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A Study of Numerically Efficient Algorithms for Power System 
Dynamic Analysis 

James G. Chen Maiiesa L. Crow 
Department of Electrical Engineering 

University of Missouri-Rolla 
Rolla, Missouri 6540 1 

Abstract: In this paper, the multirate method will be 
introduced to analyze power system behavior including linear 
and non-linear systems with widely varying time constants. 
The development and study of time domain simulation 
techniques and error detection will be discussed. The results, 
both in terms of accuracy and computation time, will be 
compared to traditional simulation methods in a small 
nonlinear power system example. 

1. Introduction 

Computational complexity is of timely coiicem in the 
assessment of dynamic security. Steady-state and transient 
stability computational methods have studied in depth and 
many robust and widely-used tools are available for analyses 
in these time frames. Unfortunately, the development of 
computational tools for dynamic ( mid- to long-range ) 
analysis lags far behind. The ability to develop such 
methods is further complicated by the lack of appropriate 
models for various system components. In response, the 
power engineering community has tried to incorporate more 
detailed models into simulators. The inclusion of 
increasingly detailed models has further increased the 
complexity of the numerical calculations. 

One family of methods which has been used for power 
system simulation are variable-step methods [1][2]. 
Variable-step methods are integration techniques in which 
the time step may vary in accordance with the fastest 
varying state in the system. The variable-step method is 
well suited for simulating dynamic systems which me 
primarily slow response systems, but exhibit infrequent fast 
decaying transients. The method is not well suited for 
systems in which the fast response is sustained for a large 
portion of the simulation interval. Unfortunately, this is 
the case when the power system contains induction 
machines under continually changing loading levels. So, 
while only a small portion of the entire system state are 
affected by fast dynamics of the induction machine loads, the 
integration time step must remain small, thus 
computational efficiency is lost. This is again the case 
when the power system is modelled with fast switching 
devices, such as FACTS devices, or the conveners necessary 

to inter tie DC lines into an AC system. 
Recently, multirate methods have been proposed to 

effectively simulate systems with this widely varying time 
response behavior[3][4]. Multirate methods are distinguished 
from variable-step methods in that the system states are 
aggregated into loosely coupled components which are then 
integrated individually with a time step dictated by the time 
response of the component. The coupling between 
components is either neglected or estimated in some way. 

Computational speed-up is achieved if the number of 
rapidly varying components is small compared to the 
number of slowly varying components. High accuracy is 
achieved by retiining both the gross and specific behavior of 
the system. The potential of this method for power system 
simulation is great. 
In this paper, a study of multirate methods has established 

the viability of this type of numerical method for efficient 
simulation of power system dynamics. As a dynamics. 
As a first approach, the multirate method has been applied to 
a generalized linear system which may encompass a 
separation into n distinct time scales. The results of this 
study will be used to ascertain the stability of the numerical 
method for any given time scale separation between states. 
One of the main results of the preliminary linear system 
study is the development of a formula to estimate the 
possible obtainable speed-up given any number of time 
scales and the separation between them. The multirate 
method is then extended to a small nonlinear power system 
example which exhibits a time scale separation into two and 
three distinct time scales. 

2. The multirate method for linear systems 

A multirate method for integrating ordinary differential 
equations is one in which different equations are integrated 
by using different step sizes. The multirate method 
combines the robustness of a variable-step method with 
independent step size capabilities. The principle of the 
multirate method is the integration of each variable with a 
steplength which is necessary and sufficient for the requested 
accuracy. Although multirate methods are conceptually 
simple, there are still many problems and open questions 
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regarding their theory, formula, and implementation. This 
section discusses the use of multirate methods for solving a 
linear system with n ordinary differential equations. 

2.1. The multirate method for three time scales 

Consider a 3 x 3 linear time-invariant system of differential 
equations, which may be integrated with 3 different step 
sizes. For simplicity, let C, ! be defined as 

for C,,i E Z+,  and Ci = hi/hi-l . Note that this expression 
is different from the mathematical expression "C!". Also 
note that C, ! is equal to 1. Without loss of generality, it can 
be assumed that 

c, ! = c, x c,, x cl-2x...xcz x c, 

h, I h, I h, . . . . . .  h,-, I ha 
so that ~ = C 2 x C 1 x h ,  

~ = c l x h , = c l x c * x c l x ~  

ha = C,h,-, = C, x C,-,x.**xCZ x h, = C, !h, 
The three time scale case is illustrated in the following 

figure, where yl(t) is the fastest varying state and y3(t) is the 
slowest varying state. Note that h2=2h1 and h3=2h2=4h, , 
thus C2=2, C3=2, and C3!4. 

