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Regulation of Na,K-ATPase by PLMS, the Phospholemman-like
Protein from Shark
MOLECULAR CLONING, SEQUENCE, EXPRESSION, CELLULAR DISTRIBUTION,
AND FUNCTIONAL EFFECTS OF PLMS*
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Yasser A. Mahmmoud‡, Gordon Cramb§, Arvid B. Maunsbach¶, Christopher P. Cutler§,
Lara Meischke§, and Flemming Cornelius‡�

From the ‡Department of Biophysics, University of Aarhus, Ole Worms Allé 185, DK-8000 Aarhus C, Denmark, ¶The
Water and Salt Research Centre, Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus
C, Denmark, and the §School of Biology, Bute Medical Bldgs., University of St-Andrews, Fife KY16 9TS, United Kingdom

In Na,K-ATPase membrane preparations from shark
rectal glands, we have previously identified an FXYD
domain-containing protein, phospholemman-like pro-
tein from shark, PLMS. This protein was shown to asso-
ciate and modulate shark Na,K-ATPase activity in vitro.
Here we describe the complete coding sequence, expres-
sion, and cellular localization of PLMS in the rectal
gland of the shark Squalus acanthias. The mature pro-
tein contained 74 amino acids, including the N-terminal
FXYD motif and a C-terminal protein kinase multisite
phosphorylation motif. The sequence is preceded by a 20
amino acid candidate cleavable signal sequence. Immu-
nogold labeling of the Na,K-ATPase �-subunit and PLMS
showed the presence of � and PLMS in the basolateral
membranes of the rectal gland cells and suggested their
partial colocalization. Furthermore, through controlled
proteolysis, the C terminus of PLMS containing the pro-
tein kinase phosphorylation domain can be specifically
cleaved. Removal of this domain resulted in stimulation
of maximal Na,K-ATPase activity, as well as several par-
tial reactions. Both the E1�P 3 E2-P reaction, which is
partially rate-limiting in shark, and the K� deocclusion
reaction, E2(K) 3 E1, are accelerated. The latter may
explain the finding that the apparent Na� affinity was
increased by the specific C-terminal PLMS truncation.
Thus, these data are consistent with a model where in-
teraction of the phosphorylation domain of PLMS with
the Na,K-ATPase �-subunit is important for the modula-
tion of shark Na,K-ATPase activity.

The Na,K-ATPase is the enzyme responsible for active trans-
port of Na� and K� across the plasma membranes of animal
cells (for recent review, see Ref. 1). It establishes and maintains
the electrochemical gradients for Na� and K� responsible for
generation of a resting membrane potential necessary for ex-

citability of muscle and nerve cells, co- and counter-transport of
ions and nutrient molecules across the cell membrane, as well
as the regulation of cell volume. The enzyme is composed of two
essential subunits; a catalytic �-subunit, which undergoes con-
formational changes that couple ATP hydrolysis to ion trans-
port, and the heavily glycosylated �-subunit responsible for
maturation, assembly, and membrane targeting of the enzyme.
Different isoforms of the �- and �-subunit have been identi-
fied, and these have unique kinetic properties and tissue
distributions.

As a housekeeping enzyme the regulation of the Na,K-
ATPase is very complex and occurs at many different levels,
including both rapid (short term) and sustained (long term)
hormonal control. Recently, considerable interest have been
directed at studying the role of protein-protein interactions in
the acute hormonal regulation of Na,K-ATPase activity. In-
deed, regulation of transport ATPases by interaction with
small regulatory proteins is a well known mechanism to
achieve modulation of ATPase activity in vivo (for review see
Ref. 2). Such interactions are especially well described for the
regulation of SERCA1 by phospholamban (PLN) and sarcolipin
(3–7).

The small protein called the �-subunit is the first example of
a small single transmembrane protein interacting with and
regulating Na,K-ATPase (8–10). The �-subunit has been
shown to modulate Na,K-ATPase activity in the kidney by
affecting the E2/E1 equilibrium toward E1, thus regulating the
affinity for ATP at its low affinity site and the cytoplasmic Na�

and K� competition (11). The �-subunit has a highly distinct
distribution along different parts of the nephron allowing dif-
ferential regulation of ion transport along different nephron
segments (12).

The �-subunit is a member of a family of small hydrophobic
proteins, now termed the FXYD domain-containing protein
family (13). This family includes phospholemman (PLM or
FXYD1) (14), the �-subunit (FXYD2) (15), mammary tumor
protein of 8-kDa molecular mass (MAT-8 or FXYD3) (16), chan-
nel-inducing factor (CHIF or FXYD4) (17), related to ion chan-
nel (RIC or FYXD5) (18), as well as FXYD6 and FXYD7.

Until recently the physiological functions of the FXYD pro-
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teins (except FXYD2) were unknown. However, it has now
become evident that they are tissue-specific regulators of ion
transporters (see recent reviews, Refs. 19 and 20). Originally,
this idea was substantiated by the identification of a PLM
homologue (phospholemman-like protein from shark, PLMS)
that was shown to specifically interact with and modulate
Na,K-ATPase in the shark rectal gland (21). Subsequent inves-
tigations by Crambert et al. (22), who used a co-expression
system to study the effects of mammalian FXYD1 on Na,K-
ATPase activity, indicated that PLM interacts with and regu-
lates Na,K-ATPase isoforms. Indeed, both FXYD 4 (CHIF) and
FXYD7 have been recently reported to be tissue-specific regu-
lators of Na,K-ATPase (23, 24). Therefore, it seems conceivable
that most, if not all, members of the FXYD protein family are
tissue-specific regulators of Na,K-ATPase.

The regulatory interaction of Na,K-ATPase with FXYD pro-
teins seems to play an important role in cellular physiology and
pathophysiology. For instance, the physiological relevance of
the �-subunit has recently been substantiated by identification
of a point mutation of a glycine residue, which is highly con-
served among all FXYD proteins, which correlates with a renal
magnesium deficiency (25). In addition, phenotypic analysis of
CHIF knockout mice indicated that CHIF plays a vital role in the
tolerance to high K� loading (26). Thus, characterization and
localization of FXYD proteins in different tissues represents an
important aim in identifying regulatory mechanisms of ion trans-
port under physiological and pathophysiological states.

Little is known about the three-dimensional functional in-
teractions leading to regulation of the Na,K-ATPase by FXYD
proteins. Spatial localization of the �-subunit has been indi-
rectly inferred from cryo-electron microscopy of two-dimen-
sional crystals (27) or from thermal denaturation experiments
(28). They seem to indicate that the �-subunit is associated
with the C terminus of the �-subunit being located either
between the M2/M9 or the M9/M10 transmembrane segments.
Recently, the kinetic effects of � on Na,K-ATPase were allo-
cated to distinct domains within the �-subunit (29). Also, mu-
tagenesis studies of both the �-subunit and CHIF indicated
that the FXYD motif was important for long term and stable
association with the �-subunit, whereas the basic residues
located at the C terminus of CHIF are not necessary for asso-
ciation but are important determinants for the functional ef-
fects of CHIF on Na,K-ATPase (23). Recently it was demon-
strated that residues in the transmembrane segment of � and
CHIF are important for their association with and regulation of
the Na,K-ATPase (30).

PLM and its homologue PLMS are the only members of the
FXYD family known to be phosphorylated by protein kinases.
The C terminus of PLMS is heavily phosphorylated by PKC
(21), as is the case for PLM (14). Co-immunoprecipitation ex-
periments demonstrated that dephosphorylated PLMS associ-
ated more strongly with the �-subunit than PKC-phosphoryl-
ated PLMS (21). This suggests that the interaction between
PLMS and the shark �-subunit could be controlled by protein
kinase-mediated phosphorylation reactions in a similar way to
that proposed for the phospholamban (PLN) regulation of the
Ca-ATPase in cardiac tissue in response to hormonal stimula-
tion (3–7). Furthermore, PKC phosphorylation of the C-termi-
nal cytoplasmic domain of PLMS, or disruption of interactions
within the transmembrane domain by treatment with non-
solubilizing concentrations of the non-ionic detergent C12E8

have been shown to result in activation of the shark Na,K-
ATPase by relieving the inhibitory effect of PLMS (21). This
again emphasizes the implication of multiple domain interac-
tion between FXYD regulatory proteins and Na,K-ATPase, as
is the case for PLN regulation of Ca-ATPase.

In the present study we aim to further characterize the
molecular interactions that result in the regulation of shark
Na,K-ATPase by PLMS. To begin this, we have first cloned
PLMS and determined its primary amino acid sequence from
cDNA. In addition, we have characterized the cellular distri-
bution of both PLMS and the �-subunit in rectal gland cells
using immunocytochemical methods. Finally, through con-
trolled proteolysis we have been able to preferentially cleave a
5-kDa fragment from the C terminus of PLMS, which contains
the protein kinase phosphorylation sites. Using this approach,
we have characterized the functional effects of the interaction
between the C-terminal domain of PLMS and shark Na,K-
ATPase. Some results of this study have been previously re-
ported (31).

