynamics. The proposed adaptive critic
NN methodology and the associated NN weight tuning updates
without saturation constraints are presented in Section III.
Section IV details the novel adaptive critic-based NN controller
in the presence of saturation constraints, and its stability analy-
sis is discussed. Simulation results are illustrated in Section V,
whereas Section VI presents the conclusions.

II. BACKGROUNDS AND THE FILTERED ERROR DYNAMICS

A. Approximation Property

For a suitable approximation of unknown nonlinear func-
tions, several NN architectures are currently available. In [6],
it is shown that a continuous function f(x(k)) ∈ C(S) within
a compact subset S of �n can be approximated using a single-
layer feedforward NN as

f (x(k)) = wTφ
(
vTx(k)

)
+ ε (x(k)) (1)

where w and v are the target weights of the hidden to the output
and input to the hidden layers, respectively; φ(vTx(k)) denotes
the vector of activation functions (usually, they are chosen
as sigmoidal functions) at instant k; and ε(x(k)) is the NN
functional approximation error vector. The actual NN output
is defined as

f̂ (x(k)) = ŵT (k)φ
(
vTx(k)

)
(2)

where ŵ(k) is the actual weight matrix. For simplicity,
φ(vTx(k)) is denoted as φ(k).

The input to the hidden-layer weights v is selected at random
initially, and it will not be tuned. The output-layer weights ŵ(k)
are tunable. Then, it is demonstrated in [6] that if the number
of hidden-layer nodes is sufficiently large, the approximation
error ε(x(k)) can be made arbitrarily small on the compact set
so that the bound ‖ε(x(k))‖ ≤ εm holds for all x(k) ∈ S since
the activation function vector will form a basis.

B. Stability of Systems

To formulate the discrete-time controller, the following sta-
bility notion is needed. Consider the nonlinear system given by

x(k + 1) = f (x(k), u(k))

y(k) =h (x(k)) (3)

where x(k) is a state vector, u(k) is the input vector, and y(k)
is the output vector. The solution is said to be UUB if for all
x(k0) = x0, there exists µ ≥ 0 and a number N(µ, x0) such
that ‖x(k)‖ ≤ µ for all k ≥ k0 +N .

C. Nonlinear System Description

Consider the following nonlinear system to be controlled:

x1(k + 1) =x2(k)

...

xn(k + 1) = f (x(k)) + u(k) + d(k) (4)

where x(k) = [xT
1 (k), xT

2 (k), . . . , xT
n (k)]T ∈ �nm with each

xi(k) ∈ �m, i = 1, . . . , n is the state at time instant k;
f(x(k)) ∈ �m is the unknown nonlinear dynamics of the sys-
tem; u(k) ∈ �m is the input; and d(k) ∈ �m is the unknown
but bounded disturbance, whose bound is assumed to be a
known constant ‖d(k)‖ ≤ dm. Several NN learning schemes
are proposed recently in the literature to control the class of
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nonlinear systems described in (4) and [10], but the main con-
tribution of this paper is the adaptive critic NN-based controller
in the presence of magnitude constraints and the associated
stability analysis.

Given a desired trajectory xnd(k) ∈ �m and its past values,
define tracking error ei(k) ∈ �m as

ei(k) = xi(k) − xnd(k + i− n) (5)

and the filtered tracking error r(k) ∈ �m as

r(k) = [Λ I]e(k) (6)

with e(k) = [eT1 (k), eT2 (k), . . . , eTn (k)]T ; e1(k + 1) = e2(k),
where e1(k + 1) is the next future value for error e1(k);
en−1(k), . . . , e1(k) are past values of error en(k); I ∈ �m×m

is an identity matrix; Λ = [λn−1, λn−2, . . . , λ1] ∈ �m×(n−1)m;
and λi ∈ �m×m, i = 1, . . . , (n− 1) is the constant diagonal
positive definite matrix selected such that the eigenvalues are
within a unit disc. Consequently, if the filtered tracking error
r(k) tends to zero, then all the tracking errors go to zero.
Equation (6) can be expressed as

r(k + 1) = f (x(k)) − xnd(k + 1) + λ1en(k) + · · ·
+ λn−1e2(k) + u(k) + d(k). (7)

The control objective is to make all the tracking errors bounded
close to zero and all the internal signals UUB.

D. Basic Controller Design Using Filtered Tracking Error

Define the control input u(k) ∈ �m as

u(k) = xnd(k + 1) − f̂ (x(k)) + lvr(k)
− λ1en(k) − · · · − λn−1e2(k) (8)

where f̂(x(k)) ∈ �m is an estimate of the unknown function
f(x(k)) and lv ∈ �m×m is a diagonal gain matrix. Then, the
closed-loop system becomes

r(k + 1) = lνr(k) − f̃ (x(k)) + d(k) (9)

where the functional estimation error is given by f̃(x(k)) =
f̂(x(k)) − f(x(k)).

