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Abstract 
 
This paper presents a modified discrete particle 
swarm optimization (PSO) based technique for 
generating optimal preventive maintenance schedule 
of generating units  for economical and reliable 
operation of a power system while satisfying system 
load demand and crew constraints. While GA and 
other analytical methods might suffer from premature 
convergence and the curse of dimensionality, 
heuristics based swarm intelligence can be an efficient 
alternative. PSO is known to effectively solve large 
scale multi-objective optimization problems. Here, a 
modified discrete PSO approach is proposed for the 
GMS optimization problem in order to overcome the 
limitations of the conventional methods and come up 
with a feasible and an optimal solution. 
 
Introduction 
 
The economic operation of an electric utility system 
requires the simultaneous solution of all aspects of the 
operation scheduling problem in the face of system 
complexity, different time-scales involved, uncertainties 
of different order, and dimensionality of problems.  
 
Utilities spend billions of dollars per year for 
maintenance. The reliability of system operation and 
production cost in an electric power system is affected by 
the maintenance outage of generating facilities. 
Optimized maintenance schedules could safe millions of 
dollars and potentially defer some capital expenditure for 
new plants in times of tightening reserve margins, and 
allow critical maintenance work to be performed which 
might not otherwise be done. Therefore, maintenance 
scheduling in the electric utility system is a significant 
part of the overall operations scheduling problem.   
 

Power system components are made to remain in 
operating conditions by regular preventive maintenance. 
The task of generator maintenance is often performed 
manually by human experts who generate the schedule 
based on their experience and knowledge of the system, 
and in such cases there is no guarantee that the optimal or 
near optimal solution is found. Power system components 
are made to remain in operating conditions by regular 
preventive maintenance. The purpose of maintenance 
scheduling is to find the sequence of scheduled outages of 
generating units over a given period of time such that the 
level of energy reserve is maintained. This type of 
schedule is important mainly because other planning 
activities are directly affected by such decisions. In 
modern power systems the demand for electricity has 
greatly increased with related expansions in system size, 
which has resulted in higher number of generators and 
lower reserve margins making the generator maintenance 
scheduling (GMS) problem more complicated. The 
eventual aim of the GMS is the effective allocation of 
generating units for maintenance while maintaining high 
system reliability, reducing production cost, prolonging 
generator life time subject to some unit and system 
constraints [1]-[3]. 
 
The GMS is an optimization problem. Various methods 
exist in the literature that addresses optimization problems 
under different conditions. Different optimization 
techniques are classified based on the type of the search 
space and the objective function. The simplest method is 
linear programming (LP) which concerns the case where 
the objective function is linear [4]. For a special case, 
where some or all variables are constrained to take on 
integer values, the technique is referred to as integer 
programming [4]. In general, the objective function or the 
constraints or both may contain nonlinearities, which 
raise the concept of nonlinear programming (NLP) [5]. 
This type of optimization technique has been extensively 
used for solving problems, such as power system voltage 
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security [6], optimal power flow [7]-[10], power system 
operation and planning [11]-[12], dynamic security [13], 
reactive power control [14], capacitor placement [15], 
power quality [16] and optimizing controller parameters 
[17]. Even though deterministic optimization problems 
are formulated with known parameters, real world 
problems almost invariably include some unknown 
parameters. This necessitates the introduction of dynamic 
programming (DP) [18]. Although the DP technique has 
been mathematically proven to find an optimal solution, it 
has its own drawbacks. Solving the dynamic 
programming algorithm in most of the cases is not 
feasible and numerical solution requires extensive 
computational effort, which increases exponentially as the 
size of the problem increases. The complexity is even 
further increased when moving from finite horizon to 
infinite horizon problems, while also considering the 
stochastic effects, model imperfections and the presence 
of the external disturbances [18].     
 
Genetic algorithm (GA) can provide solution to GMS and 
the above optimization problems. GA represents a 
particular class of evolutionary algorithms that uses 
techniques inspired by evolutionary biology such as 
inheritance, mutation, natural selection and crossover. 
While it can rapidly locate good solutions, it may have a 
tendency to converge towards local optima rather than the 
global optimum of the problem [19].            
 
