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Fault Classification Using Kohonen Feature Mapping 
Badrul H. Chowdhury Kunyu Wang 

Electrical Engineering Department 
University of Wyoming 

Laramie, WY 82071-3295 
email: bchow@uwyo.edu 

ABSTRACT 
Recent applications of neural networks to power system 

fault diagnosis have provided positive results and shown 
advantages in process speed over conventional approaches. This 
paper describes the application of a Kohonen neural network to 
fault detection and classification using the fundamental components 
of currents and voltages. The Electromagnetic Transients Program 
is used to obtain fault patterns for the training and testing of neural 
networks. Accurate classifications are obtained for all types of 
possible short circuit faults on test systems representing high 
voltage transmission lines. Short training time makes the Kohonen 
network suitable for on-line power system fault diagnosis. The 
method introduced in the paper can be easily extended to any size 
power system since the only information required for the NN to 
function are those that are recorded at substation fault recorders. 
With fast NN hardware now becoming available, on-line 
implementation is only a question of economics. 
Keywords: Artificial neural network, relaymg, fault diagnosis. 

1. INTRODUCTION 
With the recent advances in leaming techniques of 

artificial neural networks (ANNs) ,  many different architectures of 
A N N s  arc being applied to areas of power systems. ANNs show 
significant potential as alternatives to analwc and even expert 
system methods. They have been used in security assessment to 
classify static and transient security states [l]. They have also been 
used to calculate optimal power flows [2]. A N N s  have been used in 
the area of power system control to decentralize the control of 
power systems [3] and to design an adaptive control system [4]. 
Additionally, ANNs have been used to perform electric load 
forecasting 151. 

In the field of fault diagnosis, several implementations of 
expert systems have also been reported. These implementations 
have developed knowledge bases of operator experiences coupled 
with inferencing methods. However, the complexity of the rule base 
and the mferencing process leads to lengthy path-to-goal times and, 
as a result, longer times to diagnose faults 161. 

More recently, ANN techques have been used to solve 
fault diagnosis problems in power systems. The use of neural 
network based schemes for fault detection and classification is only 
in its early stages, but it shows great promise for provilng the 
adaptability necessary to sufficiently detect and identify power 
system faults. 

Fault diagnosis is the determination of actual system 
condition from observable symptoms whch might indicate a system 
failure. Some diagnoses need to be performed without knowing the 
status of all symptoms during multiple events and are required to 
select the correct conclusion from among alternatives. When a 
fault occurs on a transmission line, voltage and current signals 
develop a transient DC offset component and high-frequency 
transient components in addition to the power frequency (60 Hz) 
components. For distance relaymg, the fundamental component has 
to filtered out from the noise spectra and used in the calculation of 
the apparent impedance. Herein lies the advantage of ANNs in 

fault detection. The mherent capability of the neural network to 
correctly predict the output even under noise andor corrupted input 
is ideal in such situations where measurement noise can become a 
significant problem. 

These fault-induced transients have kquencies with 
magnitudes and rates of decay that depend on many factors, such as 
fault location, fault type and system parameters. Many of these 
factors are random in nature. Different techniques have been 
proposed to estmate the phase quantities of the 60 Hz mfomtion. 

Many fault classification techniques have also been 
suggested in the literature. Most of these techniques are based on 
the variation of the voltage or current samples of the three phases 
or the phasor quantities of the 60 Hz information. A multilayer 
perceptron method [7] has been developed to detect the presence of 
arcing faults in whch the neural network is configured and trained 
with data computed from phase current parameters derived using 
the Electromagnetic Transients Program (EMTP) [SI. Another 
detection scheme (91 uses the third harmonic components of the 
residual voltage and current, power, and sequence components of 
the three phase voltages and currents as input to a single layer 
perceptron ANN. Another method [lo] computes statistics from the 
phase currents and utilizes these as input to a clustering-based 
neural network for performing fault diagnosis. 

This paper proposes the application of a Kohonen neural 
network for fault classification. This type of unsupervised network 
is supenor to the conventional backpropagation network in 
classification tasks. The superiority is in terms of shorter training 
tunes. Test results of application of the designed ANN on two 
simple systems are shown later. 

2. GENERATION OF FAULT DATA 
In practice, it is difficult to obtain enough fault cases 

because the electric utility compames do not always archive all the 
fault cases or hesitate to make them public. Another problem is that 
it is not always possible to have all desirable fault cases in a 
substation. These problems can be eliminated by computer 
simulations using the well-known simulation package 
Electromagnetic Transients F'rogam (EMTP). 

