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IMPLEMENTATION OF DSP APPLICATIONS USING
THE AT&T DSP32 C COMPILER AND
APPLICATION LIBRARY

J.Tow, S.L. Gay, J. Hartung

AT&T Bell Laboratories
Holmdel, N. J. 07733

US.A.

ABSTRACT

Digital Signal Processors (DSPs) have traditionally been used in real-
time applications with very high data throughput. For this reason,
system designers have been reluctant to accept the degradation in
performance inherent to machine code compiled from high level
languages such as "C". The problem is compounded by the fact that
DSPs often use pipeline architectures to achieve their high data
throughput resulting in hazards and latencies between instructions.
Typically, instruction cycles that occur during these latencies are
utilized by the programmer for tasks not involving the data in the
pipeline. Simple compiler implementation cannot take advantage of
latent instructions which results in a conservative and inefficient
executable program. This problem has been addressed in the C
compiler package for the AT&T DSP32 family by the addition of a
post-optimizer and an extensive application library.

In Section 1 we briefly introduce the C Compiler and the Application
Library. Section 2 contains several examples where the intent is to
show the ease with which filtering applications can be generated.
Finally, in Section 3, a comparison is made between compiled and
assembly language coded examples.

1. DSP32 C COMPILER AND APPLICATION LIBRARY

The DSP32 C Compiler is an implementation of the UNIX portable C
compiler, which guarantees portability of G programs from UNIX
System V machines to the DSP32. It also facilitates upgrades to new
C standards such as ANSI C, and language extensions, such as
C++. Integer data types, as well as single precision floating point data
types, are supported in the compiler.

A post-optimizer implements a number of strategies to improve the
speed and reduce the size of compiléd code. User control is also
provided to improve the use of the pipeline for cases where the
optimizer cannot resolve data dependencies. A more detailed
description of the C Compiler and Optimizer can be found in [1].

Although a high degree of performance and software productivity is
attained by the DSP32 C Compiler and Optimizer, an additional gain
can be obtained by using assembly language coded functions. For
this reason, a library of assembly language functions that can be
called from a C program is provided. The application library currently
contains over 60 C-callable functions for generic arithmetic functions
(trigonometric, logarithmic, and matrix) and signal processing
algorithms (fixed and adaptive filters, FFTs, and graphics/image
processing). Some of the standard UNIX C functions such as “printf",
and string manipulation are also included in the library. Functions are
provided which optimize both code size and speed, and can be
chosen by the user as appropriate. Detailed descriptions for a
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subset of the equivalent assembly language library functions that
can be called from an assembly language program can be found in

21
2. EXAMPLES

This section gives several examples on the use of the DSP32 C
Compiler and the application library functions for some commonly
encountered filtering applications.

2.1 Example 1 (LMS Algorithm)

The following example can be found on page 22 of Reference 3. A
single-input adaptive FIR filter with two weights is shown in Figure 1.
The input, x i , and the desired signal, d i , are sinusoids at the
same frequency, with N samples per cycle. The LMS (least mean
squares) algorithm updates the coefficients of the adaptive filter as
follows,

witke1) = wik) +2p - (k) - x(k)

The DSP32 application library function, Ims, computes the
following. It first calculates the convolution of the FIR filter input
sequence x(k) with the estimated coefficients w ; (k), resulting in the
output y | which is an estimate for d i . The error signal, e i , is next
formed as the difference between the desired signal, d i , and the
filter output, y . The weights ( or fitter coefficients) are then updated
according to the above equation for use in the next call of the
function. In the example, N=16, and the coefficients are initialized
(by default) to zero. The input and desired output samples are
obtained from the array, in, which was initialized to the first 20 values
of the input signal. Note that the output samples, or the cosine
values, are obtained from the array as four samples ahead of the
input values. The Ims function returns the error term which is stored
in the array, out, at 16 sample intervals. Some of the manual pages
for the application library functions used in this paper can be found in
the Appendix.

x, = sin (27k/N) &

. d, = 2 cos (27k/N)

-

€«
Yo = WoXy + WX,y

Fig. 1 An Adaptive FIR Filter With Two Weights
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The C program listing follows:

/* Example 1 -- LMS algorithm with a 2-tap adaptive FIR filter */

#include <libap.h>
# define L 2
# define lmscon 0.4

/* Length of LMS adaptive FIR filter */
/* adaptation constant (2u) */

float  in[20] = {
0.3826834, 0.70710678, 0.9238795, 1., 0.9238795, 0.70710678,
0.3826834, 0., -.3826834, -.70710678, -.9238795, -1., -.9238795,
-.70710678, -.3826834, 0., 0.3826834, 0.70710678, 0.9238795, 1.
I
float
float

out[64];
afircoe(L];

main()