Particle swarm optimization (PSO) is a computational 
intelligence based technique inspired by the social 
behavior of bird flocking or fish schooling. It has its roots 
in artificial life and social psychology as well as in 
engineering and computer science. This technique is not 
largely affected by the size and nonlinearity of the 
problem, and can converge to the optimal solution in 
many problems where most analytical methods fail to 
converge. It can therefore be effectively applied to the 
GMS problem to evolve optimal sequence of maintenance 
of generating units having different specifications subject 
to practical constraints [20]. 
 
This paper presents a modified discrete particle swarm 
optimization (MDPSO) based technique for obtaining 
optimal preventive maintenance schedule of generating 
units  for economical and reliable operation of a power 
system while satisfying system load demand and crew 
constraints. 
 
GMS Problem Formulation  
 
Generator maintenance schedule is a preventive outage 
schedule for generating units in a power system within a 
specified time horizon. Maintenance scheduling becomes 
a complex optimization problem when the power system 

contains a number of generating units with different 
specifications, and when numerous constraints have to be 
taken into consideration to obtain an optimal, practical 
and feasible solution. It is done for a time horizon of 
different durations. A planning horizon of half year (that 
is 26 weeks) for 13 generating units of different capacities 
is considered in the GMS problem presented in this paper. 
The GMS over this planning period is important for 
resource management and future planning. 
 
Generally, there are two main categories of objective 
functions in GMS, namely, based on reliability and 
economic cost [2]. This study applies the reliability 
criteria of leveling reserve generation for the entire period 
of study. This can be realized by minimizing the sum of 
squares of the reserve over the entire operational planning 
period. The problem has a series of unit and system 
constraints to be satisfied. The constraints include the 
following: 
 
• Maintenance window and sequence constraints -

defines the starting of maintenance at the beginning 
of an interval and finishes at the end of the same 
interval. The maintenance cannot be aborted or 
finished earlier than scheduled. 

 
• Crew and resource constraints - for each period, 

number of people to perform maintenance schedule 
cannot exceed the available crew. It defines 
manpower availability and the limits on the resources 
needed for maintenance activity at each time period. 

 
• Load and reliability constraints - total capacity of the 

units running at any interval should be not less than 
predicted load at that interval. The load demand on 
the power system is considered during the scheduling 
period. 

 
• Spinning reserve - in order to maintain the electric 

power supply normally, there must be a spinning 
reserve to meet unexpected load demand. 

 
Suppose Ti⊂ T is the set of periods when maintenance of 
unit i may start,  
 

{ }1: +−≤≤∈= iiii dlteTtT  for each i.  
 
Define 
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to be the maintenance start indicator for unit i in period t. 
Let Sit be the set of start time periods k such that if the 
maintenance of unit i starts at period k that unit will be in 
maintenance at period t, { }tkdtTkS iiit ≤≤+−∈= 1:  . 
Let It be the set of units which are allowed to be in 
maintenance in period t, { }it TtiI ∈= :   .  

 
The objective is to minimize the sum of squares of the 
reserve generation given by (1). In this paper, modified 
discrete particle swarm optimization (MDPSO) is applied 
to minimize (1) subject to the constraints given by (2), (3) 
and (4). 
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subject to the maintenance window constraint 
 

1=∑
∈ iTt

itX   i∀ ,    (2) 

 
the crew constraint 
 
∑ ∑
∈ ∈
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and the load constraint 
 

∑ ∑∑
∈ ∈

≥⋅−
t itIi Sk
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i
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i  index of generating units 
I  set of generating unit indices 
N  total number of generating units 
t  index of periods 
T  set of indices of periods in planning horizon 

ie  earliest period for maintenance of unit to 
begin 

i

il  latest period for maintenance of unit  to end i

id  duration of maintenance for unit  i

itP  generating capacity of unit i  in period t  

tL  anticipated load demand for period t  

itM  manpower needed by unit  at period i t  

tAM  available manpower at period t  
 
Penalty cost given by (5) is added to the objective 
function ((1)) if the schedule cannot meet the load or the 
crew and resource constraints. 

 

∑
t

CostPenalty      (5) 

 
Modified Discrete PSO  
 
The PSO is a population based evolutionary computation 
technique introduced in 1995 by Russell Eberhart and 
James Kennedy [20]. PSO has been proposed recently 
and proved to be a powerful competitor in the field of 
optimization. PSO, inspired by social behavior of bird 
flocking or fish schooling, is an algorithm for finding 
optimal regions of complex search spaces through the 
interaction of individuals in a population of particles. In 
PSO, the potential solutions, called particles, fly through 
the problem space by following the current optimum 
particles. PSO has been recently applied to several power 
system problems, such as reactive power and voltage 
control, optimal power flow, dynamic security border 
identification and state estimation , and has been shown to 
perform well [21]-[23].  
 