Equation (9) relates the filtered tracking error with the func-
tional estimation error. In general, the filtered tracking error
system (9) can also be expressed as

r(k + 1) = lvr(k) + δ0(k) (10)

where δ0(k) = −f̃(x(k)) + d(k). If the functional estimation
error f̃(x(k)) is bounded above such that ‖f̃(x(k))‖ ≤ fM for
some known value fM ∈ �, then the next stability results hold.

Theorem 2.1: Consider the system given by (4). Let the
control action be provided by (8). Assume that the functional
estimation error and the unknown disturbance are bounded. The
filtered tracking error system (7) is stable provided that

0 < lv max < 1 (11)

where lv max ∈ � is the maximum eigenvalue of matrix lv .

Proof: Let us consider the following Lyapunov function
candidate:

J(k) = r(k)T r(k). (12)

The first difference is

∆J(k) = r(k + 1)T r(k + 1) − r(k)T r(k). (13)

Substituting the filtered tracking error dynamics (9) in (13)
results in

∆J(k) =
(
lvr(k) − f̃(x(k)) + d(k)

)T

× (lvr(k) − f̃ (x(k) + d(k)) − rT (k)r(k). (14)

It implies that ∆J(k) ≤ 0 provided that ‖(lvr(k) − f̃(x(k)) +
d(k)‖ ≤ lv max‖r(k)‖ + fM + dM < ‖r(k)‖. This further im-
plies that

‖r(k)‖ < fM + dM

(1 − lv max)
. (15)

The closed-loop system is UUB. �

III. ADAPTIVE NN CONTROLLER DESIGN

To minimize the computational overhead, a single-layer NN
is considered here for both critic and action NNs, and the
NN controller is designed first without considering the input
constraints. A novel strategic utility function is defined, and it
is taken as the long-term performance measure for the system.
The NN critic signal approximates the utility function. The
action NN signal is constructed to minimize this strategic utility
function. By using a quadratic optimization function, the critic
NN and action NN weight tuning laws are derived. Stability
analysis using the Lyapunov direct method is carried out for
the closed-loop system (7) with novel weight tuning updates.
In the next section, the controller design with input constraints
is dealt.

A. Strategic Utility Function

The utility function p(k) = [pi(k)]mi=1 ∈ �m is defined
based on the filtered tracking error r(k), and it is given by

pi(k) =
{

0, if r2i (k) ≤ c
1, if r2i (k) > c

, i = 1, 2, . . . ,m (16)

where pi(k) ∈ �, i = 1, . . . ,m and c ∈ � is a predefined
threshold. The binary utility function p(k) is viewed as the
current system-performance index: pi(k) = 0 stands for good
tracking performance, and pi(k) = 1 stands for poor tracking
performance. The long-term system-performance measure or
the strategic utility function Q′(k) ∈ �m is defined using the
binary utility function as [24]

Q
′
(k) = αNp(k + 1) + αN−1p(k + 2) + · · ·

+ αk+1p(N) + · · · (17)
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where α ∈ � and 0 < α < 1, and N is the horizon. Equation
(17) can also be expressed as Q(k) = minu(k){αQ(k − 1) −
αN+1p(k)}. This measure is similar to the standard Bellman
equation [16], [20].

B. Critic NN

The critic NN is used to approximate the strategic utility
function Q′(k). We define the prediction error [20] as

ec(k) = Q̂(k) − α
(
Q̂(k − 1) − αNp(k)

)
(18)

where

Q̂(k) = ŵT
1 (k)φ1

(
vT
1 x(k)

)
= ŵT

1 (k)φ1(k) (19)

and ec(k) ∈ �m, subscript “c” stands for critic NN, Q̂(k) ∈
�m is the critic signal, ŵ1(k) ∈ �n1×m and v1 ∈ �nm×n1

represent the matrix of weight estimates, φ1(k) ∈ �n1 is the
activation function vector in the hidden layer, n1 is the number
of the nodes in the hidden layer, and the critic NN input is given
by x(k) ∈ �nm. The objective function to be minimized by the
critic NN is defined as

Ec(k) =
1
2
eTc (k)ec(k). (20)

The weight update rule for the critic NN is a gradient-based
adaptation, which is given by

ŵ1(k + 1) = ŵ1(k) + ∆ŵ1(k) (21)

where

∆ŵ1(k) = α1

[
−∂Ec(k)
∂ŵ1(k)

]
(22)

or

ŵ1(k + 1) = ŵ1(k) − α1φ1(k)

×
(
ŵT

1 (k)φ1(k) + αN+1p(k) − αŵT
1 (k − 1)φ1(k − 1)

)T

(23)

where α1 ∈ � is the NN adaptation gain. The critic NN weights
are tuned by the reinforcement learning signal and discounted
values of critic NN past outputs.

C. Action NN

The output of the action NN is to approximate the unknown
nonlinear function f(x(k)) and to provide an optimal control
signal to be part of the overall input u(k) as

f̂(k) = ŵT
2 (k)φ2

(
vT
2 x(k)

)
= ŵT

2 (k)φ2(k) (24)

where ŵ2(k) ∈ �n2×m and v2 ∈ �nm×n2 represent the matrix
of weight estimate, φ2(k) ∈ �n2 is the activation function in
the hidden layer, n2 is the number of nodes in the hidden layer,
and x(k) ∈ �nm is the input to the critic NN.