EMIT simulations were used to obtain fault patterns for 
neural network training and testing in thls study. Extensive 
simulations were conducted resulting in more than 600 fault cases. 
All ten possible transmission line fault types (a-g, b-g, c-g, a-b, b-c, 
c-a, a-b-g, b-c-g, c-a-g and a-b-c faults) were simulated and the 
following two parameters were varied within each simulation: 

- load level (10,20, 30, 40, 50, 60, 70, 80, 90 and 100 % of full 

- Incidence angle of the fault Occurrence (0, 45 and 90 electric 
load) 

degrees on the phase A voltage waveform). 
Normal operation at different load levels were also simulated. 

2.1 EMTP 
The Electromagnetic Transients Program is a computer 

program used to simulate electromagnetic, electromechanical, and 
control system transients on electric power systems [ l l ] .  As a 
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digital computer counterpart to the analog Transient Network 
Analyzer (TNA), EMTP was developed in the late 1960's by Dr. 
Herman Dommel. Many other capabilities have been added to 
EMTP smce that time, and it is widely used in the utility industry 
and research institutes 

SRCIA U!%"-A SEN2-A REC2-A REC3-A SEN3-A 

2.2 Test Systems 

is given in Fig. 1 
The one line diagram of a modeled 230 KV power system 

230-A "A 

SRCM cycle, the results would be difficult to interpret since the 60 Hz 
component itself would not show up. Therefore, a sample size of 
one cycle was chosen for getting fundamental frequency 

The neutral currents were calculated by adding 50MVA components. 

applied to the line was varied. Simulation results have been 
obtained for the cases of 0 ,45 and 90 degrees 

2,3 Results from the Simulations 
A number of EMTP simulations of various fault events 

were performed for generating fault patterns to be used for training 
and testing of the neural network. The sampling frequency WBS 6 
WIZ which is as the same as that of digital fault recorder (DFR) in 
substations. A total number of 620 fault patterns were generated in 
this way. Also, ten patterns labeled as normal state were generated 
for each system to represent the steady state (no-fault case) of the 
power system. Total number of fault patterns used for training was 
414. In addition to that, 14 of 20 steady state patterns were 
provided for the training. Distribution of the patterns according to 
the fault type is given below in Table 1. The waveforms and the 
spectra of three phase currents in a line B and C-to-ground fault 
simulated on Test system #1 is shown in Figs. 3a and 3b 
respectively. 

I 

2.4 Pre-Processing of Fault Data for Inputs to ANN 
In order to get the hdamental frequency components of Fig. 1. One line diagram of Test system #1 

the voltages and currents for the inputs to neural networks used in 
the fault diagnosis, a Fourier analysis program was used. The 
spectra of the waveshapes were calculated using a Fast Fourier 
Transform (FFT) The frequency resolution is limited by the 

A second test system, shown in Fig. 2, was also used in 
the simulations. This system represents a case wherein generating 
sources are present on either side of a faulted line. 

230-A 
sample size in the time domain. If a two-cycle sample was used, the 
resolution would be 30 Hz. If the samDle was made of one-half 230-A 2302-A 

a 
Fig. 2. One line diagram of Test system #2 

A total of ten types of faults, viz., three single line-to- 
ground faults, three line-to-line faults, three double line-to-ground 
faults, and one three-phase, were applied to the receiving end of the 
100-mile long transmission line in Test system # 1, one fault at a 
time. In Test system #2, the fault point (F) was located on the 
transmission line between Bus 2301 and Bus 230, specifically 30 
miles away from Bus 230 1 .  The resulting short-circuit voltages on 
the 230 KV bus and currents on the faulted transmission line were 
determined. Results were obtained for loading conditions of 10, 
20, 30, 40, 50, 60, 70, 80, 90 and 100 MW on the line. 
Simulations on Test system #2 were conducted by following the 
same procedure, but the load resistance was chosen at 353 ohms 
instead of 529 ohms for the full-load. The point of time (in 
electrical degrees) on the voltage wave at which the fault was 

I 150 T I 

I -150 Time(m) I 
(a) Phase A current 

pha&s of the three-phase currents of each fault event. 

Table 1. Distribution of fault patterns resulting from EMTP 
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Fig. 3a. Current waveforms of a BC-G fault 

(c) Phase C current 
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Fig. 3b. Current spectra of a BC-G fault 
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3. IMPLEMENTATION OF THE ANN 
There are many architectures of artificial neural networks 

( A N N s )  associated with different learning methods. The Kohonen 
network was selected for its excellent pattern classification 
capability. Table 2 shows an overview of the implementation. 