The PSO has some advantages over other similar heuristic 
optimization techniques, namely: 
 
• PSO is easier to implement and there are fewer 

parameters to adjust. 
 
• In PSO, every particle remembers its own previous 

best value as well as the neighborhood best; 
therefore, it has a more effective memory capability. 

 
• PSO is more efficient in maintaining the diversity of 

the swarm [8], (more similar to the ideal social 
interaction in a community), since all the particles 
use the information related to the most successful 
particle in order to improve themselves. 

 
Discrete PSO (DPSO) 
 
The general concepts behind optimization techniques 
initially developed for problems defined over real-valued 
vector spaces, such as PSO, can also be applied to 
discrete-valued search spaces where either binary or 
integer variables have to be arranged into particles.   
 
When integer solutions (not necessarily 0 or 1) are 
needed, the optimal solution can be determined by 
rounding off the real optimum values to the nearest 
integer [21]. Discrete particle swarm optimization 
(DPSO) has been developed specifically for solving 
discrete problems. DPSO allows discrete steps in velocity 
and thus in position. In this version of PSO, the velocity 
is limited to a certain range Vmax. Thus, Vi always lies in 
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the range [-Vmax, Vmax]. The new velocity and position for 
each particle Xi(t)∈Rn are determined according to the 
velocity and position update equations given by (6) and 
(7). 

 

)))1((
))1(()1(()(

22

11

−−⋅⋅+
−−⋅⋅+−⋅=

tXPrandc
tXPrandctVwroundtV

ig

ibii

      (6) 
 

)()1()( tVtXtX iii +−=     (7) 
 
where c1 and  c2 are cognitive and social constants 
respectively, rand1  and rand2 are two random numbers 
with uniform distribution in the range of [0.0, 1.0], and w 
is the inertia weight constant which can be implemented 
as a fixed value, linearly decreasing or dynamically 
changing.  
 
The velocity update equation in (6) has three major 
components [21]: 
 
• The first component is sometimes referred to as 

inertia, momentum or habit. It models the tendency 
of the particle to continue in the same direction it has 
been traveling. 

  
• The second component is a linear attraction towards 

the best position ever found by the given particle Pi 
(whose corresponding fitness value is called the 
particle’s best, pbest or Pb). This component serves as 
the memory or self-knowledge. 

 
• The third component of the velocity update equation 

is a linear attraction towards the best position found 
by any particle whose fitness value is called global 
best, gbest or Pg. This component is referred to as 
cooperation, social knowledge or group knowledge.    

 
Integer or discrete PSO has a high success rate in solving 
integer programming problems even when other methods, 
such as branch and bound fail [24]. 
 
Modified DPSO (MDPSO) 
 
The modified discrete particle swarm optimization 
(MDPSO) is a combination of DPSO and an evolutionary 
algorithm enhancing the algorithm to perform optimal 
search under complex environments such as the case of 
the constrained GMS optimization problem considered in 
this paper. This version of discrete PSO is a variant of the 
original formulation to solve discrete optimization 
problems.  
 

The proposed MDPSO overcomes the premature 
convergence phenomenon experienced with the original 
PSO formulation by introducing a mutation operator. A 
natural evolution of the particle swarm algorithm can be 
achieved by incorporating methods that have already been 
tested in other evolutionary computation techniques. In 
this paper mutation operator often used in GA [25]-[26] is 
introduced into the discrete PSO algorithm. The main 
goal is to increase the diversity of the population by 
preventing the particles from moving too close to each 
other, thus collide or converge prematurely to local 
optima. This in turn improves the DPSO search 
performance. 
 
Supposing X=(X1, X2,…XN) is the particle chosen with a 
random number less than a predefined mutation rate (for 
0 < mutation rate < 0.3) then the mutation result of this 
particle is given by (8). 
 
 

nn ggn PrandnPX ⋅⋅+= ()5.0        (8) 

   n=1, 2,…N 
 
Where Pgn is the n-th dimension coordinate of the global 
best position (Pg). randn() is a Gaussian distributed 
random number with zero mean and variance 1. 
 
GMS with MDPSO 
 
The flowchart for the application of MDPSO algorithm 
for GMS problem is shown in Figure 1. 
 