EXPERIMENTAL PROCEDURES

Total RNA Extraction—Total RNA was extracted using a modifica-
tion of the Chomczynski and Sacchi method (32) as described previously
(33). In brief, tissues were collected and rapidly frozen in liquid nitrogen
before transfer and storage at �80 °C. The tissue was pulverized using
a mortar and pestle and then homogenized in 10 volumes (w/v) of 4 M

guanidinium isothiocyanate, 25 mM sodium citrate, 0.5% (v/v) Sarkosyl,
and 90 mM 2-mercaptoethanol using a Polytron PT 10 homogenizer
(Kinematica Ltd.) set at position 5, for 2 � 20–30 s. Following homog-
enization, total RNA was extracted by the sequential addition of 0.1
volume of 2 M sodium acetate, pH 4.0, 0.5 volume of water-saturated
phenol, and finally 0.2 volume of 1-bromo-3-chloropropane. Tubes were
vortexed briefly between the additions of each solution and then cen-
trifuged at 3900 � g for 30 min at 4 °C in a Beckman J6-MC centrifuge
(Beckman Instruments Inc.). The upper aqueous phase was carefully
transferred to a fresh tube, and then 2.5 volumes of 2-propanol and 0.2
volume of 1.2 M NaCl, 0.8 M sodium citrate, pH 7.0, was added sequen-
tially with vortexing. The resulting solution was incubated at room
temperature for 10 min, before centrifugation at 3900 � g for 30 min.
The supernatant was aspirated, and the pellet was washed twice in 80%
ethanol before drying under vacuum at room temperature for 5 min.
After resuspension of the pellet in diethylpyrocarbonate-treated Milli-Q
water, diluted samples (1:100) were prepared and the absorbance meas-
ured at 260 and 280 nm (Philips PU 8620 spectrophotometer) to esti-
mate both the concentration and purity of the RNA samples. RNA
samples from each extract were also run on denaturing formaldehyde
gels and stained with ethidium bromide (as detailed below) to ensure
that no degradation of the RNA had occurred.

Cloning and Sequencing—First strand cDNA synthesis was carried
out in a total reaction volume of 20 �l containing 5 �g of total rectal
gland RNA, 75 mM Tris-HCl, pH 8.3, 3 mM MgCl2, 10 mM DTT, 10 �M

oligo(dT)12–18, 1 mM each of deoxyribonucleotide triphosphates (dNTPs;
dATP, dGTP, dCTP, and dTTP), and 200 units of Superscript II (In-
vitrogen, Paisley, UK). The reaction was incubated at 45 °C for 2 h and
then stored frozen at �20 °C for use in PCR. This single strand cDNA
template was used for the amplification and isolation of the initial
203-bp fragment with the sequences further 5� or 3� to this subse-
quently obtained by rapid amplification of cDNA ends using the Mar-
athon RACE kit (Clontech, Basingstoke, UK) as described previously
(33). All PCR reactions were carried out using 0.5 �l of cDNA template
in a total volume of 20 �l, comprising 10 mM Tris-HCl, pH 9.0, 50 mM

KCl, 1.5 mM MgCl2, 0.2 mM dNTPs, 4 pmol each of sense and antisense
primers, and 1.25 unit of Taq DNA polymerase (BioGene Ltd., Cambs,
UK). Primers used were as follows. Initial amplifications were carried
out using Squ-1 sense (CGXTTCACTTACGACTACTAC) and Squ-1 an-
tisense (CCGCCTGCGGGTGGACAGACGGCG) primer pairs (X � any
base). Subsequent nested 5� and 3�-RACE reactions employed 5�-
RACE-1 (CACACAGCACTGCGGCCAC), 5�-RACE-2 (CCACAATCAG-
TCCGACAACACGC), 3�-RACE-1 (GCGTGTTGTCGGACTGATTGTG-
G), and 3�-RACE-2 (GTGGCCGCAGTGCTGTGTG) primers in ampli-
fications with the Marathon kit primers AP-1 (CCATCCTAATACGAC-
TCACTATAGGGC) and AP-2 (ACTCACTATAGGGCTCGAGCGGC).
PCR was performed using a hot start technique with an initial 2-min
incubation at 92 °C, followed by 40 cycles of 94 °C for 5 s, 55 °C for 30 s,
and 72 °C for 30 s, with a final incubation of 72 °C for 10 min.

DNA fragments within PCR reactions were either purified directly
using an Edge Biosystems Quick-Step PCR purification kit (VH Bio
Ltd., Gosforth, UK) or separated by Tris acetate-EDTA-agarose gel
electrophoresis (34) and bands of interest were purified using a Gene-
clean II DNA purification kit (Anachem Ltd., Luton, UK).
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3�- and 5�-RACE products were produced in nested PCR reactions
using Squalus PLMS-specific sense and antisense primers in conjunc-
tion with the Marathon kit nested primers AP1 and AP2. PCR frag-
ments generated using the initial primers or by RACE amplification
were blunt-ended by incubation for 15 min at 72 °C with 0.025 unit/�l
Pfu DNA polymerase in 1� Pfu buffer (Stratagene) containing 0.2 mM

dNTPs and then cloned into TOP10 cells using a Zero Blunt TOPO PCR
cloning kit (Invitrogen, Leek, The Netherlands). Positive colonies were
identified by colony PCR, and cDNA fragments from at least four
different clones were sequenced in both directions using a Big Dye
Terminator sequencing kit (PerkinElmer Life Sciences Biosystems,
Warrington, UK) as described previously (33). Sequences were com-
bined and analyzed using the GeneJockey II software package (Biosoft,
Cambridge, UK).

Northern Blotting—Northern blotting was performed as described
previously (33). The probe used for Northern analysis was a full-length
cDNA containing the complete sequence shown in Fig. 1. Total RNA (5
�g, as measured by absorbance at 260 nm) extracted from various
Squalus tissues was resuspended in MOPS buffer (20 mM MOPS, 8 mM

sodium acetate, 1 mM EDTA, pH 7.8) containing 12.5 M formamide and
2.2 M formaldehyde and then denatured at 65 °C for 15 min and snap-
cooled on ice before adding 0.1 volume of 5% “Loading Dyes” (0.025%
bromphenol blue, 0.025% xylene cyanol, and 50% glycerol; all w/v).
Samples (30–100 �l) were then loaded onto the agarose gel (1.2%
agarose w/v (Biogene Ltd.), MOPS buffer containing 6.7% (v/v) formal-
dehyde) and electrophoresed at 135 V (5 V/cm) for 1.5–2 h in MOPS
buffer. After electrophoresis, gels were stained for 30 min in 0.1 M

ammonium acetate, 5 �g/ml ethidium bromide before destaining for 1–2
h in several changes of 0.1 M ammonium acetate before viewing on a UV
transilluminator. The integrity and relative amounts of RNA loaded
onto each lane were qualitatively assessed by viewing the sharpness
and intensity levels of ethidium bromide-stained 18 S and 28 S riboso-
mal RNA bands as quantified using a gel documentation and analysis
system (Syngene, Cambridge, UK). The staining intensities of the tis-
sue rRNA bands were compared with a known standard, and the
amount of total RNA loaded on each lane was re-determined. The
separated RNAs were electroblotted overnight using TAE (40 mM Tris
base, 0.35% (v/v) glacial acetic acid, 10 mM EDTA, pH 8.0) as blotting
buffer (25 V, 0.75 amps) onto a Zeta Probe nylon membrane (Bio-Rad,
Hemel Hempstead, UK). RNA blots were prehybridized in 10 ml of
UltraHyb (Ambion, Huntingdon, UK) for 6 h at 47 °C and then hybrid-
ized overnight in the same solution with the 32P-labeled Squalus PLMS
probe (Megaprime DNA labeling system, Amersham Biosciences, Little
Chalfont, UK). Membranes were washed sequentially at 47 °C in 0.5�
SSC, 1% SDS, then 0.2� SSC, 0.1% SDS and finally 0.1� SSC, 0.1%
SDS for 15 min before analysis of radioactive intensity by electronic
autoradiography (Instant Imager, Canberra Packard Instruments, Me-
riden, CT). The blots were finally incubated at �80 °C with x-ray film
(Kodak BioMax MS) for autoradiography (1� SSC � 0.15 M NaCl, 15
mM sodium citrate, pH 7.0).

Cellular Localization of PLMS and Na,K-ATPase �-Subunit—Salt
glands from two sharks were immersion-fixed for 2 h with a solution
containing 4% paraformaldehyde, 150 mM NaCl, and 100 mM sodium
cacodylate buffer (pH 7.2). Small tissue blocks from the middle of the
glands were cryo-protected with 2.3 M sucrose and frozen in liquid
nitrogen. Immunoelectron microscopy was performed on thin (60–80
nm) cryosections, which were cut at �120 °C from the frozen tissue on
a Reichert Ultracut S cryo-ultramicrotome (Leica, Vienna, Austria).