Table 2. An overview of the implementation 
Source or data: lResults of EMTP simulations 

llnput pattern length: 14 currencs and 3 voltages of 60 Hz 
I 

Sampling frequency: 16 W z  

FFT sample size: 

Fault types to be classified: 

Number of patterns used for training: 

Number of patterns used for testing: 

1st cycle after fault Occurrence 

All 10 of faults and I normal m e  

3.1 Neural Network Learning 
Uncertainty of relay and circuit breaker triuuina signals 

Fault diagnosis of power systems is usually based on the 
tripping signals of relays and circuit breakers. Owing to the 
uncertainty of data sources, these kinds of signals have not been 
selected as inputs to the neural networks for fault detection and 
classification in this study. The information in the alarm messages 
sent by the Remote Terminal Units (RTUs) is not always reliable. 
Noise and loss of dormation may appear at several points between 
the moment when the fault occurs and the instant at whch it 
reaches the diagnostic system. The most common sources of 
uncertainty that can be enumerated are given below: 

- protective relay failures 
- breaker failures 
- local acquisition errors 
- transmission errors 
- inaccurate occurrence time 

In order to select the most relevant input features, several 
different input formats were considered during design and testing 
of the neural networks. These input formats are summarized in 
Table 3. Input formats 1 and 2 consist of both prefault and postfault 
samples, while input formats 3 through 6 contain only postfault 
samples. Input formats 1 through 4 use fault data in the time- 
domain. Since the number of neurons in the input layer of the A” 
is determined by the length of the input vector (e.g., for the input 
format 1 ,  the number of neurons in the input layer is 300, whle for 
the input format 2 that number is 600), input neuron requirements 
are much fewer for formats 5 and 6 which use the fundamental 
frequency components. The training error rate was noticeably high 
for input format 5 indicating that there was insufficient 
distinguishable dormation present in the data to perform the 
classification. The data was then pre-processed to add the 
fundamental Gequency components of the neutral currents and 
voltages of the first cycle of a fault, utilizing a FFT. This processed 
data is found to contain the most significant information for fault 

diagnosis. Training was much more satisfactory when using the 
processed data. 
3.2 The Kohonen Self-Organizing Neural Network 

In accordance to experimental results, it has been 
postulated that information in the brain is stored on a two- 
dimensional surface, and that related information occupies 
neighboring locations on that surface [l]. Mathematical models 
describing these self-organizing neural networks have been 
developed by Kohonen [12]. Throughout this paper, the terms 
“Kohonen neural network”, “Kohonen classifier” and “self- 
organizing feature map” are used synonymously for this type of 
network. Fig. 4 shows the Kohonen self-organizing feature map. 

Input 

formal 

1 
= 

- 
2 

- 
3 

4 
- 

- 
5 - 
6 

- 

Table 3. Input formats of neural networks 
Length of pattern I Sample 

Sample cycles I Data I No. of types 

Input 
layer 

2-dimensional 
setf-organidnn map 

I I I I I 
Fig. 4. The Kohonen neural network 

There is no target output and no “teacher” for evaluating 
an error function in these networks. The learning of the synaptic 
weights is unsupervised, which means that upon presentation of 
new input vectors, the network determines these weights 
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dyiiamically such that mput vectors wiuch are closely related will 
excite neurons wiuch are close together or clustered It is able to 
separate data mto a specified number of categones and therefore 
capable of acting as a classifier In the Kohonen network there are 
only two layers an mput layer where patterns of vanables are 
placed, and an output layer whxh has one neuron for each of the 
possible categones or classes 

3.2.1 Training of the self-organizing feature maps 
The patterns are presented to the input layer then 

propagated to the output layer and evaluated. One output neuron is 
the “winner”, that is, the weight vector leading to this neuron is 
closer, in the input space, to the input pattern than that of any other 
output neuron. The network weights are then adjusted during 
training by bringing this weight vector slightly closer to the input 
pattern. This process is repeated for all patterns for a number of 
epochs usually chosen in advance. 

To function properly, this type of network also depends 
upon adjusting the weights of “neighboring” neurons during 
training. Otherwise one neuron could end up winning all of the 
time. To make this adjustment, the size of the initial neighborhood 
needs to be specified. The neighborhood size is variable, starting 
off fairly large (sometimes even close to the number of neurons in 
the output layer) and decreasing as training progresses. During the 
last training events, the neighborhood is zero, meaning that only the 
winning neuron’s weights are changed. By that time the learning 
rate is very small, too, and the clusters have been well defined. The 
subsequent (small) weight changes only make slight refinements on 
the cluster arrangements. 

Training of the neural network for each test system (Test 
system # I  & #2) was conducted using 207 fault patterns. Trained 
networks were then used for detection and classification of the 
postulated faults. 

3.2.2 Unsupervised learning and network parameters 
The main problem to perform good mapping of the input 

onto the Kohonen map is one of determination of learning and 
network parameters. These parameters have been established 
experimentally by preliminary simulations. 