Start

End

Initialize a population 
of particles

Evaluate the objective
function given in ((1))

Update pbest and
gbest

Update velocity and 
position of each particle

Is
rand < mutation rate ?

Perform mutation 
using ((8))

Is
termination condition 

satisfied ?

No

Yes

No

Yes

DPSO

EA

Start

End

Initialize a population 
of particles

Evaluate the objective
function given in ((1))

Update pbest and
gbest

Update velocity and 
position of each particle

Is
rand < mutation rate ?

Perform mutation 
using ((8))

Is
termination condition 

satisfied ?

No

Yes

No

Yes

DPSO

EA

 
Fig. 1. Flowchart of MDPSO algorithm for GMS problem. 
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GMS problem is addressed by first finding the starting 
period, which is the time the maintenance should begin 
for each generating unit. The integer encoding approach 
consists of a string of integers, each of which indicates 
the maintenance start period of a unit and the string 
length is equal to the number of units. Since the 
maintenance period varies for every unit, the start period 
is selected within the specified maintenance window of 
26 weeks. In order to investigate the performance of the 
proposed algorithm for the GMS, a test system 
comprising 13 units over a planning period of 26 weeks, 
which is obtained from the example presented in [2]. 
During this period, 13 units need to undergo maintenance, 
and Table 1 lists the generator ratings, maintenance 
duration of each unit and crew required weekly for each 
unit. 

Table1 
Data for the 13 units test system 

 

Unit Capacity 
(MW) 

Maintenance 
Duration (weeks) 

Manpower required for 
each week 

1 555 7 10+10+5+5+5+5+3 

2 180 2 15+15 

3 180 1 20 

4 640 3 15+15+15 

5 640 3 15+15+15 

6 276 10 3+2+2+2+2+2+2+2+2+3 

7 140 4 10+10+5+5 

8 90 1 20 

9 76 2 15+15 

10 94 4 10+10+10+ 10 

11 39 2 15+15 

12 188 2 15+15 

13 52 3 10+10+10 

The maintenance outages for the generating units are 
scheduled to minimize the sum of squares of reserves and 
satisfy the following constraints: 
 
• Maintenance window - each unit must be maintained 

exactly once within time duration without 
interruption. 

 
• Load constraint and spinning reserve - the system’s 

peak load including 6.5% spinning reserve [27]-[28] 
is 2500MW. 

 
• Crew constraint - there are only 40 crew available for 

the maintenance work each week. 
 

Experimental Study and Results 
 

To implement the MDPSO, a population size of 30 
particles was chosen to provide sufficient diversity into 
the population taking into account the dimensionality and 
complexity of the problem. This population size ensured 
that the domain is examined in full, and on the other hand 
it would mean increasing the running time. The 
experiment is conducted for 5000 and 10000 iterations 
over 100 trials.   
 
Table 2 shows fitness values, ((1)), for three different 
PSO parameters obtained after 10000 iterations. The MDPSO 
performs better than the DPSO. The two algorithms produced 
best results when w=0.8 and c1=c2=2, and the worst result is 
with linearly decreasing w. 
 

Table 2 
Fitness values (10000 iterations) 

 

DPSO MDPSO 

 
Mean fitness 
and standard 

deviation 
 (x106) 

Ranking 

Mean fitness 
and standard 

deviation 
 (x106) 

Ranking 

w=0.8, c1=2,  
c2=2  

1.083 ± 0.10 1 1.073 0.091 ± 1 

Linearly 
decreasing w 
(0.9 to 0.4), 
c1=2, c2=2 

1.096 ± 0.09 3 1.093 0.105 ± 3 

Constriction 
factor [29] 
w=0.729 
c1=1.49,  
c2=1.49 

1.092 ± 0.12 2 1.090 0.107 ± 2 
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Table 3 presents best schedules evolved by the DPSO and 
the MDPSO after 5000 iterations. During the 26-week 
maintenance period, every week is productively utilized 
to maintain generation that meets peak demand while 
satisfying manpower availability.  
 

Table 3 
Best generator maintenance schedules obtained by DPSO and MDPSO 

 
Generating units 

scheduled for  
maintenance 

Generating units 
scheduled for  
maintenance 

W
ee

k 
no

. 

DPSO MDPSO 

W
ee

k 
no

. 