Immunolabeling and staining was performed as previously described
(35). Briefly, the sections were first preincubated in PBS containing
0.1% skimmed milk powder and 50 mM glycine. The sections were then
incubated for 1 h at room temperature with rabbit anti-PLMS antibod-
ies, rabbit anti-Na,K-ATPase �-subunit antibodies, or pre-immune sera
diluted 1:100–1:1600 in PBS containing 0.1% skimmed milk powder.
The primary antibodies were visualized using goat anti-rabbit IgG
conjugated to 10-nm colloidal gold particles (GAR.EM1O, Bio-Cell Re-
search Laboratories, Cardiff, UK) diluted 1:50 in PBS with 0.1%
skimmed milk powder and polyethylene glycol (5 mg/ml). The Ultrathin
cryosections were stained with uranyl acetate in methylcellulose before
examination in a Zeiss 912 or a Philips 208 electron microscope. Im-
munolabeling controls consisted of substitution of the primary antibody
with rabbit pre-immune IgG or incubation without primary antibody.
All controls showed absence of specific labeling.

Na,K-ATPase Preparation and Hydrolytic Activity—In this study,
purified Na,K-ATPase-containing membranes from the rectal gland of
Squalus acanthias were used. Purification of membrane fragments was
as previously described (36). Protein concentrations, ranging from 3 to
5 mg/ml, were determined using Peterson’s modification of the Lowry

method (37), using bovine serum albumin as a standard. The specific
activity was � 30 units/mg at 37 °C and 10.5 units/mg at 24 °C (1 unit �
1 �mol of Pi/min). The ATPase activity was measured in a reaction
mixture containing 30 mM histidine, pH 7.4, 3 mM MgCl2, 0.06% bovine
serum albumin, 10% glycerol, 10 �M ATP (containing 0.03 �Ci of
�-[32P]ATP), and variable concentrations of NaCl, KCl, and ATP as
indicated in separate figure legends. The concentration of Pi hydrolyzed
from ATP was measured as previously described (38).

PKA and PKC Phosphorylation of Na,K-ATPase—PKA phosphoryla-
tion was performed in a reaction mixture containing 50 mM Hepes, 10
mM MgCl2, 1 mM EGTA, 0.1 mM ATP (Tris salt) containing �-[32P]ATP
(3 �Ci/pmol), 0.1% Triton X-100, 4 �g of protein, and 2 milliunits of
PKA. The catalytic subunit of PKA was purchased from Sigma. PKC
phosphorylation was performed in a typical assay mixture containing
50 mM Hepes, 10 mM MgCl2, 0.5 mM CaCl2, 20 �M L-�-phosphatidyl-
serine (Avanti Polar Lipids, Alabaster, AL), 10 �M dioleoyl 1, 2-sn-
glycerol (Sigma, St. Louis, MO), 100 �M ATP (Tris-salt) containing 3
�Ci/pmol �-[32P]ATP, 4 �g of protein, and 0.13 �g of purified PKC. PKC
was from Calbiochem (La Jolla, CA), and contained the Ca2�-dependent
(conventional) isoforms (�, �I, �II, and �). The phosphorylation reaction
for both kinases was initiated by the addition of ATP, allowed to proceed
for 30 min at 24 °C, and terminated by the addition of 16 �l of electro-
phoresis sample buffer (39).

Gel Electrophoresis and Immunoblotting—The phosphorylated pro-
teins were separated using Tricine-based SDS-PAGE (3% resolution
gel, 9% intermediate, and 16% resolving gels, unless indicated else-
where). Molecular weight standards were from Bio-Rad (Hercules, CA).
For the detection of 32P-assisted kinase phosphorylation, the gels were
stained with Coomassie Blue, destained, dried, and then analyzed by
autoradiography overnight at �80 °C. For immunoblotting, proteins
were transferred to polyvinylidene difluoride membranes, then washed
for 1 h with PBS buffer containing 5% Tween 20, and incubated over-
night at room temperature with primary antibody. The membranes
were washed again with PBS and incubated with goat anti-rabbit
antibody for 2 h. After washing, the proteins were detected using ECL
reagents (Amersham Biosciences). For the detection of the �-subunit
from shark rectal gland and pig kidney, the antibody NKA1002–1016
was used (kindly provided by Jesper V. Møller, Department of Biophys-
ics, University of Aarhus).

Preparation of Trypsinized PLMS—To obtain cleavage of the C ter-
minus of PLMS, membrane-bound enzyme was incubated with trypsin
(w/w trypsin to protein 1:1000) for 0–10 min on ice in the presence of
130 mM NaCl or 20 mM KCl, plus 1 mM EDTA. The trypsinization
reaction was started by the addition of trypsin and stopped by adding a
10-fold excess of soybean trypsin inhibitor. The mixtures was diluted
10-fold with imidazole buffer (25 mM) and centrifuged at 170,000 � g for
1 h. The membranes were washed with imidazole and centrifuged
again, then finally suspended in a 30 mM histidine buffer, pH 7.4,
containing 25% glycerol, and stored at �20 °C. All procedures were
carefully performed on ice.

Production of an Antibody to PLMS—Anti-PLMS antiserum was
prepared by injection of rabbits with PLMS resolved by SDS-PAGE
together with Freund’s adjuvant as previously described (40). Charac-
terization and epitope mapping of this antibody will be described
elsewhere.

RH421 Fluorescence Measurements—Time-resolved RH421 fluores-
cence was measured using a rapid mixing stopped-flow spectrofluorom-
eter (SX.17MV, Applied Photophysics) as previously described (41). At
all conditions the flow volume was 100–300 �l. The excitation wave-
length was 546 nm (using a combined xenon/mercury lamp), and fluo-
rescence was measured at emissions � 630 nm using a cut-off filter. The
dead time for the stopped-flow apparatus was about 1.5 ms.

To measure RH421 fluorescence associated with ATP phosphoryla-
tion of Na,K-ATPase, one syringe contained 1.6 ml of 25 mM histidine
buffer (containing 20 �g of protein) and 0.4 �g of RH421. The second
syringe contained 2.0 ml of 10 mM HEPES/MES buffer, or 30 mM

imidazole, adjusted with N-methyl-D-glucamine to pH 7.5 in the pres-
ence various amounts of Na, K, Mg2�, or ATP as specified in separate
figure legends.

The E2 to E1 reaction was measured essentially as described by
Humphrey et al. (42) at conditions where one syringe contained 25 mM

histidine buffer (containing 20 �g of protein), 0.5 mM CDTA to quench
the Mg2�, and 0.4 �g of RH421. The second syringe contained 100 mM

NaCl, 2 mM ATP, and 0.5 mM CDTA.
K�-supported dephosphorylation was measured by mixing Na,K-

ATPase pre-phosphorylated by ATP (1 mM) in the presence of Na� (100
mM) and Mg2� (4 mM) in HEPES/MES buffer in one syringe, with 20 mM

K� in the same buffer in the second syringe.
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RESULTS

Cloning and Sequencing of PLMS—The initial Squalus
PLMS cDNA fragment to be cloned was amplified using oligo-
nucleotide primers based on the known PLMS amino acid se-
quence around the FXYD motif (21) and a C-terminal consen-
sus sequence based on information from all known mammalian
phospholemman proteins (43). Initial amplifications using a
specific sense primer (Squ-1 sense) to the known RFTYDYY
motif within the previously isolated peptide and a specific
antisense primer (Squ-1 antisense) based on the RRLSTRRR
motif found at the C terminus of the known mammalian pro-
teins resulted in the amplification of a 203-bp fragment. When
analyzed, this fragment encoded the expected amino acid se-
quence of the isolated peptide (with the exception of leucine
replacing lysines at positions 19 and 24) plus 18 other amino
acids before a premature stop codon was encountered. Because
the 3�-end of the amplicon exhibited no homology to any known
FXYD gene, specific sense (3�-RACE, 1; 3�-RACE, 2) and anti-
sense (5�-RACE, 1; 5�-RACE, 2) primers were synthesized 5� to
this region where there was still nucleotide and amino acid
homology to other FXYD proteins. Nested RACE reactions
incorporating PLMS-specific primers in combination with AP1
and AP2 primers were then used along with the Marathon
cDNA template to amplify 5�- and 3�-ends of the cDNA. When
the 3�-RACE products were cloned and sequenced, it was clear
that the amplification of the original 203-bp fragment was due
to mispriming of the antisense primer with the last 107 nucle-
otides having no homology with any FXYD genes. The final
nucleotide sequence based on the consensus sequence of all
cloned fragments is shown in Fig. 1. Following the results of the
initial Northern analyses (see below) repeated attempts using
the 3�-RACE procedure failed to amplify any fragment larger
than 318 bp. Although a short poly(A) sequence was present at
the 3�-end, there was no obvious signs of a polyadenylation
signal in the short 3�-untranslated region.