Number of neurons on the Kohonen mag 
Generally, Kohonen’s self-organizing neural network can 

be applied in two different manners to classification problems. If 
the number of input vectors exceeds the number of units in the 
map, the network will cluster similar faults into one unit. The same 
grouping effect can happen if two inputs are very close in the sense 
of the chosen distance measure. Otherwise, the neural network will 
work as a generalizing network, similar to the backpropagation 
network. In this case, the input vectors will be distributed on a part 
of the units of the Kohonen map, and the remaining units will 
represent an interpolation of the surrounding units. 

In order to obtain a well-organized generalizing network, 
the learning parameters must be properly chosen, especially the 
neighborhood. The winning neuron needs to have a positive 
mfluence on its neighbor neurons. The choice of a proper size of 
neighborhood is dominant for a topologically correct organization of 
a Kohonen map. After many experiments, a 2-dimensional 
Kohonen map consisting of 16 units for Test system # 1 and a map 
of 25 neurons for Test system #2 were selected for a total 11 
classes. 

Number of dimensions of the mput vector 
The number of components of the input vector is 

detemuned by many factors. This was taken to be as small as 
feasible due to the approxunately llnear dependence on the 
simulation time The comparison of different input formats has 
been discussed earlier It has been detemuned that the mput vector 
will be composed of seven vanables (magnitude of Ia, Ib, IC, In, Va, 
Vb and Vc) 111 this study 

The Initial leamina gain and neighborhood 
The weight updation in kohonen network networks is a 

dynamic process and is based upon a number of factors, the most 
important being the learning gain and the neighborhood parameter. 
Both these parameters change internally to force fast convergence 
of weights during iterations. Simulations for this study showed that 
the initial learning gain should be between 0.3 and 0.6, and the 
initial radius of the neighborhood must be about one-half of the 
maximal units of the Kohonen map. An initial gain of 0.5 and an 
initial neighborhood of 8 (12 for the network with 25 output 
neurons) were used. These two parameters decrease with the 
progress of training. 

Choice of the distance measure 
Kohonen himself proposes the scalar product and the 

Euclidean distance to calculate the similarity between the input and 
the weight vectors [ 131. Due to high computation time of the scalar 
product, the Euclidean distance method is used for the simulations. 

3.2.3 Testing of the trained Kohonen network 
The test patterns were randomly camed out to evaluate 

the performance of the trained Kohonen neural networks. Dunng 
the testing period, a three-phase and all combinations of line-to- 
ground, line-to-line and double line-to-ground faults were applied. 
Tests were performed with fault incidence angles of 0, 45 and 90 
degrees, and with different load levels of 30%, 60% and 90% of 
the full load. The neural network was presented with 103 new fault 
patterns. The network had never “seen” these patterns before and 
the task was to classify these new patterns based solely on the 
previous expenence obtained during the training. Results of testing 
are shown and discussed in the next section. 

Based on early test results, modifications and refinements 
were made to the parameters of the neural networks in order to 
increase the accuracy of the performance. Table 4 shows the results 
of tests with different parameters. 

The Kohonen maps whch show the resulting clusters of 
the fault type classification are given in Figs. 5 and 6. As noted 
earlier, the Kohonen feature map developed for Test system 1 has 
16 locations and that for Test system 2 has 25 locations. Therefore, 
a number of locations are not used in the classification. During the 
recall phase, an incoming faults to be tested for its type will 
activate the specific output neuron corresponding to its location on 
the map. It is also worth noticing, in the figures, that faults 
involving the same phases reside as neighbors. 

4. CONCLUSIONS 
The ability of artificial neural networks to provide high- 

speed fault detection and classification in power systems has been 
demonstrated in this paper. The Kohonen self-organizing network 
has been developed for fault diagnosis. Test results were shown to 
be very satisfactory with 100% accuracy. 
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In the current work, all faults were created using the 
same fault location. However, fault locations can be included as a 
variable which means additional simulations would have to be 
carried out to train the network to recognize such occurrences. 

The Kohonen method requires a relatively short training 
time. When neural networks are applied to power systems for fault 
diagnosis, they usually need on-line training since there are 
changes of parameters in power systems from time to time. For on- 
line training, E M T  simulations are replaced by recorded data at 
substation DFRs. The method introduced in the paper can be easily 
extended to any size power system since the only information 
required for the NN to function are those that are recorded at 
substation DFR. The smulated Kohonen network could also be 
implemented on a neural network hardware, which are now 
becoming available, thereby making on-line implementation a 
distinct possibility. 

Table 4. Testing results of Kohonen neural networks for Test 

Fig. 6. The Kohonen self-organizing map of classified faults for 
Test system #2 
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