{

static float  afirsv[L], afirout;
static float afirsv[L], afirout;
register int 1, j;

register float *p = in;

register float *q = out;
register float *coef = afircoe;
register float *sv = afirsv;

for (i=63; 1-- >=0;) {
for (j=14; j-- >=0;) {
Ims(L, *p, 2.0* *(p-+4), afirout, Imscon,
coef, sv);
pt++;
}
*q++ = lms(L, *p, 2.0* *(p-+4), afirout, Imscon,
coef, sv);
p = in;

The above program can be compiled with the DSP32 C Compiler
and run using the DSP32 simulator or the DSP32-DS Development
System [4]. At the end of 1024 passes of the LMS algorithm the
value of the filter coefficients, i.e., {afircoe[1], afircoe[0]], are
[4.828427, -5.226253] which closely agrees with the theoretical
value of [2col(2 = /16), -2csc(2 = /16)]. The corresponding final error
value, out[63], is -7.729977¢-8.

2.2 Example 2 (Example 1 with added random signal)

This example can be found on page 103 of Reference 3 where a
random signal is added to the input of Example 1. The application
library function, gran, which generates gaussian random numbers
with zero mean and unity variance is used to simulate the random
signal. A sigma value of 0.1, which corresponds to a random signal
with average power of 0.01, is used in the example. A printf
statement (which can only be used with the software simulator) is
inserted into the C program to display, on the terminal, the trajectory
of the filter coefficients and the error value after every input sample.
The value of the coefficients after 256 passes of the LMS algorithm
are [3.441290, -4.114841] which agrees well with the theoretical
optimum result, [3.784, -4.178].

/* Example 2 -- Example 1 with a random signal added at
the input */

#include <stdio.h>
#include <libap.h>
# define L 2

# define Imscon 0.2

# define sigma 0.1

/* Length of the adaptive FIR filter */
/* adaptation constant (2u) */
/* sigma of random signal power */
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float  in[20] = {
0.3826834, 0.70710678, 0.9238795, 1., 0.9238795, 0.70710678,
0.3826834, 0., -.3826834, -.70710678, -.9238795, -1., -.9238795,
-.70710678, -.3826834, 0., 0.3826834, 0.70710678, 0.9238795, 1.

b
float  afircoe[L];
float  iseed = 1.0; /* random number generator seed */
main()
{
static float afirsv[L}, afirout;
register int i, j;
register float *p = in;
register float *coef = afircoe;
register float *sv = afirsv;
float e;
for (i=15; i-- >=0;) {
for (=15 j- >=0) {
e = lms(L, *p-+sigma*gran(&iseed), 2.0* *(p+4),
afirout, lmscon, coef, sv);
pt++;
printf("%f,%f, error = %f \n" afircoe(1],afircoe(0] ¢);
P ’
= in;
}
}

With these tools, one can easily explore other aiternatives of the
LMS algorithm, e.g., starting with different initial values for the
coefficients, changing the fiter length, or observing the rate of
convergence for different adaptation constant values. In particular,
this example converges reasonably well only when the value of the
adaptation constant, 2y, is less than 1.4. There is, however, a trade-
off in the rate of convergence and the sample to sample variance of
the converged coefficients. Therefore, for a particular
implementation the user often experiments with different values for
the adaptation constant. The C compiler and the application library
provides a flexible tool for this type of experimentation.

2.3 Example 3 (lIR filter)

From stability considerations, IR filters are generally implemented in
a cascade of second-order direct form | or |l structures. in addition to
the filter response, frequently, it is of interest to know the
intermediate outputs at the filter internal sections. A conceptual
block diagram as shown in Figure 2 can be used for this purpose.

r | —=
Noise NE Second Second Second .
Source Order [] Order | e+ | Order :
Section Section Section
Cascade IR Filter
Hamming Log ;
Window FET Magninge [ 10 P2y

Figure 2. Example 3 Block Diagram



A white noise generator is used to excite the filter. The windowing
block collects a block of output samples, e.g., 256, from the output
of the filter or from one of the filter internal nodes, and then weights
them with a window function. A discrete Fourier transform of the
windowed data is computed by the FFT block. The log-magnitude
block forms an integer array of the log magnitude of the FFT outputs
and passes the data to the display.

A DSP32 C program which implements Figure 2 is given below in
Example 3. The program implements a 3-section lIR direct form Il filter
with the use of the application library function, iird. The function,
ran, which generates uniformly distributed random numbers over
the range [0.0, 1.0) is used as the input signal to the filter.