The cDNA sequencing showed that the protein consisted of
94 amino acids (Fig. 1) and contained a putative 20-amino acid
N-terminal signal sequence (44), giving a mature protein with
a length of 74 amino acids. The hydropathy plot (not shown)
indicates the precursor protein has a hydrophobic amino ter-
minus with one putative transmembrane domain approxi-
mately extending between amino acids 40 and 60. The hydro-
phobic transmembrane domain contains a leucine-isoleucine
zipper motif conserved in many FXYD proteins and probably
responsible for the strong tendency of some FXYDs to form
oligomeric structures (2). The protein is thus a typical type I
protein that is initially targeted to the endoplasmic reticulum
by a cleavable N-terminal signal sequence and subsequently
anchored in the plasma membrane by a stop-transfer sequence.
The cytoplasmic domain contains several basic residues, two
conventional protein kinase phosphorylation sites (Thr-53 and
Ser-55), and several additional putative phosphorylation sites.
There are six potential trypsin cleavage sites at the C-terminal
end (positions 42, 44, 46, 51, 52, and 54) just in front and
partially overlapping the conventional phosphorylation sites.

Comparison with Mammalian and Teleost FXYD Proteins—
Fig. 2 compares the PLMS sequence with the sequences of the
known seven FXYD proteins found in humans as an example of
mammalian species. In addition to the mammalian species,
three gene products from the zebrafish, Danio rerio, are homo-
logues of the FXYD proteins (FXYD6dr, FXYD8dr, and
FXYD9dr in the provisional terminology suggested by Swead-
ner and Rael; Ref. 13). Although there is high conservation of
the amino acid sequence in the transmembrane signature mo-
tif, there are certain differences between the shark and teleost
transcripts and most other mammalian FXYD containing pro-
teins. The FXYD amino acid motif, which is common to all
mammalian members of this family, is altered to FXFD in
FXYD9dr and one of the phospholemman-like proteins cloned
from the Japanese Medaka, FXYD.b (Fig. 2). However, as

FIG. 1. Squalus PLMS interleaved nucleotide and amino acid sequence. The double lines indicate the putative leader sequence, and the
putative transmembrane domain is indicated by the single solid line. Potential phosphorylation sites for PKA and PKC are indicated in boldface
and framed. Possible trypsin cleavage sites are indicated by 2.
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found in PLMS, other putative homologues of phospholemman
retain the FXYD motif in Medaka (FXYD.a), Fugu (FXYD.a
and .b), and the Japanese flounder. The normally conserved
proline residue found immediately before the FXYD motif in all
mammalian proteins is replaced either by a positively charged
arginine (Squalus PLMS) or a negatively charged aspartic acid
residue (Medaka FXYD.a, Fugu FXYD.a, and Japanese floun-
der FXYD). In addition, the invariant serine, which is ubiqui-
tously found within the signature sequence and is considered to
signal the end of the transmembrane domain (Sweadner and
Rael (13)), is replaced by either an alanine in both PLMS and
Japanese flounder FXYD or a cysteine in Fugu FXYD.a (Fig. 2).
The two invariant glycines at positions 46 and 57 in the con-
sensus sequence in Fig. 2 are retained in all FXYD homologues
with the exception of Japanese flounder FXYD where the sec-
ond invariant glycine is replaced by a serine. Because ESTs are
the result of single sequencing runs, they often contain errors,
and thus the sequences for all of the teleost fish in Fig. 2 are
tentative.

The derived amino acid sequence of PLMS shares closest
homology with Mat-8/FXYD3 with 39–45% amino acid identity
and 59–67% amino acid similarity to the known mammalian
isoforms. The sequence also exhibits high homology (45% iden-
tity and 69% similarity) to the zebrafish protein designated
FXYD9dr (Sweadner and Rael (13)) and to the Medaka FXYD.b
sequence (48% identity and 66% similarity). Homologies (meas-
ured as percent identity/percent similarity) are then reduced
when the putative amino acid sequence is compared with mam-
malian FXYDl (32–39/60–65%), FXYD4 (31/65%), FXYD5 (32–
33/53–54%), FXYD6 (29–32/57%), FXYD2 (19–29/41–47%),
and FXYD7 (17–18/48%). Likewise, low homologies were also
found when comparison were made to the EST sequences for
Medaka FXYD.a (29/54%), Fugu FXYD.a (28/49%), and

FXYD.b (20/38%) and the Japanese flounder FXYD (26/47%)
proteins (Fig. 2).

Tissue and Cellular Distribution of PLMS—The distribution
of PLMS over a limited number of Squalus tissues was exam-
ined by Northern blot analyses (Fig. 3). Blots revealed a major
transcript of around 3.8 kb with minor transcripts of �0.8, 1.1,
1.3, and 2 kb also being identified in some tissues. Image
analysis of ethidium bromide-stained 28 S and 18 S rRNA
bands revealed that the amount of RNA loaded for each tissue
varied from 2.3 �g for the eye to 7.7 �g for the brain (Fig. 3).
Taking into consideration the amount of total RNA loaded for
each tissue, the highest levels of PLMS mRNA expression were
found in the rectal gland � intestine � kidney � brain � heart
(approximate ratios 10:2:1, respectively). It should be noted,
however, that these values are only semi-quantitative at best
and represent mRNA levels across selected tissues taken from
only one fish. Using Northern blot analyses we were unable to
detect any sign of PLMS mRNA expression in the gill, ovary,
skin, or eye even after prolonged autoradiographic exposures.

Immunolocalization of PLMS and Na,K-ATPase �-Subunit—
The rectal gland is composed of winding tubules formed by tall
columnar cells arranged around a central duct or lumen as
previously described (45–47). The luminal cell surface exhibits
only a few small microvilli (Fig. 4A), but the basolateral cell
surface is greatly amplified through slender lateral and basal
cytoplasmic folds (Fig. 4B). Notably, almost the entire base of
the cells consists of such thin cytoplasmic folds, which are
devoid of mitochondria and abut the basal lamina (Fig. 4C),
thus comparable to parts of the peritubular surface of amphib-
ian kidney tubules (48).

Immunolocalization of PLMS showed distinct labeling of the
entire basolateral cell membrane (Figs. 5A and 6A), except the
most apical part at the tight junction and around the apical

FIG. 2. The amino acid sequence of Squalus PLMS aligned with known human FXYD family members and published sequences
from teleost fish. The amino acid sequence of Squalus PLMS aligned with known human FXYD family members and related EST sequences from
various teleost fish. It should be noted that the sequences based on the teleost ESTs should be considered to be provisional, because they are based
on single unverified sequence runs. Variant sequences have been reported for the human gamma (FXYD2) and for a number of teleost ESTs and
in these cases selected sequences (designated with “.a” and/or “.b”) have been reproduced here for comparison with Squalus PLMS. Dots (�) indicate
positions of amino acid identity, and lines (�) indicate positions of amino acid similarity. Accession numbers are, Squalus PLMS, AJ556170;
hFXYD1, NM005031; hFXYD2.a, NM001680; hFXYD2.b, NM021603; hFXYD3, NM005971; hFXYD4, NM173160; hFXYD5, NM014164; hFXYD6,
NM022003; hFXYD7, NM022006; zebrafish FXYD6.a.dr, AW153757; zebrafish FXYD8dr, AI958251; zebrafish FXYD9.a.dr, AW455046; Medaka
FXYD.a, AU169681; Medaka FXYD.b, AU169966; Fugu FXYD.a, CA332188; Fugu FXYD.b, Fugu genome Gene Bank, FRUP155492/scaffold 2793;
Japanese flounder FXYD, AU090441. The asterisks (* and **) show N-terminal truncated versions of the published sequences. The N-terminal
extension for *, the hFXYD5, is SPSGRLCLLTIVGLILPTRGQTLKDTTSSSSADSTIMDIQVPTRAPDAVYTELQPTSPTPTWPADETPQPQTQTQ-
QLEGTDGPLVTDPETHKSTKAAHPTDDTTT; the N-terminal extension for **, the Japanese flounder FXYD, is HERHGHTHRHLDRSFSSSV-
SSPEHIQTDEATCRLLKHSPH.
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desmosomes, where labeling was sparse. Importantly, no label-
ing was associated with the luminal cell membrane (Fig. 5A).
The cell membrane of the extensively interdigitating lateral
folds was strongly labeled (Figs. 5A and 6A). Most colloidal gold
particles were associated with the cytoplasmic face of the cell
membrane, which is consistent with an intracellular localiza-
tion of the epitope. No label was associated with mitochondria
or accumulated in any other part of the cytoplasm. Labeling
with pre-immune serum was negative (Fig. 5B).

The localization of the Na,K-ATPase �-subunit was similar
to that of PLMS. Notably, the luminal cell membrane was
unlabeled (Fig. 5C) and again much of the label was associated
with the cytoplasmic face of the cell membrane (Figs. 5C
and 6B).

Cleavage of the C Terminus of PLMS by Trypsin—As seen in
Fig. 1 the sequence of PLMS contains several potential tryptic
cleavage sites in the C-terminal cytoplasmic domain upstream
of the phosphorylation motif. We have previously described
how PKC phosphorylation of PLMS leads to Na,K-ATPase ac-
tivation caused by impairing of the protein-protein interaction
(21). To investigate the nature of such interaction between the
PLMS C terminus and the Na,K-ATPase in further details we
have undertaken studies to preferentially cleave the PLMS C
terminus while keeping the �-subunit intact. This was
achieved by using an extremely low concentration of trypsin
and incubation for short periods on ice in the presence of the
Na,K-ATPase physiological ligands.