Y l  y2 w 
I t 2  

0 hi 2hl 3hl 4hi  5hi 6hl 7hl 8hl 
h,  2h2 3h2 4h2  

h3 2h3 

Figure-1: Three time scale ex'mple 

Consider the calculation of the system states at time 
r = 4 4 = 2 4 = 4 :  

is appropriate for its time response. Note also that not all 
stztes are available at the desired time ( those marked by @ 
in  Figure 1 ) and must be approximated. The simplest 
approximation is a linear interpolation between calculated 
values. 

After repeated interpolations and substitutions, the 
following expression for y l(t+h3) may be obtained: 

Y1( t +  4 )] <4> 

Vi E Z' 2 + h,a,, where Pi =- 
2 - h,a,, 

Similarly, expressions for y2(t+h3) and y3(t+h3) may be 
found. Note that since the trapezoidal method is an implicit 
method, there is an implicit dependence on the variables at 
both previous and current time steps in addition to the 
dependence introduced by the interpolation.This reduction 
process will be discussed in the next section for a generalized 
linear system of n distinct time scales. 

2 2  The multirate method for n time scales 

Consider a system of n linear functions: 
Y, =allyl +%Y1+. . .+a l .Y8 
Y z  = %Yl + %Y,+."+a,"Y" 

<5> 

Y* = %Yl + %Y,+...+%Y" 
Here, a, E YX for 1I i I n and 1 I  j 5 n. Following the same 
approach discussed for the three time scale system, the 
following expressions may be obtained for any 1liSn: 

C" I - 
/-I Cil , 

yi ( t + It" ) = p,%y, ( f ) + c pi* h,a, x 2 - hiail m=l k=l 

As in the previous discussion, it is possible to apply a 
reduction process to find a closed form for the matrix hf 
which relates 

y(t+h ,,I = M y(0 <7> 
The form of the matrix M is important for a variety of 

reasons. Firstly, the numerical stability of any integration 
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method can be ascertained by computing the eigenvalues of 
M. This aspect of the matrix M is not considered in this 
paper. The matrix M can be used to estimate the potential 
savings gained from the multirate method. Note from the 
discussion of Section 2.1 that at any point in time, only a 
portion of the entire system is calculated at any given time. 
Thus rather than solving an n x n  system at each step 
(requiring on the order of n2 multiplication and divisions if 
the system is sparse), considerably less computation is 
involved. 

3. An Illustrative Example 

The multirate method can be well illustrated with a small 
synchronous machine model, which is given in [5 ]  

<lo> 

d6 
- = w - w w .  
dt 

w, dt 

<12> 

The model contains the two stator / network tlux linkages 
Y ,  and Yq. The voltage proportional to the field flux 
linkage E:,  the voltage proportional to the damper winding 
flux linkage E:, and the electromechanical pair 6, w. The 
constant infinite bus voltage magnitude is given as V. The 
data for this example is given in [ 5 ] .  The applied disturbance 
is a reduction of the infinite bus voltage from 1.0 to 0.8pu at 
time t=0.2 sec. 

The flux linkage variables Yd and Y q  both exhibit 
highly oscillatory, negligibly damped responses with a 
frequency close to 6OHz. These are the "fast" variables. In 
order to effectively capture the dynamics of these oscillatory 
variables, the integration step sue must be small enough to 
accurately reproduce the shape of the sinusoid. A sinusoid 
waveform can be nominally reconstructed from 8 points per 
cycle, but 16 points per cycle is preferable. For this reason, 
in this example, the integration step size is chosen to be 

If a variable step integration method were used to simulate 
this system, all the system variables would be discretized 
using the same time step h=0.001 seconds. This time step 

could not be increased for better computational efficiency, 
because the oscillations are only negligibly damped, and thus 
would not decay in ,the time frame of interest, thus all 
advantages to using a variable step method are lost. The 
multirate method, however, is well suited to this type of 
problem. This system has a well-defined separation of time 
responses. 

3.1 Two time scales 

In the first example, a two-time scale separation $11 be 
consideml, that is, the variables [ E:, E:, 6, o ] will be "slow" 
vatiables compared to [Yd,  Y,], and will be integrated with a 
step size It, = C2h,, where 15 C,. The results of this 
comparison are summarized in Table 1 which gives the 
maximum percent error over the simulation interval for each 
variable using the multirate method as compared to a 
constant step size method with h, = 0.001s. The computa- 
tion time required as a function of C, is shown in Figure 2. 