Suppose that the unknown target output-layer weight for the
action NN is w2; then we have

f(k)=wT
2 φ2

(
vT
2 x(k)

)
+ε2 (x(k))=wT

2 (k)φ2(k)+ε2 (x(k))
(25)

where ε2(x(k)) ∈ �m is the NN approximation error. Combin-
ing (24) and (25), we get

f̃(k) = f̂(k) − f(k) = (ŵ2(k) − w2)
T φ2(k) − ε2 (x(k))

(26)

where f̃(k) ∈ �m is the functional estimation error. The action
NN weights are tuned by using the functional estimation error
f̃(k) and the error between the desired strategic utility function
Qd(k) ∈ Rm and the critic signal Q̂(k). Define

ea(k) = f̃(k) + (Q̂(k) −Qd(k)) (27)

where ea(k) ∈ �m, with subscript “a” standing for the
action NN.

Our desired value for the utility function Qd(k) is “0” [20],
i.e., at every step, then the nonlinear system can track the
reference signal well. Thus, (27) becomes

ea(k) = f̃(k) + Q̂(k). (28)

The objective function to be minimized by the action NN is
given by

Ea(k) =
1
2
eTa (k)ea(k). (29)

The weight update rule for the action NN is also a gradient-
based adaptation, which is defined as

ŵ2(k + 1) = ŵ2(k) + ∆ŵ2(k) (30)

where

∆ŵ2(k) = α2

[
−∂Ea(k)
∂ŵ2(k)

]
(31)

or

ŵ2(k + 1) = ŵ2(k) − α2φ2(k)
(
Q̂(k) + f̃(k)

)T

(32)

where α2 ∈ � is the NN adaptation gain.
The NN weight updating rule in (32) cannot be implemented

in practice since the nonlinear function f(x(k)) is unknown.
However, using (9), the functional estimation error is given by

f̃ (x(k)) = lνr(k) − r(k + 1) + d(k). (33)

Substituting (33) into (32), we get

ŵ2(k + 1) = ŵ2(k) − α2φ2(k)

×
(
Q̂(k) + lνr(k) − r(k + 1) + d(k)

)T

. (34)
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Fig. 1. Adaptive critic NN-based controller structure.

To implement the weight update rule, the unknown but bounded
disturbance d(k) is taken to be zero. Then, (34) is rewritten as

ŵ2(k+1) = ŵ2(k)−α2φ2(k)
(
Q̂(k)+lνr(k)−r(k+1)

)T

.

(35)

Coincidentally, after replacing the functional approximation
error, the weight update for the action NN is tuned by the critic
NN output, current filtered tracking error, and a conventional
outer-loop signal. In the supervised actor-critic NN architecture
[23], the supervisor supplies an additional source of evaluation
feedback or reward that simplifies the task faced by the learning
system. As the actor gains proficiency, the supervisor gradually
withdraws the additional feedback to shape the learned policy
toward optimality. This can be viewed through the function ap-
proximation error. As the control signal from the actor network
becomes close to optimal, the approximation error decreases
considerably due to NN learning phenomenon. Consequently,
the tracking error will decrease and remove the supervisor
out of the tuning loop. The addition of outer-loop supervisory
feedback signal was not well explained in the NN control
literature until now [10]. In this case, due to the nature of the
objective function candidate in [24], it turns out that the NN
weight tuning of the actor is simply a combination of tracking
error information, but different objective functions can result in
different signals as in [24]. The next step is to demonstrate the
closed-loop stability of the overall system.

D. NN Controller Structure and Stability Analysis

Assumption 1 (Bounded Ideal Weights): Let w1 and w2 be
the unknown output-layer target NN weights for the critic
and action-generating NNs, and assume that they are bounded
above so that

‖w1‖ ≤ w1m ‖w2‖ ≤ w2m (36)

where w1m ∈ � and w2m ∈ � represent the bounds on the
unknown weights where the Frobenius norm [10] is used

throughout this paper. The error in weights during estimation
is given by

w̃i(k) = ŵi(k) − wi, i = 1, 2. (37)

Fact 1: The activation functions are bounded by known
positive values so that

‖φi(k)‖ ≤ φim, i = 1, 2 (38)

where φim ∈ �, i = 1, 2 is the upper bound for φi(k), i = 1, 2.
Let the control input u(k) be selected by (8) along with the

unknown function estimation (24); then, the filtered tracking
error dynamics (7) becomes

r(k + 1) = lvr(k) − ζ2(k) + ε2 (x(k)) + d(k) (39)

where ζ2(k) = w̃T
2 (k)φ2(k) and ε2(x(k)) ∈ �m is the NN

approximation error vector.
Assumption 2 (Bounded NN Approximation Error): The NN

approximation error ε2(x(k)) is bounded over the compact set
S by ε2m.