Fig. 7 shows the tryptic cleavage pattern of PLMS in the
presence of either 130 mM Na� or 20 mM K�. A proteolytic site
separating a 5-kDa peptide of PLMS from the intact protein
was split by trypsin. In the absence of trypsin, PLMS migrates

FIG. 3. Northern blot indicating the expression of PLMS
mRNA in selected tissues from S. acanthias. A, Northern blot
indicating the expression of PLMS mRNA in selected tissues from
S. acanthias. Total RNA was extracted from each tissue and samples
separated by denaturing agarose gel electrophoresis. The gel was
stained with ethidium bromide to verify the quantity and assess via-
bility of RNA loaded in each lane (B). The amount of total RNA loaded
onto each lane was estimated as follows, brain, 7.7 �g; eye, 2.3 �g;
heart, 7.6 �g; ovary, 6.0 �g; kidney, 3.8 �g; skin, 6.9 �g; intestine, 4.6
�g; skeletal muscle, 3.5 �g; gill, 3.2 �g; and rectal gland, 6.8 �g.
Electroblotting and hybridization with a 32P-labeled PLMS cDNA probe
was as detailed under “Experimental Procedures.” A major 3.4-kb tran-
script was identified in the brain, heart, kidney, intestine and rectal
gland. Smaller transcripts of �0.8, 1.1, 1.3, and 2 kb were also detected
at much lower abundance in these tissues but were more apparent in
the rectal gland, which exhibited the highest levels of expression.

FIG. 4. Apical (A), middle (B), and basal (C) regions of shark
gland cells. A, the apical cell membrane facing the gland lumen (L)
shows a few short microvilli, but the lateral cell surface exhibits nu-
merous folds projecting into the lateral intercellular space (*). B, the
lateral intercellular space (*) at the level of the nuclei (N) contains
extensively interdigitating folds of adjacent cells. C, also the basal cell
surface is very much amplified through basal folds of the cell mem-
brane. Magnification, �7000.

FIG. 5. Apical parts of shark gland cells. A, immunoelectron mi-
croscopy shows extensive PLMS labeling of the lateral cell membrane.
Most gold particles are associated with the inner surface of the cell
membrane (arrows). However, the cell membrane facing the duct lumen
(L) is unlabeled. B, labeling with pre-immune serum is negative. C, the
localization of Na,K-ATPase is similar to PLMS with labeling of the
lateral cell membrane but not the luminal cell membrane. Between the
tight junction (arrowhead) and the apical desmosomes (D) labeling of
the cell membrane is usually absent or sparse. Magnification, �50,000.
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in SDS gels at a molecular mass of 15 kDa (Fig. 7A, lane 1), and
it was intensively phosphorylated by PKA as indicated by the
autoradiogram (Fig. 7C, lane 1). Incubation of the membranes
on ice for 3–5 min at a trypsin to protein weight ratio of 0.001
in the presence of 130 mM Na� resulted in partial truncation of
PLMS and the production of a new band on SDS-PAGE with an

increased apparent mobility of about 10 kDa, (Fig. 7A, lane 2).
In the presence of 20 mM K�, the protein was highly sensitive
to trypsin and virtually no intact PLMS could be detected (Fig.
7A, lane 3). Interestingly, increasing the ionic strength to 130
mM K� partially protected PLMS from proteolysis by trypsin
(not shown), suggesting that the partial protection produced by
the ion is not specific.

From the autoradiogram (Fig. 7C) it is indicated that the
5-kDa proteolytic fragment contained the phosphorylation mo-
tifs, because PKA phosphorylation of the 15-kDa PLMS de-
creased in parallel with the degree of cleavage (Fig. 7C, lanes 2
and 3). In addition, no phosphorylation was observed of prod-
ucts migrating with a mobility of 10 kDa in the gel. Therefore,
truncation is associated with the concomitant loss of the ability
of the resulting 10-kDa fragment of PLMS to become phospho-
rylated by PKA. The 5-kDa trypsin cleavage product was not
observed in the SDS-gel, because it was removed by the wash-
ing and centrifugation performed after the trypsin treatment.
However, autoradiography of a 5-kDa proteolytic fragment iso-
lated and concentrated after the mild trypsin treatment dem-
onstrated the phosphorylation of this fragment by PKC (Fig.
7D), indicating that it arises from PLMS and contained the
PLMS multisite phosphorylation motif, because the phospho-
rylation of the �-subunit, the only other protein demonstrating
significant phosphorylation, was unchanged (not shown). As
seen from the immunoblot in Fig. 7A the 10-kDa proteolytic
fragment can still be probed by the anti-PLMS antibody dem-
onstrating that the epitope for binding the antibody is located
upstream of the C-terminal phosphorylation domain.

The mild trypsinization conditions used to split PLMS had
no direct effect on the �-subunit as confirmed by SDS-PAGE of
the �-subunit in these preparations. As seen from the immu-
noblot in Fig. 7B, the �-subunit before and after trypsin treat-
ment has the same mobility on SDS-PAGE, and probing of the
�-subunit by anti-�-antibody showed no decrease in the inten-
sity. Therefore, these conditions seem not to result in the well
known proteolysis of the �-subunit N terminus in the presence
of Na�, nor was it sufficient for cleavage at the T1 position in
the presence of K�. This is to be expected, because controlled
trypsinolysis of the �-subunit has previously been performed
using a much higher trypsin to protein ratios and higher tem-
peratures (49) than those used in the present experiments.

Functional Effects of C-terminal Cleavage of PLMS—To in-
vestigate any functional effects caused by the interaction be-
tween the C-terminal domain of PLMS and the Na,K-ATPase,
we characterized the overall Na,K-ATPase catalytic reaction as
well as some partial reactions in enzyme preparations where
the 5-kDa phosphorylation domain of PLMS is either partially
(130 mM Na�) or completely (20 mM K�) cleaved. The prepara-
tions were assayed using the following experimental approach-
es: (i) measurements of the Na�-, K�-, and ATP-activation of
Na,K-ATPase catalytic activity at Vmax conditions, (ii) activa-
tion of the Na-ATPase reaction by K� at low ATP concentration
to measure the K� deocclusion pathway, (iii) measurements of
the Na� activation curve at low ATP concentration to probe
effects on the Na�-binding affinity, (iv) measuring the vana-
date sensitivity of control and PLMS-truncated preparations to
probe the E1/E2 equilibrium, and (v) measurements of the low
affinity ATP-supported transition E2(K)3 E1(Na)ATP and the
following phosphorylation reaction pathway leading to E2-P
using time resolved fluorescence measurements. The latter
reactions include the major rate-limiting steps of the Na,K-
ATPase catalytic cycle under physiological conditions (42,
50, 51).

Cation and ATP Substrate Dependence of Hydrolysis—Fig. 8
shows the Na� activation in the presence of 20 mM K� (A), the

FIG. 6. Lateral folds of adjacent shark gland cells interdigitate
in the lateral intercellular space (*). The plasma membranes are
immunogold labeled for PLMS (A) and Na,K-ATPase (B), thus demon-
strating co-localization of PLMS and Na,K-ATPase. Most immunogold
particles are located on the cytoplasmic side of the cell membrane
(arrows). There is no label over cell organelles or cytosol.
Magnification, �50,000.

FIG. 7. Tryptic cleavage of a 5-kDa peptide from PLMS and
effects of PKA phosphorylation. A, immunoblot of control and tryp-
sin incubated samples. Trypsinization of the C terminus of PLMS was
carried out on ice for 5 min in the presence of �3 mg of purified protein,
1 mM of EDTA, 15% glycerol in the absence (lane 1), or presence (lanes
2 and 3) of 3 �g of trypsin. The proteolytic reactions contained concen-
trations of Na� and K� are as follows: lane 1, control (130 mM NaCl, no
trypsin); lane 2, 130 mM Na�; lane 3, 20 mM K�. A PLMS-specific
antibody that recognizes the N-terminal domain was used to probe the
blot. Immunoblotting was as described under “Experimental Proce-
dures.” B, immunoblot of the �-subunit in the different trypsin-treated
preparations was performed using an �-antibody as described under
“Experimental Procedures.” C, autoradiogram showing PKA phospho-
rylation of the different trypsin-treated shark membrane preparations
in the presence of [32P]ATP. It reveals the effect of PLMS truncation on
PKA phosphorylation of the protein. There is a corresponding partial
and complete loss of PLMS phosphorylation upon partial (in the pres-
ence of Na�) and complete (in the presence of K�) truncation of PLMS.
D, autoradiogram showing PKC phosphorylation of the 5-kDa tryptic
cleavage product of PLMS. Membranes were incubated in the absence
(lane 1) or presence (lane 2) of trypsin. The C terminus of PLMS was
separated from the membranes by centrifugation and concentrated
using a Centricon tube with 10-kDa Mr cut-off. Subsequently, the su-
pernatant containing the PLMS C terminus was phosphorylated by
PKC and resolved by SDS-PAGE followed by autoradiography.
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K� activation in the presence of 130 mM Na� (B), as well as the
low affinity ATP activation (C) of the Na,K-ATPase in controls,
partially truncated, and completely truncated PLMS prepara-
tions. Truncation, partial or complete, of PLMS leads to a
significant increase in the hydrolytic activity of the Na,K-
ATPase in all three cases. However, the apparent affinity for
Na� in the presence of saturating K� (20 mM) did not change
significantly, and this was also the case for the apparent K�

affinity in the presence of saturating Na� (40 mM), and for the
ATP affinity. The fact that Vmax increases after PLMS trunca-
tion, however, indicates that some rate-determining steps of
the Na,K-ATPase reaction must have been influenced.