/* Example 3 -- Direct Form IL IIR filter with white noise input */

#include <libap.h>

#define L 4 /* No. of second-order sections */

# define N 256 /* No. of points in window or the FFT */
# define M 8 /* logaN */

float  iirdcoe[] = { /* filter coefficients */

0.856676, 0.000000, 0.000000, 0.00000, 1.,

0.928466, -0.0716619, 0.182630, 0.000000, 0.0716619,
0.928466, 0.1299680 -0.182630, 0.131665, 0.1299680,
0.00000, 0.2884230, 0.00000, -0.292188, 0.2884230

}s

float iseed = 1.0;
float A[2*N];
int  B[N/2];

/* array for input samples and FFT output */
/* array for log magnitude of the FFT output */

main()

{
static float iirdsv[2*L];
register int 1
register float ar, ai;
register float *p = A;
register int *q = B;
register float *coef = iirdcoe;
register float *sv = iirdsv;

/* Collects 256 filter outputs and stored in array A */
for(i=255; i-- >=0;
*p++ = iird(L, ran(&iseed), coef, sv);
*p++ = 0.0;
}
p=A;
/* Do Hamming window */
chammO(N, M, p);
/* Call FFT function */
fft(N, M, p);
/* Compute log magnitude */
for(i = N/2 - 1; i >=0; {
ar = *p4+;

ai = *p++;
*q++ = 10.0 * logl0(ar * ar + ai * ai);
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In the cascade implementation of direct form Il second-order
sections, the outputs at the internal sections that are important for
overflow and scaling considerations, are the so-called "branch”
nodes [Chapter 11 of Reference 5]. The branch node output at an
intermediate section corresponds to the response of the filter due to
the poles of that section and all of the poles and zeros preceding
that section. Therefore, one way to observe the responses at the
fiter and each of its branch nodes outputs, is by looking at the
output of a "modified" filter as follow. The first section of the
modified filter consists of the denominator term of the first section of
the filter and an numerator term equals to 1. The i th section of the
modified filter consists of the ith denominator term and the (i-1)th
numerator term of the filter, for i = 2 to L where L is the number of
second-order sections of the filter. The (L+1)th section of the
modified filter consists of the Lth numerator term of the filtter and a
denominator term equals to 1. Hence, the coefficients in the
program listing of Example 3, iirdcoe[], correspond to a four-
section filter.

The 256 filter output samples are stored successively in the even
locations of the complex array, A, where the imaginary parts, or the
odd locations of the array, are set to zero. The application library
function, chammaO, is used to do an in-place Hamming window on
this array. The FFT function is implemented with a call to the in-place
library function, fft. Finally, the log magnitude of the output of the fft
function is computed with the function, log10, and stored in the
integer array, B.

The 3-section filter used in the above example has the following
specification: an 8 kHz sampling rate, a passband between 1900 Hz
and 2100 Hz with a ripple less than 0.1 dB, and a stopband below
1400 Hz and above 2600 Hz with loss greater than 50 dB. The filter
coefficients were obtained from[6] using the direct form | design.

The program in Example 3 can be successively compiled and run
with the value of L in the #define statement set to 4, 3, 2, and 1 for
the calculation of the filter output and the branch node output at
section 3, 2, and 1, respectively. With the program interfaced to a PC
for the display of the output, as described in the example of [7], the
spectrum (with multiple traces of 256 samples) for L = 4, 3,2, and 1,
is shown in Figures 3a to 3d, respectively. Notice that the peak
output at the branch node of section 2 is approximately 20 dB higher
than that of the filter peak output. This is due to the fact that the
program implements a direct form It algorithm while the filter
coefficients were scaled according to the direct form | design.

3. HOW EFFICIENT ARE THE C PROGRAMS ?

Programs written in a high level language, such as C, incur an
overhead as compared to those written in the processor assembly
language. For signal processing applications, an important
consideration is the program execution time. In this paper, we
express efficiency (in %) as the ratio of the execution time of a
DSP32 assembly language program to an equivalent program
written in the C language. The DSP32 application library contains
over 50 assembly language functions [2]. For each function,
Reference 2 also contains an assembly language test program
which calls the function a multiple number of times. Each of these
assembly programs has been recoded in C using the C-callable
application library. A comparison of the execution times for these
programs is summarized in Table 1.

A few comments are in order here. The C programs are less efficient
with functions that operate on scalar quantities, such as the
trigonometric and the logarithmic functions, where the function
returns a single value for a single input value. C programs are more
efficient with functions that operate on vectors or arrays of data, such
as the Discrete Fourier Transform. The larger the dimension of the
array, the more efficient the C program becomes.

These programs have been written following the few simple rules for



writing efficient C programs for the DSP32 C Compiler [1]. These
rules include, the use of pointers for array references, the use of
post modification of pointers, and the use of register variables. The
comparison also reflects the current status of the optimizer.
Improvements in the optimizer, such as in-line coding of loops, will
further reduce the overhead of the C programs. In addition, the
compiler also allows the user to program directly in assembly
language within the C source code. This is useful when assembly
language coding of critical parts of the code is needed to improve
the performance.