Remark 1: It is shown in [6] that if the number of hidden-
layer nodes is sufficiently large, the approximation error can be
made arbitrarily small on the compact set. Moreover, Assump-
tions 1 and 2 do not guarantee that the functional estimation
error f̃(x(k)) is bounded unless the weights estimation ŵ2(k)
is bounded. The boundedness of the weight estimation error is
demonstrated using Lyapunov analysis.

The structure of the proposed adaptive critic NN controller
is depicted in Fig. 1. In the NN controller structure, an inner
action-generating NN loop compensates the nonlinear dynam-
ics of the system. The outer loop designed via Lyapunov
analysis guarantees the stability and accuracy in following the
desired trajectory, which is viewed as the supervisor’s evalua-
tion signal.

It is required to demonstrate that the filtered tracking error
r(k) is suitably small and that the NN weights ŵ1(k) and ŵ2(k)
remain bounded. This can be achieved by suitably choosing
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the control parameters and adaptation gains. Their selection is
given by the direct Lyapunov method.

Theorem 3.1: Let the desired trajectory xnd(k) and its past
values be bounded. In addition, let Assumptions 1 and 2 hold,
and the disturbance bound dm is a known constant. Let the critic
NN weight tuning be given by (23) and the action NN weight
tuning be provided by (35). Then, the filtered tracking error
r(k) and the NN weight estimates ŵ1(k) and ŵ2(k) are UUB,
with the bounds specifically given by (A15)–(A17) provided
that the controller design parameters are selected as

(a) α1 ‖φ1(k)‖2 < 1 (40)

(b) α2 ‖φ2(k)‖2 < 1 (41)

(c) 0 < α <
√

2
2

(42)

(d) 0 < lv max <

√
3

3
(43)

where lv max ∈ � is the maximum singular value of the gain
matrix, lv .

Proof: See the Appendix. �
Remark 2: It is important to note that in this theorem, there is

no CE and LIP assumptions for the NN controller, in contrast to
standard work in discrete-time adaptive control [1]. In the latter
one, a parameter identifier is first designed, and the parameter
estimation errors are shown to converge to small values by
using a Lyapunov function. Then, in the tracking proof, it is
assumed that the parameter estimates are exact by invoking a
CE assumption, and another Lyapunov function that weighs
only the tracking error terms is selected to demonstrate the
closed-loop stability and tracking performance. In contrast to
our proof, the Lyapunov function shown in the Appendix is of
the form of (A1), which weighs the filtered tracking errors and
the NN weight estimation errors w̃1(k) and w̃2(k). The proof
is exceedingly complex due to the presence of several different
variables. However, it obviates the need for the CE assumption,
and it allows weight-tuning algorithms to be derived during
the proof by minimizing certain quadratic objective functions,
which were not selected a priori in an ad hoc manner.

Remark 3: The NN weight updating rules (23) and (35) are
much simpler than that in [10] since they do not include an extra
discrete-time ε-modification term [10], which is normally used
to provide robustness due to the coupling in the proof between
the tracking errors and NN weight estimation error terms. The
Lyapunov proof demonstrates that the persistence-of-excitation
condition is relaxed without the additional term in the weight
tuning.

Remark 4: Both NN weight tuning rules (23) and (35) are
updated online, in contrast to the offline training in previous
works.

Remark 5: Condition (40) can be verified easily. For in-
stance, if the hidden layer of the critic NN consists of n1 nodes,
with the hyperbolic tangent sigmoid function as its activation
function, then ‖φ1(·)‖2 ≤ n1. The NN adaptation gain α1 can
be selected as 0 < α1 < 1/n1 to satisfy (40). Similar analysis
can be performed to obtain the NN adaptation gain α2.

Remark 6: Controller parameter lv max and parameter α have
to be selected using (42) and (43) in order for the closed-loop

system to be stable. This outer-loop signal is viewed as the
supervisor’s evaluation feedback to the actor and the critic.

Remark 7: The weights of the action-generating and critic
NNs can be initialized at zero, and stability will be maintained
by the outer-loop conventional controller until the NNs learn.
This means that there is no explicit offline learning phase
needed.

Remark 8: To the best of our knowledge, there is no infor-
mation currently available to decide the number of hidden-layer
neurons for the NN structure. However, the number of hidden-
layer neurons required for suitable approximation can be ad-
dressed by using the stability of the closed-loop system and the
error bounds of the NNs. From (40) and (41) and Remark 5,
to make the closed-loop system stable, the numbers of hidden-
layer nodes can be selected as n1 < (1/α1) and n2 < (1/α2)
once the NN adaptation gains α1 and α2 are selected. However,
in order to get better approximation performance and according
to [6], the hidden-layer nodes have to be selected to be large
enough to make the approximation error ε(k) approach zero.
To balance stability and good approximation requirements, we
start with a small number of nodes and increase it until the
controller achieves satisfactory performance.

The adaptive critic NN controller does not include the sat-
uration constraint for the control input. To embed the input
constraints as saturation nonlinearity in the controller structure,
an auxiliary linear system [8] is introduced, and the stability of
the closed system is demonstrated as given next.