Steady-state measurements of apparent ion and ATP affini-
ties (K0.5 or Km) are not sensitive kinetic indications able to
identify changes in single steps of the Na,K-ATPase reaction,
because Km contains all the rate constants around the Na,K-
ATPase reaction cycle. A more precise indication of changes in
the Na� binding affinity is provided by the ratio Km/Vmax,
which will only contain rate constants of intermediates that are
directly involved in the interaction with the ligand (52). Indeed,
changes in the apparent affinity for cytoplasmic Na� (K�Na) can
be the result of a change in the Na� binding affinity or a change
in the E1/E2 equilibrium. In the combined presence of Na� and
K� changes in the competition between Na� and K� at the
cytoplasmic face will also change the apparent Na� affinity.
The latter was demonstrated to be the case for �1-HeLa cells
transfected with �a or �b splice variants (11). If the Na� acti-
vation curve depicted in Fig. 8A is measured at different fixed
K� concentrations, both Vmax and K�Na changes. A detailed
kinetic analysis of cytoplasmic Na�/K� competition of shark
Na,K-ATPase has previously demonstrated that Kcyt

� inhibition
of Nacyt

� activation is a mixed multisite type inhibition in which
K� competes with three similar site dissociation constants (53).
In such models a linear relation between the calculated appar-
ent Na� affinities and the K� concentration is expected, K�Na �
KNa

o � (KNa
o /KK)�[K�], as demonstrated by Garay and Garrahan

(54). As seen from the results shown in Fig. 9A (note the [K�]
is on a logarithmic scale) this linear relation apparently applies
to the data giving a K� inhibition dissociation constant, KK �
14 mM, and an apparent Na� affinity at zero [K�], KNa

o � 4.4
mM. As indicated, no obvious change in the Na�/K� competi-
tion is observed after PLMS truncation. Likewise, KNa

o seems to
change only slightly after PLMS truncation.

To investigate further if the Na� binding affinity changed
after PLMS truncation, we measured the Na� activation in the

absence of K� at low ATP concentration favoring formation of
the E1 conformation. Fig. 9B shows a typical experiment of the
Na� activation of the enzyme in control and fully PLMS-trun-
cated preparations. The apparent Na� affinity was 3.9 � 1.0
mM for control and 2.9 � 1.1 mM for PLMS-truncated samples
(p 	 0.0001). Thus, under these conditions the maximum ac-
tivity increases and a small but significant increase in the
apparent affinity for Na� are demonstrated, with a 1.6-fold
increase in the Km/Vmax ratio after complete truncation
of PLMS.

K� Deocclusion—The K� activation of Na-ATPase activity at
1 �M ATP is a sensitive measure of the K� deocclusion path-
way, E2(K) 3 E1, as previously described (55). Fig. 10A shows

FIG. 9. Effects of PLMS truncation on K�/Na� antagonism and
Na-ATPase activity of shark Na,K-ATPase. A, the apparent affinity
of Na� (K�Na, open symbols) and the Hill coefficient (nH, closed symbols)
determined from Na� activation curves at different fixed K� concentra-
tions as a function of the [K�] on a logarithmic scale. The relation
between K�Na and [K�] is given by the linear equation, K�Na � KNa

o �
(KNa

o /KK)�[K�] (given by the curved lines in the logarithmic scale) with a
slope KNa

o /KK corresponding to 0.316 and intercept, KNa
o � 4.35 mM,

giving a KK of 14 mM. The Hill coefficient decreased from about 3 to 2 as
K� increased. B, the effects of PLMS truncation on Na-ATPase activity
at low ATP. The Na-ATPase activity was measured in the presence of
histidine 30 mM, pH 7.4, 1 mM MgCl2, 1 �M Tris-ATP (containing 0.003
�Ci of [32P]ATP), and the sodium concentrations indicated, as described
under “Experimental Procedures.” Data are from double determination
and expressed as a percentage of control in uncleaved Na,K-ATPase.
The data were fitted with a sigmoid dose-response curve. The Vmax
under these conditions (measured at 100 mM NaCl) increased about
25% after truncation of PLMS (p � 0.0001). The K0.5 is 3.94 � 1.04 mM

for control and 2.88 � 1.05 mM for PLMS-truncated samples (p 	
0.0001), whereas the Hill slope remained unchanged (p � 0.7). A rep-
resentative of three independent experiments is shown.

FIG. 8. Ion- and substrate-dependent Na,K-ATPase activity in control membranes and in membranes where the C terminus of was
PLMS truncated. The hydrolytic activity of control (Cont., �), partially truncated PLMS (Tr-Na�, E), and completely truncated PLMS (Tr-K�,
�) membrane preparations. A, Na�-stimulated ATP hydrolysis in the presence of 3 mM ATP, 3 mM MgCl2, and 20 mM KCl. Partial and complete
truncation of PLMS resulted in about 25 and 50% stimulation of ATP hydrolysis, respectively (p 	 0.0001). The apparent Na� affinities were:
11.2 � 1.0, 12.1 � 1.0, and 13.0 � 1.0 mM, respectively. B, K�-stimulated ATP hydrolysis in the presence of 3 mM ATP, 3 mM MgCl2, and 130 mM

NaCl. Partial and complete truncation of PLMS resulted in 30 and 60% stimulation of ATP hydrolysis, respectively (p 	 0.0001). The apparent K�

affinities were: 0.66 � 0.08, 0.82 � 0.006, and 0.99 � 0.09 mM, respectively. C, ATP-stimulated Na,K-ATPase activity in the presence of 3 mM MgCl2
130 mM NaCl, and 20 mM KCl. Partial and complete truncation of PLMS resulted in about 15 and 40% stimulation of ATP hydrolysis, respectively
(p 	 0.005 and 0.0001, respectively). The apparent ATP affinities were: 0.247 � 0.017, 0.246 � 0.016, and 0.253 � 0.014 mM, respectively. All
reactions were performed in 30 mM histidine buffer, pH 7.00, and 2 �g of protein. Pi hydrolyzed from ATP was measured as described under
“Experimental Procedures.”
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experiments where the K� sensitivity of Na-ATPase at 1 �M

ATP, which is only sufficient to saturate the high affinity ATP
binding site, is measured. Addition of only 15 mM Na� ensures
that the enzyme conformation is not permanently locked in the
E1 conformation. Without K� only Na-ATPase activity is meas-
ured, in which the deocclusion reaction (of Na�) is not rate
limiting at low ATP concentrations (56). Addition of K� to the
medium at conditions where only the high affinity ATP site is
occupied will induce dephosphorylation of the enzyme and pro-
duction of the E2(K) form. Without low affinity ATP-binding K�

deocclusion is rate limiting, and the hydrolytic activity can be
inhibited (57). Fig. 10A shows that this is actually the case for
the control enzyme. However, after truncation of PLMS, the
hydrolytic activity is stimulated about 200% by the addition of
low K� concentrations, indicating that some of the steps in the
K� deocclusion pathway are accelerated, either the spontane-
ous and/or the ATP-supported K� deocclusion, because trunca-
tion of PLMS had no effect on the ATP affinity at the low
affinity site (see Fig. 8C).

That the former could be the case was indicated by measure-
ments of the main rate-limiting E2(K)3 E1NaATP reaction at
physiological conditions, including the low affinity ATP binding
(42, 50, 51). This reaction can be measured by stopped-flow
fluorescence using the potential sensitive styryl dye RH421
(42). Initially, the enzyme is incubated in an E2-supporting
buffer like histidine in the absence of Na� and with CDTA to
bind any residual Mg2�. The enzyme is then rapidly mixed
with Na� and ATP to induce the transition to E1NaATP,
whereas the following phosphorylation step is prevented by the
absence of Mg2�. The transition from E2 to E1 is followed by a
small drop in fluorescence (
F/Fo � 5%), which can be meas-
ured, as demonstrated in Fig 10B. As seen from the figure,
PLMS-truncated preparations and controls gave identical flu-
orescence decays indicating no significant effects on this
reaction.