It was previously mentioned that the compiled and linked C object
code can be run on the DSP32 simulator or run in real time with the
DSP32-DS Development System. The DSP32 integrated
development environment allows the user to switch easily between
them using the same command language [4]. The use of the real
time development system is preferred whenever the number of
instructions executed by the program is "large”. As an example,
Example 2 requires the execution of about 60,000 instructions with
the printf statement removed. This corresponds to a 10ms run time
on the Development System, while it takes as long as three minutes
using the software simulator on an MSDOS based PC.

FREQUENCY(HZ.)
2008

-18

-28

-38

-s8 1

Mo C ==X D

-68 ||

3

-9

Fig. 3a Filter Output (L = 4)

Fig. 3c Second Section Branch Node Output (L=2)
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TABLE 1 -- Efficiency of C vs. Assembly Program

FUNCTION EFFICIENCY

Trigonometric & Logarithmic Functions 74-87%
Matrix Multiply -- generic (3x3 matrices) 75 %

Matrix Multiply -- 5x5 matrices 83 %

Matrix Invert -- generic (6x6 matrices) 96 %

FIR Filters —- 19 taps 87 %

FIR Filters -- 99 taps 96 %

IIR Filters -- generic (2 sections) 76 %

IR Filters -- 4 sections 83 %

FFT -- 16 points 94 %

FFT -- 256 points 99.6 %
Window -- 64 points 90 %

LMS (Example 1) - 10 taps FIR filter 70 %

LMS (Example 1) -- 64 taps FIR filter 90 %

FREQUENCY(HZ. )
8 1608 2008 3800 4000

Fig. 3b Third Section Branch Node OQutput (L = 3)

Fig. 3d First Section Branch Node Output (L = 1)




4. CONCLUSION

This paper briefly introduced the C Compiler and the Application
Library for the DSP32 Digital Signal Processor. The three examples
shown illustrated the ease of writing C programs for some common
filtering applications. In most cases, a small real-time penalty is
incurred by using C, rather than assembly language coding.
Programming in C, however, allows a dramatic improvement in
programmer productivity in terms of implementing, testing, and
maintaining an application.
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APPENDIX -- DESCRIPTION OF FUNCTIONS fft, iird, and Ims
FUNCTION NAME: tft

The fft function implements an in-place, decimation-in-time, radix 2
fast Fourier transform (FFT) algorithm.

SYNOPSIS:
void fft(N, M, fftiO)
int N, M;
float *fftlO;
DESCRIPTION:
The use of each argument is explained below.

N - Length (number of points) of the complex FFT. The
maximum length is 1024.

M=log o N, 1<M<10
fftlO - Pointer to array of floating-point data. The data is in

the order: real1, imaginary1, real2, imaginary2, ..., reaiN,
imaginaryN.
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FUNCTION NAME: iird
Implements an infinite impulse response (IIR) filter corresponding to
the direct form Il cascade of second order sections with five
multiplications per section.
SYNOPSIS:

float iird(order, sample, coeff, state)

intorder;

float sample, *coeff, *state;
DESCRIPTION:

The filter transfer function is the product of second order sections:

wherei=1,2,..N, with N equals the number of sections.

N

I1

i=1

n[,0]+ n[i1] -z + n[,2] - 2~
14 d[i 1] - 27 + d[,2) - 272

The function returns the floating-point output. The use of each
argument is explained below.

order- Number of second-order IIR filter sections.
sample - Floating-point input value.

coeff - Pointer to array of floating-point coefficients. The
coefficients are stored in the order: d1,2}, n[1,2], d[1,1],
n[1,1], n{1,0], d[2,2}, n{2,2], d{2,1}, n[2,1], n[2,0], ...,
d[n,2], n[n,2], d[n, 1], nfn,1], n{n,0}.

state - Pointerto array of floating-point state variables.
The number of state variables is twice the number of
sections.

FUNCTION NAME: Ims

Implements a real adaptive FIR filter using the least-mean-square
(LMS) algorithm without tap leakage.

SYNOPSIS:
float Ims(length, sample, refer, afirout, imscon, coeft, sv)
int length;
float sample, refer, *afirout, Imscon, *coeff, *sv;
DESCRIPTION:

The function returns the floating-point error value. The
use of each argument is explained below.

length - Integer length (order) of the adaptive filter.
Length> 1.

sample - Floating-point input value.
refer - Floating-point reference or desired output value.

afirout - Pointer to kocation storing the floating-point
adaptive FIR output.

Imscon - Floating-point adaptive constant 2 .

coeff - Pointer to array of floating-point adaptive fitter
coefficients. The filter coefficients are stored in reverse
order.

sv - Pointer to array of floating-point static variables. The
number of static variables equals the length of the filter.
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