IV. ADAPTIVE NN DESIGN WITH

SATURATION NONLINEARITY

A. Design of the Auxiliary Linear System

Define the auxiliary control input v(k) as

v(k) = xnd(k + 1) − f̂ (x(k)) + lvr(k)

− λ1en(k) − · · · − λn−1e2(k) (44)

where f̂(x(k)) is an estimate of the unknown function f(x(k))
and lv ∈ �m×m is a diagonal gain matrix. The actual con-
trol input after the incorporation of saturation constraints is
selected as

u(k) =
{
v(k), if ‖v(k)‖ ≤ umax

umaxsgn (v(k)) , if ‖v(k)‖ > umax

(45)

where umax ∈ � is the upper bound for the control input u(k).
Then, the closed-loop system becomes

r(k + 1) = lvr(k) − f̃(x(k)) + d(k) + ∆u(k) (46)

where the functional estimation error is given by f̃(x(k)) =
f̂(x(k)) − f(x(k)) and ∆u(k) = u(k) − v(k). To remove the
effect of ∆u(k) ∈ �m, which can be considered as a distur-
bance, we generate a signal e∆(k) ∈ �m as the output of a
difference equation

e∆(k + 1) = lve∆(k) + ∆u(k) (47)

with e∆(k0) = 0, where k0 is the starting time instant.
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Fig. 2. Adaptive critic NN controller structure with input constraints.

Define now

eu(k) = r(k) − e∆(k) (48)

we get

eu(k + 1) = lveu(k) − f̃ (x(k)) + d(k). (49)

The auxiliary linear error system given by (47) is aimed
at proving the stability of the filtered tracking error r(k) and
taking care of the effect of ∆u. In the remainder of this paper,
(49) is used to focus on selecting NN tuning algorithms that
guarantee the stability of the auxiliary error eu(k). Once eu(k)
is proven stable, it is required to show that the filtered tracking
error system r(k) is stable.

B. Adaptive Critic NN Controller Structure With Saturation

The critic NN ŵT
1 (k)φ1(k) design is the same as that of

Section III. The action NN ŵT
3 (k)φ3(k) is also similar to that

in Section III, except that an auxiliary error signal eu(k) is now
used, instead of the filtered tracking error r(k), to accommodate
the input constraints. The procedure of obtaining the action NN
weight update is very similar to that in Section III, and it is
given by

ŵ3(k + 1) = ŵ3(k) − α3φ3(k)

×
(
Q̂(k) + lνeu(k) − eu(k + 1)

)T

(50)

where ŵ3(k) ∈ �n3×m represents the matrix of the weight
estimate, φ3(k) ∈ �n3 is the activation function in the hidden
layer, n3 is the number of the nodes in the hidden layer, and
x(k) ∈ �nm is the input to the critic NN. Here, the auxiliary
signal is utilized, instead of the tracking error.

C. Closed-Loop System Stability Analysis

Assumption 3 (Bounded Ideal Weight): Let w3 be the un-
known output-layer target NN weight for the action NN, and
assume that it is bounded above so that

‖w3‖ ≤ w3m (51)

where w3m ∈ �+ is the maximum bound on the unknown
weight. Then, the error in weight during estimation is given by

w̃3(k) = ŵi(k) − w3. (52)

Fact 2: The activation function is bounded by known posi-
tive value so that

‖φ3(k)‖ ≤ φ3m (53)

where φ3m ∈ � is the upper bound for φ3(k).
Let the auxiliary control input v(k) be selected by (44) and

actual control input be chosen as (45); the auxiliary error system
is given as

eu(k + 1) = lveu(k) − ζ3(k) + ε3 (x(k)) + d(k) (54)

where ζ3(k) is defined by

ζ3(k) = w̃T
3 (k)φ3(k) (55)

and ε3(x(k)) ∈ �m is the NN approximation error.
Assumption 4 (Bounded NN Approximation Error): The NN

approximation error ε3(x(k)) is bounded over the compact set
S by ε3m.

The structure of the proposed adaptive critic NN controller
with magnitude constraints is shown in Fig. 2, in contrast with
Fig. 1. The next theorem presents how to select the controller
parameters and the adaptation gains to ensure that the perfor-
mance of the closed-loop system is guaranteed and that all the
internal signals are UUB.

Theorem 4.1: Consider the system given in (4) and the
control input given by (45). Let the hypotheses presented in
Theorem 3.1 and Assumptions 3 and 4 hold. Let the critic NN
ŵT

1 (k)φ1(k) weight tuning be (23) and the action-generating
NN ŵT

3 (k)φ3(k) weight tuning be provided by (50). Then,
the auxiliary error eu(k) and the NN weight estimates ŵ1(k)
and ŵ3(k) are UUB, with the bounds specifically given by
(A19)–(A21) provided that the design parameters are selected
as (40), (42), (43), and

α3 ‖φ3(k)‖2 < 1. (56)
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Fig. 3. Performance of the NN controller.