The E1/E2 Equilibrium—Subsequently, the effect of PLMS
cleavage on the vanadate sensitivity of Na,K-ATPase was stud-
ied. Orthovanadate is a transition state analogue of inorganic
phosphate that binds preferentially to the E2 conformation of
P-type ATPases. Thus, the sensitivity of Na,K-ATPase to inhi-
bition by vanadate reflects the proportion of the enzyme adopt-
ing an E2 conformation. As can be seen from Fig. 11 truncation
of PLMS produced an enzyme preparation more resistant to
vanadate (KI � 1.60 � 0.001 �M) when compared with control
(KI � 0.50 � 0.001 �M, p 	 0.0001), suggesting that PLMS
truncation stabilized the E1 conformation of the enzyme. The
vanadate sensitivity of the shark enzyme is comparable to the
mammalian kidney �1 enzyme (56, 57).

The Phosphorylation/Dephosphorylation Reactions—The
phosphorylation reaction was investigated by stopped-flow
measurements using the membrane probe RH421 (41, 58). This
styryl dye partitions into the membrane containing Na,K-
ATPase and is sensitive to the formation of E2-P.

The phosphorylation reactions in Fig. 12A show the forma-
tion of E2-P from mixing of the enzyme in the presence of 30
mM Na� with 3 mM MgATP and thus represents the reactions
E1Na 3 E1NaATP 3 E1 � P 3 E2-P. In shark Na,K-ATPase
the initial phosphoryl transfer and formation of E1�P are
faster than the formation of E2-P, at least at temperatures
below 15 °C (58). Thus, the stopped-flow fluorescence reaction
mainly measures the rate of the E1 � P 3 E2-P reaction. As
seen from Fig. 12A this rate increases after PLMS truncation,
from about 60 to 80 s�1 (p � 0.009).

The dephosphorylation reaction was measured using enzyme
pre-treated with ATP in the presence of Na� and Mg2� to
induce a maximum steady-state level of the E2P form, as de-
scribed above for the phosphorylation reaction. The enzyme is
then reacted with K� in a rapid-mixing stopped-flow experi-
ment using RH421 to detect the decrease of fluorescence as the
E2P phosphoenzyme is hydrolyzed. As seen from Fig. 12B, the
rate of the K�-activated dephosphorylation is not significantly
different from the control enzyme and PLMS-truncated
enzyme.

DISCUSSION

PLMS Sequence—The nucleic acid sequence encoded a 94-
amino acid coding sequence of PLMS (Fig. 1), which was iden-
tical at the N terminus to the partial sequence previously
determined by protein sequencing of the purified protein (21),
with the exception that leucine replaced lysine at positions 19

FIG. 10. K� activation of Na-ATPase activity and the E2(K) 3
E1NaATP transition. A, the ATP hydrolysis measured in the presence
of 1 �M ATP (containing 0.2 pmol of [32P]ATP), 15 mM NaCl, 2 mM

MgCl2, and varying K� concentrations as indicated in the figure, as
described under “Experimental Procedures.” �, control; �, PLMS
cleaved preparation; and E, N-terminal truncated Na,K-ATPase mem-
brane preparations. Data are presented as percent of Na-ATPase activ-
ity measured in the absence of K�. A representative of three independ-
ent experiments is shown. Values are means � S.E. B, the rapid mixing
stopped-flow RH421 fluorescence response of control membranes and
membranes with the C terminus of PLMS fully truncated. One syringe
contained 30 mM histidine buffer, pH 7.5, 1.0 mM KCl, 20 �g of protein,
0.5 mM CDTA, 0.1 mM EGTA, and 0.4 �g of RH421. The second syringe
contained the same buffer plus 100 mM NaCl, 2.0 mM KCl, 2.0 mM

TrisATP, 0.5 mM CDTA, and 0.1 mM EGTA. The pH value was adjusted
to 7.5 using N-methyl-D-glucamine. The data were fitted with a mono-
exponential time function with rate constants: control, 125 � 16.2 s�1;
PLMS-truncated enzyme, 106 � 10.3 s�1. The rate constant for PLMS-
truncated enzyme differs insignificantly from control enzyme.

FIG. 11. Vanadate sensitivity of shark Na,K-ATPase membrane
preparations. ATP hydrolysis was measured in the presence of 1.5 mM

Tris-ATP, 100 mM NaCl, 20 mM KCl, 2 mM MgCl2, and vanadate
concentrations as denoted in the figure. Data are from double determi-
nation and expressed as percentage of control measured in the absence
of vanadate. The data were fitted with a sigmoid dose-response curve.
The K0.5 is 0.505 � 0.001 �M for control and 1.600 � 0.001 �M for the
PLMS-truncated sample (significantly different, p 	 0.0001). A repre-
sentative of two independent measurements is shown.
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and 24. The reason for this difference in sequence is unknown
but may relate to errors in reading the protein sequence as
sequencing progresses to the C-terminal end of the peptide.
Alternatively, it is possible that the cloned cDNA is a closely
related isoform of the gel-extracted protein. Further molecular
studies will be required to examine the possibility of other
PLMS isoforms. Squalus PLMS exhibits highest homology to
MAT-8 or FXYD3 (39–45% amino acid identity and 59–67%
amino acid similarity). Because the amino acid sequence ho-
mology between the zebrafish FXYD9(dr) and the human
FXYD6 genes (43% identity and 64% similarity) is not consid-
ered close enough for these two proteins to be identified as
orthologues, we suggest that, until more information is avail-
able regarding the evolution of the FXYD family genes, the
PLMS gene should be designated as FXYD10(sa).

Although the amplified and cloned cDNA, which contains the
entire coding sequence of PLMS, was only 445 bp long, North-
ern blot analyses revealed the presence of a major 3.8-kb tran-
script. In all tissues that expressed this 3.8-kb mRNA, addi-
tional minor transcripts of 0.8, 1.1, 1.3, and 2 kb were also
detected, which were most apparent in the rectal gland that
exhibited the highest overall levels of expression. Further 3�-
and 5�-RACE amplifications using a range of annealing tem-
peratures (52–62 °C) with extension times up to 4 min failed to
reveal any larger amplicons. Although there is no experimental
evidence explaining these observations, it is possible that the
Marathon oligo(dT) cDNA synthesis primer has misprimed on
the PLMS mRNA at a short poly(A) tract some 100 bp to the 3�
of the coding sequence (Fig. 1).

The first 20 amino acid residues are assumed to form a
cleavable signal sequence as found for other FXYD proteins
except the � and FXYD7 resulting in a mature protein contain-
ing 74 amino acid residues with a calculated molecular mass of
8216 Da. Thus, the electrophoretic mobility (15 kDa) of this

small protein differs significantly from the protein mass as for
the other hydrophobic FXYD proteins. The previous finding
that PLMS is resolved as a doublet on two-dimensional SDS-
PAGE (21) could suggest that PLMS may also undergo co- or
post-translational processing, as is the case for the � (12, 59)
and possibly also for CHIF (23) and FXYD7 (24).

As noted in the sequence the serine immediately adjacent to
the plasma membrane on the cytoplasmic side, which is con-
served in all known mammalian FXYD sequences, is changed
to an alanine in PLMS. This serine is located inside a conven-
tional PKC phosphorylation motif, and in � it can be phospho-
rylated by PKC in vitro in the presence of detergent (60).

Cell and Tissue Distribution—The co-location of PLMS with
Na,K-ATPase on basolateral membranes of rectal gland cells
(Figs. 5 (A and C) and 6 (A and B)) fits the physiological role of
this FXYD protein as a specific regulator of Na,K-ATPase. The
shark rectal gland is the organ responsible for the extra-renal
salt secretion and has served as an epithelial transport model
for secretory epithelial organs where chloride secretion relies
on the coordination and polarized localization of at least five
transport pathways: Cl� is initially concentrated inside the cell
by the basolateral Na-K-2Cl co-transporter and diffuses to the
lumen across the apical membrane via the chloride channels
(cystic fibrosis transmembrane conductance regulator). The K�

ions are re-circulated by basolateral K� channels and the en-
ergy for the Cl� uptake is provided by the Na,K-ATPase that is
also located on basolateral membranes (61). The transcellular
Cl� transport is accompanied by a paracellular Na� transport
across the tight junctions (Fig. 5, A–C). In accordance with this
model, the present results have indicated co-localization of
Na,K-ATPase and PLMS on basolateral membranes in the
rectal gland cells. By the recognition of the new functional role
of FXYD proteins in regulation of the Na,K-ATPase the trans-
port pathways responsible for Cl� secretion seem all to be
controlled by protein kinase/phosphatase regulation (62–64).