DPSO MDPSO 

1 4 4 14 10, 11 7, 10 

2 4 4 15 12 7 

3 4 4 16 12 7, 8 

4 6 6 17 5 5 

5 6, 7 2, 6, 13 18 5 5 

6 6, 7 2, 6, 13 19 5 5 

7 2, 6, 7 6, 13 20 1 1 

8 2, 6, 7 3, 6 21 1 1 

9 3, 6, 13 6, 12 22 1 1 

10 6, 13 6, 11, 12 23 1 1 

11 6, 10 6, 10, 11 24 1, 8 1 

12 6, 10 6, 10 25 1, 9 1, 9 

13 6, 10, 11 6, 7, 10 

 

26 1, 9 1, 9 

 
Figure 2 shows optimal maintenance schedules obtained 
from the best results in Table III. Within the maintenance 
window, a minimum of 2500MW was sustained to meet 
the peak demand, while the crew was limited to 
maximum of 40.  It is important to note from this figure 
that the crew demand inversely related with the load 
availability over the entire maintenance period. When 
maintenance activities are intensified in a particular week, 
more generators are shut down which translates to 
reduced generation. The opposite happens when the 

tempo on maintenance is reduced. It can be observed also 
that there is maintenance activity on every week through 
out the 26 weeks without any interruption. 
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Fig. 2. Load availability and crew curves during maintenance period 
 
Figure 3 shows the performance graph of the best 
MDPSO and DPSO for w=0.8 and c1=c2=2. The results 
show that the DPSO is likely to be stuck in a local 
optimum whereas MDPSO has a higher chance of escape 
from the local attraction.  
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Fig. 3. Convergence rate of best MDPSO and DPSO 
 
Table 4 presents the mean iterations for both the MDPSO 
and the DPSO when all constraints are satisfied. These 
results are obtained over five trials. DPSO converged 
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prematurely than the MDPSO. The MDPSO avoided the 
premature convergence by making the mutated particles 
enter other region to continue searching for better global 
optimum solution. 
 

Table 4 
Iterations when all constraints are satisfied 

 

DPSO MDPSO 

 Mean number 
of iterations 
and standard 

deviation 
 (×103) 

Ranking 

Mean number 
of iterations 
and standard 

deviation 
 (×103) 

Ranking 

w=0.8, c1=2,  
c2=2  

0.04 0.127 ± 1 0.768 0.868 ± 1 

Linearly 
decreasing w 
(0.9 to 0.4), 
c1=2, c2=2 

0.078 0.12 ± 2 1.732 1.032 ± 2 

Constriction 
factor [29] 
w=0.729 
c1=1.49,  
c2=1.49 

0.829 0.828 ± 3 2.732 1.269 ± 3 

 
Table 5 shows the percentage of feasible optimal 
maintenance schedules obtained after 5000 and 10000 
iterations. The result shows the efficiency and better 
performance of MDPSO over the DPSO. Both algorithms 
performed best for w=0.8 and c1=c2=2 and worst for the 
constriction factor based PDO for this GMS problem.  
 

Table 5 
Fixed number of iterations 

 
DPSO 

 (Per cent of feasible 
optimal schedules) 

MDPSO  
(Per cent of feasible optimal 

schedules) 
 

5000 
Iterations 

10000  
Iterations 

5000 
Iterations 

10000 
Iterations 

w=0.8, c1=2,  
c2=2  

43% 58% 58% 79% 

Linearly 
decreasing w 
(0.9 to 0.4), 
c1=2, c2=2 

43% 53% 57% 66% 

Constriction 
factor [29] 
w=0.729 
c1=1.49,  
c2=1.49 

37% 50% 50% 62% 

 
 

Conclusion 
 
The problem of generating optimal preventive 
maintenance schedule of generating units  for economical 
and reliable operation of a power system while satisfying 
system load demand and crew constraints over  a half 
year period has been presented in a 13-unit test system.  
 
The integration of the mutation operator in the MDPSO 
algorithm improved the particles diversity and avoided 
the premature convergence problem effectively, and also 
showed good optimization performance. It copes with 
continuous and discrete variables conveniently. The 
results reflect a feasible and practical optimal solution 
that can be implemented in real time. 
 
Future work is to test on a large test system having 
different specifications over one year maintenance 
window, and then to a composite power system. The 
resulting optimal schedules will form part of overall 
system planning operation of a power utility. Future work 
will also seek to make the mutation operation adaptive 
while other powerful variants could be integrated into the 
MDPSO algorithm to improve the present performance. 
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