Proof: See the Appendix. �
Remark 9: From Theorem 4.1, the UUB of the filtered

tracking error r(k) is derived in the Appendix.
Remark 10: The critic NN weight tuning is performed now

using the auxiliary error signal, which is obtained from the
filtered tracking error and the output of the linear system that
is driven by ∆u(k).

V. SIMULATION

The nonlinear system is described by

x1(k + 1) =x2(k)

x2(k + 1) = f (x(k)) + u(k) + d(k) (57)

where

f (x(k)) = −5
8

[
x1(k)

1 + x2
2(k)

]
+ 0.3x2(k).

The objective is to make the state x2(k) track a reference
signal using the proposed adaptive critic NN controller with
input saturation. The reference signal used was selected as

x2d =




sin (ωkT + ξ) ,
ω = 0.1, ξ = π

2 , 0 ≤ k ≤ 3000
−1, 3000 < k ≤ 4000

or 5000 < k ≤ 6000
1, 4000 < k ≤ 5000

(58)

where the desired signal is a sine wave and a unit step signal.
The two different reference signals are used to evaluate the
learning ability of the adaptive critic NN controller.

The sampling interval T is taken as 50 ms, and the white
Gaussian noise with a standard deviation of 0.005 is added to
the system. The time duration is taken to be 300 s. The unknown
disturbance is taken as

d(k) =
{

0, k < 2000
1.5, 2000 ≤ k ≤ 6000.

(59)

Fig. 4. Tracking error.

The gain of the PD controller is selected as lv = 0.1, with
λ = 0.2. The actuator limit for the control signal is set at 3.0 and
c = 0.0025. Both critic NN ŵT

1 φ1(k) and action NN ŵT
3 φ3(k)

contain ten nodes in the hidden layer. For weight updating, the
gains are selected as α1 = α3 = 0.1 and α = 0.5. The initial
weights are selected at random from [0, 1], and hyperbolic
tangent sigmoid functions are employed. The initial states are
set at zero.

Fig. 3 illustrates the good tracking performance of the pro-
posed adaptive critic NN controller with input saturation. The
transient observed during the initial phase of the simulation
is the result of no offline learning, and the NN is trying to
learn the unknown dynamics online. However, within a very
short time, the NN learns, as demonstrated in the simulation.
When we introduce the unknown but bounded disturbance in
the system, a large spike, which is indicative of the disturbance,
is observed. The tracking error quickly converges close to zero
after the application of the disturbance, which indicates that
the controller has good disturbance rejection. This phenomenon
also demonstrates the good learning ability of the proposed
adaptive critic NN controller. The subtle chattering observed
in the tracking error shown in Fig. 4 is due to the presence of
an unknown white noise. In fact, the tracking error is close to
zero, except at some points where the reference signal is discon-
tinuous. Fig. 5 presents the norm of the output-layer weights,
where the weights are bounded. Fig. 6 shows the associated NN
control input, where it is bounded by a magnitude of three.

To show the contribution of the NNs in the controller, the
NN inner loop (Fig. 2) is removed, and the outer loop is
kept, which leads to a proportional and derivative (PD) type
conventional controller. The controller parameters were not
altered in both cases. From Figs. 7 and 8, it is clear that the
tracking performance has deteriorated even though the track-
ing error is bounded. This clearly demonstrates that the NNs
are able to compensate the unknown dynamics by providing
an additional signal. Moreover, the outer-loop PD controller
provides a stable system initially when the NN begins to learn.
The PD control input is depicted in Fig. 9, where it is bounded
as expected.
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Fig. 5. Norm of the output-layer weights of both NNs.

Fig. 6. Control input.

Fig. 7. Performance of the PD controller.

Fig. 8. Tracking error.

Fig. 9. PD control input.

VI. CONCLUSION

This paper proposes an adaptive NN-based controller using
reinforcement learning for a class of nonlinear systems in the
presence of magnitude constraints represented as saturation
nonlinearity. This adaptive NN-based approach does not require
information about the system dynamics. The adaptive critic
NN controller includes an action NN for compensating the un-
known dynamics, a critic signal for approximating the strategic
utility function, and an outer PD control loop. The tuning of the
action-generating NN is performed online without an explicit
offline learning phase. The outer-loop conventional signal can
be viewed as the supervisor’s evaluation feedback signal, which
will allow the tuning of NN weights online rather than offline
training, which is usually deployed in the adaptive actor-critic
NN architecture.

The input magnitude constraint is modeled as saturation non-
linearity, and it was treated by converting the nonlinearity into
an input disturbance, which was suitably accommodated by the
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adaptive weight tuning law. The proposed adaptive critic NN
controller was applied to a nonlinear system with and without
saturation, and the controller performance was demonstrated.
Results demonstrate that the Lyapunov-based adaptive critic
design renders satisfactory performance while ensuring closed-
loop stability.