Functional Effects—In the present study we demonstrate
that in Na,K-ATPase membrane preparations the C-terminal
protein kinase phosphorylation domain of PLMS can be cleaved
by controlled trypsin treatment. Specific PLMS cleavage with-
out cleavage of the N-terminal Na,K-ATPase �-subunit can be
obtained at low trypsin to Na,K-ATPase ratio, low tempera-
ture, short incubation time, and 20 mM K� (Fig. 7). It is well
known that, in the presence of K�, trypsin treatment leads to
cleavage of the mammalian �-subunit near the middle but does
not cleave off the small N terminus (49). Nevertheless, the
possibility that the N terminus of the Na,K-ATPase �-subunit
may itself be cleaved by the trypsin treatment used to cleave
PLMS was excluded by several controls. On the one hand,
cleavage of the N terminus of the Na,K-ATPase �-subunit
decreases the hydrolytic activity significantly (49, 65), whereas
the mild trypsin treatment used to specifically cleave PLMS
leads to a significant increase in maximum hydrolytic activity
(Fig. 8). Furthermore, after PLMS truncation the �-subunit is
still phosphorylated by PKC at the N-terminal site (data not
shown). Finally, at conditions used for PLMS cleavage the well
known increase in mobility of the N-terminal truncated �-sub-
unit on SDS-PAGE is absent (Fig. 7B). It is interesting to note,
however, that the opposite is not true, i.e. at conditions where
the N-terminal domain of the �-subunit is cleaved by trypsin,
the C terminus of PLMS also becomes cleaved. In contrast,
controlled N-terminal truncation of kidney Na,K-ATPase
�-subunit leaves the � intact (not shown).

Specific cleavage of the C terminus of PLMS activates the
Na,K-ATPase at Vmax conditions indicating effects on rate-
determining steps. At saturating substrate concentrations the
rate-limiting steps are the E2 3 E1 transition associated with

FIG. 12. Rapid mixing stopped-flow fluorescence following
ATP phosphorylation and K�-supported dephosphorylation. A,
rapid mixing stopped-flow RH421 fluorescence response to phosphoryl-
ation by ATP at 20 °C of control membranes and membranes with the
C terminus of PLMS fully truncated. One syringe contained 10 mM

Hepes buffer, 10 mM MES buffer, 16 mM NaCl, 20 �g of protein, and 0.4
�g of RH421. The second syringe contained 10 mM HEPES/MES buffer
plus 2 mM ATP, and 4 mM MgCl2. The pH value was adjusted to 7.5
using N-methyl-D-glucamine. The results from controls have been
downward-shifted to separate it from the results from the PLMS-trun-
cated enzyme. Fitting of monoexponentials to the data gave the follow-
ing rate constant values: control enzyme, 60.5 � 1.3 s�1; truncated
enzyme, 80.2 � 1.8 s�1. The rate constant for PLMS-truncated enzyme
is significantly larger than that for control enzyme (p � 0.009). B, rapid
mixing stopped-flow RH421 fluorescence response of ATP-phosphoryl-
ated enzyme to K�. The enzyme (�20 �g) was first phosphorylated in
syringe 1 in the presence of 10 mM NaCl, 2 mM TrisATP, 10 mM

Hepes/Mes buffer, pH 7.5, 4 mM MgCl2, and 0.4 �g of RH421. The
enzyme was then rapidly mixed with 10 mM KCl in the same HEPES/
MES buffer. The monoexponential fluorescence decayed with rate con-
stants: control, 109 � 3.9 s�1; PLMS-truncated enzyme, 93.3 � 4.9 s�1.
The rate constant for PLMS-truncated enzyme differed insignificantly
from control enzyme.
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low affinity ATP-supported K� deocclusion and binding of cy-
toplasmic Na� (51) and the E1 � P 3 E2-P transition, at least
at temperatures below 15 °C (58). Indeed, detailed investiga-
tions of the partial reactions showed that some steps along the
K� deocclusion pathway E2(K2) 3 E1 are accelerated after
PLMS truncation (Fig. 10A) and shifted the E1/E2 conforma-
tional equilibrium toward the E1 form, as shown by the lower
vanadate sensitivity (Fig. 11). These effects may contribute to
the small increase in apparent Na� affinity (Fig. 9B). The
deocclusion supported by low affinity ATP binding (Fig. 10B),
as well as the apparent ATP affinity (Fig 8C) was unchanged.
PLMS-truncation did not change the K�-supported dephospho-
rylation, whereas the ATP-phosphorylation reaction measured
by the increase in RH421 fluorescence was increased, indicat-
ing that the partially rate-limiting reaction E1 � P 3 E2-P is
accelerated. Thus, the increased Vmax induced by specific
PLMS truncation is probably an effect mainly on the catalytic
site phosphorylation reaction and not on the main rate-limiting
step, the K� deocclusion supported by low affinity ATP binding.

A major effect of FXYD proteins hitherto investigated relates
to modulation of apparent Na� or K� affinities (19, 20). A
similar situation seems to exist for the PLMS/Na,K-ATPase
system where PLMS truncation increases the apparent cyto-
plasmic Na� affinity (Fig. 9B) without affecting the Na�/K�

competition at the cytoplasmic sites (Fig. 9A). Thus PLMS
association decreases the Na� affinity. This is in agreement
with recent studies on mammalian PLM where co-expression of
the �-subunit and PLM in Xenopus oocytes resulted in a de-
crease in the apparent cytoplasmic Na� affinity of Na,K-
ATPase (22). Thus, association of FXYD1 proteins with the
Na,K-ATPase leads in both cases to a decreased Na� affinity
and inhibition of enzyme activity, whereas dissociation of the
FXYD1 proteins results in stimulation of hydrolytic activity.
Other FXYD proteins have different patterns of effects: associ-
ation of � (FXYD2) with Na,K-ATPase has been shown to
increase the apparent ATP affinity by supporting the E1 con-
formation of the enzyme and to decrease the apparent affinity
for cytoplasmic Na�, which apparently is an effect secondary to
an increased antagonism of cytoplasmic K� to activation by
Na� (10, 11). In other investigations the change in apparent
affinity for Na� could not be unambiguously assigned to such
increased Na�/K� competition alone but also indicated � in-
duced changes in the intrinsic binding affinity for Na� (59).
Effects on the extracellular K� affinity of both splice variants of
� have also been reported (11, 59). Co-expression of the FXYD4
protein CHIF with rat �1 increased the apparent affinity for
cytoplasmic Na�, without affecting the K� affinity or Vmax (23,
66). It should be noted, however, that assignment of changes in
apparent ion affinities from steady-state measurements to spe-
cific steps in the reaction mechanism might be difficult. In
co-expression experiments where changes in Vmax are not usu-
ally controlled, this can be important, because variations in
Vmax in itself are expected to change the apparent ion affinities
in a ping-pong kinetic model (67).

It is interesting to note that the functional effects following
cleavage of the C-terminal domain of PLMS resemble in some
aspects the effects reported after truncation of the N-terminal
domain of the rat kidney �-subunit. Thus, in mutagenesis
studies deletion of up to 40 N-terminal residues of the �-sub-
unit accelerates K� deocclusion at limited ATP concentrations
and shifts the E1/E2 conformation of the enzyme toward the E1

form, whereas further N-terminal deletions reversed this effect
(57). From these experiments it was suggested that the N-
terminal domain of the �-subunit play an autoregulatory role
in controlling the E1/E2 conformation of the enzyme by inter-

action of the N terminus/M2-M3 loop with the large catalytic
domain. It is possible, therefore, that other regulatory mecha-
nisms may act by controlling interdomain interaction thereby
affecting the E1/E2 conformational transition of the enzyme.

Although the domains within PLMS that are important for
the regulatory interaction with the Na,K-ATPase �-subunit
have not yet been directly identified, indirect evidence indi-
cates that sites in both the cytoplasmic and membrane regions
of PLMS may be important. Thus, sub-critical micelle concen-
trations of detergent that impair the protein-protein hydropho-
bic interactions relieved PLMS inhibition of Na,K-ATPase (21).
Previous investigations have suggested � to be localized close to
the C terminus of the �-subunit (27, 28). Compared with the
three-dimensional structure determination of SERCA (68), this
position would also be close to the N terminus/M1-M2 trans-
membrane segments of the Na,K-ATPase �-subunit, i.e. within
the same area suggested to be important for autoregulation
(57). Furthermore cytoplasmic sites of PLMS near to the C-
terminal protein kinase phosphorylation motif must be impor-
tant for the PLMS inhibition of Na,K-ATPase, which can be
relieved by PKC phosphorylation of PLMS (21). We suggest
that this interaction is between sites in the C-terminal part of
PLMS and the A domain of the �-subunit and that inhibition is
due to restriction of the A domain movement (20). This is
supported by the specific effects of PLMS cleavage on the
E1 � P3 E2-P reaction and on the subsequent K� deocclusion
reactions demonstrated in the present investigation. Such an
explanation is also in accordance with a recent study using
SERCA treated with proteinase K that cleaves a loop linking
the A domain with M3 (69). In such preparations the formation
of E2P from E1P is strongly reduced indicating that the flexi-
bility of the A domain is important for this conformational
transition.

In summary, the data presented in this study suggest an
important role for PLMS in the regulation of Na,K-ATPase
activity in shark rectal glands. The induced dissociation of
PLMS from the Na,K-ATPase by proteolytic cleavage of the
C-terminal multisite phosphorylation domain resulted in an
increase in the rates of both the phosphorylation at the cata-
lytic site and the subsequent K� deocclusion. The sequence of
PLMS and its localization in the shark rectal gland cells should
represent a firm starting point for further studies aiming at
identifying the physiological role of PLMS in the hormonal
control of Na,K-ATPase activity in this model transport epithe-
lium and to characterize the molecular interaction of the two
proteins responsible for this regulation.
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