S 

4 

f 
E 3  
v 

F 
2 

1 I 
13 17 21 2s Y 9 

Value of C2 

Figure 2 : Computation time vs. C, 

Table 1: C, vs. Percent Error and Computation time 
C, Y, Y q  E: E: 6 W cpu 
1 4.0 
2 0.34 0.64 0.48 0.01 0.06 0.00 2.5 
3 0.80 1.55 1.05 0.03 0.17 0.00 2.1 
4 1.27 2.49 1.92 0.05 0.32 0.01 2.3 
5 1.58 3.32 2.80 0.08 0.52 0.02 2.2 
6 1.69 3.52 3.77 0.11 0.77 0.03 2.1 
7 1.49 3.15 4.66 0.15 1.08 0.03 2.0 
8 0.87 3.20 5.29 0.19 1.47 0.04 1.9 
9 1.11 3.98 6.39 0.25 1.96 0.05 1.8 
10 2.87 5.04 8.54 0.33 3.59 0.06 1.7 

The relationship of time vs. C, is not unexpected. When 
C,=1, the computational burden will be dominated by the 
solution of the full 6x6  system. As C, increase, the 
dominance will shift to the 2 x 2 fast system, until the point 
where the infrequent computation of the full system is a 
smal l  portion of the overall computation. The slight increase 
in computation time at C,=4 is due to the increase of 
required Newton-Raphson iterations to achieve the required 
convergence accuracy. Far better speed-ups would be 
expected from a larger example where sparsity could be 
exploited or where the ratio of fast to total variables is 
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smaller than one-third, as in this example. 
0 6 7  1 

accuracy, but often at the expense of computational 
efficiency. 

Tlmo (sac) 

Figure 3: Standard output waveform for 6 ( C, =I) 

T i m  (sec) 
-aiMdWd 

Figure 4: Output waveform for 6 ( c,=8) 
3 3  Three time scales 

In the two time scale case, note that the variable E: has 
the largest error of all variables. This is due to the 
designation that E: is a "slow" variable, when in fact i t  
maybe considered a "medium" variable, not quite fast, but 
requiring more frequent updating than the slow variables. 
This necessitates the introduction of a third time scale. A 
selection of three time scale results are presented in Table 2. 
Recall that the medium step size 4 = C,h, and slow step size 
h, = C,C,h, = C, !h, . consider the two time scale ex'mple for 
C,=8, where the variables [E:, E: ,6 ,w]  are only integrated 
every 8 4 .  The error for E: is 5.3%. the error for Yp is 
3.2%. and the 6 error is 1.4%. In the three time scale 
example C,=2, C,=4, thus h, = 2 4 ,  and h, = 44 = 84, and 
the variables [E,',6,w] are only integrated every 84, 
whereas E: is integrated every 2 4 .  In this case the error in 
E: is reduced to 1.8%. while the errors in Y q  and 6 remain 
fairly constant. Note however, that the computational time is 
increased slightly from 1.9 CPU to 2.1 CPU, thus trading 
accuracy for efficiency. Even in the case where C,=4 
axxiC,=2(h, =4h, ,h,=8h,) ,  theerrorin E:isstillreduced 
to about 3% with all other errors remaining constant. In this 
case, the computational time is 1.9 CPU, the same as the two 
time scale case. These results are intuitive; the more 
frequently a "medium" variable is calculated, the greater the 

Table 2: C, & C, vs. Percent Error and CPU Time 
c, c, Yd y E: E,' 6 W cpu 
1 1  4.0 
2 2 1.30 2.31 0.71 0.03 0.36 0.01 2.3 
2 3 1.69 3.00 1.18 0.05 0.88 0.03 2.3 
2 4 0.75 3.39 1.86 0.08 1.66 0.04 2.1 
2 5 1.50 5.91 3.14 0.15 3.07 0.07 2.0 
3 2 1.67 3.09 1.61 0.06 0.86 0.03 2.2 
3 3 0.98 4.67 2.95 0.11 2.35 0.06 1.9 
3 4 6.47 10.30 5.65 0.26 5.44 0.13 1.8 
4 2 0.73 3.34 2.98 0.09 1.62 0.04 1.9 
4 3 650  10.20 6.33 0.26 5.42 0.13 1.8 
5 2 2.56 5.77 4.89 0.14 2.99 0.07 1.8 

4. Conclusions 

In this paper, the multirate method was discussed in context 
with both linear and nonlinear systems. The results obtained 
from the small synchronous machine example for both the 
two and the three time scale example indicate that the 
multirate method holds great potential for being an efficient 
method for power system dynamic simulation. This is 
especially true in the case where a power system contains a 
small proportion of "fast" devices, such as DC lines, 
induction machines. or FACTS devices. The multirate 
method is extremely well suited for this type of system 
analysis. 
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