APPENDIX

Proof of Theorem 3.1: Define the Lyapunov function
candidate

J(k) =
1
γ1
rT (k)r(k) +

1
α1

tr
(
w̃T

1 (k)w̃1(k)
)

+
1
γ2

‖ζ1(k − 1)‖2 +
1
γ3α2

tr
(
w̃T

2 (k)w̃2(k)
)

(A1)

where ζ1(k − 1) = (ŵ1(k − 1) − w1)Tφ1(k − 1) = w̃T
1 (k −

1)φ1(k − 1) and 0 < γi, i = 1, 2, 3. The first difference of the
Lyapunov function is calculated as

∆J(k) = ∆J1(k) + ∆J2(k) + ∆J3(k) + ∆J4(k). (A2)

∆J1(k) is obtained using the filtered tracking error dynamics
(39) as

∆J1(k) =
1
γ1

(
rT (k + 1)r(k + 1) − rT (k)r(k)

)
=

1
γ1

(
(lvr(k) − ζ2(k) + ε2 (x(k)) + d(k))T

× (
lvr(k) − ζ2(k) + ε2 (x(k)) + d(k)

)
− rT (k)r(k)

)
≤ 3
γ1

( (
l2v max − 1

3

)
‖r(k)‖2

+ ‖ζ2(k)‖2 + ‖ε2(k) + d(k)‖2

)
(A3)

where lv max ∈ R is the maximum eigenvalue of matrix lv ∈
Rm×m. Now, take the second term in the first difference of (A2)
and rewrite it as

∆J2(k) =
1
α1

tr
[
w̃T

1 (k + 1)w̃1(k + 1) − w̃T
1 (k)w̃1(k)

]
.

(A4)

Substituting the NN weight updates from (23) yields

w̃1(k + 1) =
(
I − α1φ1(k)φT

1 (k)
)
w̃1(k) − α1φ1(k)

× (
wT

1 (k)φ1(k) + αN+1p(k)

−αŵT
1 (k − 1)φ1(k − 1)

)T
. (A5)

Now, substituting (A5) into (A4) and combining them, we get

∆J2(k) ≤ − (
1 − α1φ

T
1 (k)φ1(k)

)
× ∥∥ζ1(k) + wT

1 (k)φ1(k) + αN+1p(k) − αŵT
1

×(k − 1)φ1(k − 1)‖2 − ‖ζ1(k)‖2

+ 2
∥∥wT

1 (k)φ1(k)+ αN+1p(k)− αwT
1 φ1(k − 1)

∥∥2

+ 2α2 ‖ζ1(k − 1)‖2 . (A6)

Now, taking the third term in (A2), we get

∆J3(k) =
1
γ2

(
‖ζ1(k)‖2 − ‖ζ1(k − 1)‖2

)
. (A7)

The fourth term in (A2) is expanded as

∆J3(k) =
1
γ3α2

tr
[
w̃T

2 (k + 1)w̃2(k + 1) − w̃T
2 (k)w̃2(k)

]
.

(A8)

Substituting the weight updates for the NN (35) and simplifying
it, we get

∆J4(k) ≤ 1
γ3

{
− (

1 − α2φ
T
2 (k)φ2(k)

)
× ∥∥ζ2(k) + ŵT

1 (k)φ1(k)

− (ε2 (x(k)) + d(k))‖2 − ‖ζ2(k)‖2
}

+
2
γ3

{∥∥wT
1 (k)φ1(k) − (ε2 (x(k)) + d(k))

∥∥2

+ ‖ζ1(k)‖2
}
. (A9)

Combining (A3), (A6), (A7), and (A9) to get the first differ-
ence of the Lyapunov (A2), we get

∆J(k) ≤ −1
γ1

(
1−3l2v max

)‖r(k)‖2−
(
1− 1
γ2

− 2
γ3

)
‖ζ1(k)‖2

−
(

1
γ3

− 3
γ1

)
‖ζ2(k)‖2−

(
1
γ2

− 2α2

)
‖ζ1(k − 1)‖2

− (
1 − α1φ

T
1 (k)φ1(k)

)
× ∥∥ζ1(k) + wT

1 (k)φ1(k) + αN+1p(k)

− αŵT
1 (k − 1)φ1(k − 1)

∥∥2

− 1
γ3

{(
1 − α2φ

T
2 (k)φ2(k)

)
×∥∥ζ2(k)+ ŵT

1(k)φ1(k)−(ε2(x(k))+ d(k))
∥∥2

}
+ 2

∥∥wT
1 (k)φ1(k) + αN+1p(k) − αwT

1 φ1(k − 1)
∥∥2

+
2
γ3

{∥∥wT
1 (k)φ1(k) − (ε2 (x(k)) + d(k))

∥∥2
}

+
3
γ1

‖ε2(k) + d(k)‖2 . (A10)

Choose



γ1 > 3γ3

γ2 =
√

2
2 α

γ3 >
2

1−2α2

(A11)
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and define

D2 = 2
∥∥wT

1 (k)φ1(k) + αN+1p(k) − αwT
1 φ1(k − 1)

∥∥2

+
2
γ3

{∥∥wT
1 (k)φ1(k) − (ε2 (x(k)) + d(k))

∥∥2
}

+
3
γ1

‖ε2(k) + d(k)‖2 . (A12)

The upper bound Dm for D is

D2 ≤ D2
m = 6

(
1 + α2 +

1
γ3

)
w2

1mφ
2
1m

+ 6
(

1
γ1

+
1
γ3

)(
ε22m + d2m

)
. (A13)

Using (A11) and (A12) to rewrite (A10), we get

∆J(k) ≤ −1
γ1

(
1−3l2v max

) ‖r(k)‖2−
(
1− 1
γ2

− 2
γ3

)
‖ζ1(k)‖2

−
(

1
γ3

− 3
γ1

)
‖ζ2(k)‖2 − (

1 − α1φ
T
1 (k)φ1(k)

)
× ∥∥ζ1(k) + wT

1 (k)φ1(k) + αN+1p(k)

− αŵT
1 (k − 1)φ1(k − 1)

∥∥2

− 1
γ3

{(
1 − α2φ

T
2 (k)φ2(k)

)
× ∥∥ζ2(k) + ŵT

1 (k)φ1(k)

− (ε2 (x(k)) + d(k))‖2
}

+D2. (A14)

This further implies that the first difference ∆J(k) ≤ 0 as long
as (40)–(43) hold and

‖r(k)‖ >
√

γ1
1 − 3l2v max

Dm (A15)

or

‖ζ1(k)‖ > Dm√
1 − 1

γ2
− 2

γ3

(A16)

or

‖ζ2(k)‖ > Dm√
1
γ3

− 3
γ1

. (A17)

According to a standard Lyapunov extension theorem [25],
this demonstrates that the filtered tracking error and the error
in weight estimates are UUB. The boundedness of ‖ζ1(k)‖ and
‖ζ2(k)‖ implies that ‖w̃1(k)‖ and ‖w̃2(k)‖ are bounded, and
this further implies that the weight estimates ŵ1(k) and ŵ2(k)
are bounded.

Note: Condition (A11) is easy to check. For instance, we
could choose α = 1/2, γ1 = 16, γ2 =

√
2/4, and γ3 = 5 to

satisfy (A11). �

Proof of Theorem 4.1: Define the Lyapunov function can-
didate as

J(k) =
1
γ1
eTu (k)eu(k) +

1
α1

tr
(
w̃T

1 (k)w̃1(k)
)

+
1
γ2

‖ζ1(k)‖2 +
1
γ3α3

tr
(
w̃T

3 (k)w̃3(k)
)
. (A18)

The proof is similar to that of Theorem 3.1, so it is omitted.
The first difference ∆J(k) ≤ 0 as long as (40), (42), (43), (56),
and (A11) are satisfied and

‖eu(k)‖ >
√

γ1
1 − 3l2v max

Dm (A19)

or

‖ζ1(k)‖ > Dm√
1 − 1

γ2
− 2

γ3

(A20)

or

‖ζ3(k)‖ > Dm√
1
γ3

− 3
γ1

(A21)

where

ζ3(k) = (ŵ3(k) − w3)
T φ3(k) = w̃T

3 (k)φ3(k). (A22)

According to a standard Lyapunov extension theorem [25], this
demonstrates that the auxiliary error and the error in weight
estimates are UUB. The boundedness of ‖ζ1(k)‖ and ‖ζ3(k)‖
implies that ‖w̃1(k)‖ and ‖w̃3(k)‖ are bounded, and this further
implies that the weight estimates ŵ1(k) and ŵ3(k) are bounded.

The next step is to show the filtered tracking error r(k) is
bounded. Here, two cases are being discussed. The first is when
‖v(k)‖ ≤ umax, and the second is when ‖v(k)‖ > umax.

Case 1: ‖v(k)‖ ≤ umax

If ‖v(k)‖ ≤ umax, then u(k) = v(k). The closed-loop error
system (31) becomes

r(k + 1) = lvr(k) − ζ2(k) + ε2 (x(k)) + d(k). (A23)

This is a linear system driven by function estimation error
and disturbances. Since the disturbances are bounded and the
weight estimation error is shown to be bounded above, the
filtered tracking error system is driven by bounded inputs.
Therefore, the filtered tracking error is bounded; hence, all the
tracking errors are bounded.

Case 2: ‖v(k)‖ > umax

If ‖v(k)‖ > umax, then u(k) = umaxsgn(v(k)). For the non-
linear system (4), the tracking error should be in the form of

en(k + 1) =xn(k + 1) − xnd(k + 1)

= f (x(k)) + umax sgn(v(k)) + d(k)−xnd(k + 1).

(A24)
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Over a compact set, the smooth function is bounded by Fmax,
and the desired trajectory is bounded by xdmax. Then, we
obtain the upper bound of en(k), i.e.,

‖en(k)‖ ≤ Fmax + umax + dM + xdmax. (A25)

Based on the definition of the filtered tracking error of (6) and
en(k) having an upper bound, in this case, the filtered tracking
error is UUB. Considering cases 1 and 2, the proof of the UUB
of the filtered tracking error is complete. �
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