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A FAST CONVERGING, LOW COMPLEXITY ADAPTIVE FILTERING ALGORITHM 
Steven L. Gay 

Acoustics Research Department 
AT&T Bell Labomones 
600 Mountain Avenue 

Murray Hill, New Jersey 07974 

Abstract: This paper introduces a new adaptive filtering 
algorithm called fast affine projections (FAP). Its main 
atdbutes include RLS (recursive least squares) like 
convergence and tracking with NLMS (normalized least 
mean squares) like complexity. This mix of complexity and 
performance is similar to the recently introduced Fast Newton 
Transversal Filter (FNTF) algorithm. While FAP shares 
some similar properties with FNTF it is derived f“ a 
different perspective. namely the generalization of the &e 
projection in t e rp rdon  of NLMS. FAP relies on a sliding 
windowed fast RLS (FRLS) algorithm to generate forward 
and backward prediction V~CIOIS and expected prediction 
error energies. Since sliding windowed FRLS algorithms 
easily incorporate regularization of the implicit inverse of the 
covariance matrix. FAP is regularized as well. 

1. lntrodudlon 
Recent1 the Fast Newton Transversal Filter (FNTF) 

a generalization of both the normalized least 
mean squares[*l (NLMS) and the recursive least 4uarc~[~] 
(RLS) algorithms has bem introduced. FNTF exploits an 
assumption that the process excitation signal is the output of 
an N’th order autoregressive model. Under such 
assum tions. linear predictors. such as those used in the fast 
RLSI4?(FRLS) algorithms, may be limited to length N-1 with 
no loss of performance. FNTF uses this property to reduce 
computational complexity from 7L (where L is the length of 
the joint process estimation) to 2L+7N. This includes an 
additional memory requirement of N(LN). Alternately, the 
additional memory usage may be avoided with an increase in 
complexity to 2L+12N. When N=l. FNTF revem to the 
NLMS algorithm and when N=L FNTF becomes FRLS. 

Another direction in the generalization of NLMS is the 
so-called a f h e  projection algorithm (APA)’” Is]. Under this 
interpretarion. each tap update of NLMS is viewed as a one 
dimensional affine projection. APA considers the case where 
projections are made m multiple dimensions per tap update. 
As with RLS and FNTF. APA requires an implicit invme of 
the excitation signal’s covariance matrix, although with APA 
the dimension of the covariance matrix is the same as the 
dimension of the projection. N, not the length of the pint 
process estimation, L. Using techniques similar to those 
which led to FRLS from RLS, a fast version of APA, FAP 
may be derived. Moreover. FAP relies on a sliding windowed 
FRLSr7I to generate forward and backward prediction vectors 
and expected prediction error energies. Since sliding 
windowed FRLS algorithms easily incorporate regularization 
of the covariance matrix inverse[*). FAP is regularized as 
well. The complexity of FAP is roughly that of FNTF. 
2L+14N, however FAP does not require significantly greater 
memory than NLh4S. In many applications, especially those 
involving speech L is often much larger than the required N. 
The echo cancellation problem is a good example of such an 

application m d  the algorithms developed in this paper are 
pesmted m that framework. Simulations indicate that FAP’s 
convergence m d  tmcking of system changes are comparable 
in speed to FRLS methods whenN is greater than the order of 
the excitation signal model. 

2. The Affine Projectkm Algorithm 

The f f i e  projection algorifhm, in a relaxed and 
regularized fonn. is defined by the following two equations: 

e, =E, - X:h,-M - 1  (1) 
~.=lf.-y+kxn [X:x.+sr] e, .  (2) 

x n =  [Ea.  E n - ] *  En- (N- l ) ]  (3) 

This is a block algorithm where the block size is N. The 
excitation signal m b x .  X,. is L by N and has the structure, 

wherethegn= [. ,,, - . . x , -L+ , ] ‘~hevecm.e~ .  isoflength 
N and consists of background noise and residual echo left 
uncancelled by the echo canceller’s Llength adaptive tap 
weight vector, h,. The N-length vector. 5.. is the system 
output consisting of the response of the echo path impulse 
response, ha,, to the excitation and the additive system noise. 
2.. 

~m=X:bep + I n -  (4) 
The step-size parameter, k is the relaxation factor as in 

NLMS. The algorithm is stable for OSp < 2. 
The scalar 6 is the regularization parameter for the 

autocorrelation matrix inverse. Where X:X, may have 
ei envalues close to zero. creating problems for the inverse. 
X,X,+6I  has 6 as its smallest eigenvalue which, if large 
enough. yields a well behaved inverse. 

At each iteration. the data in he  algorithm moves forward 
b. M samples. Usually M is set to the block size. N. to 
mitlgate the O ( N 2 )  computational complexity of the 
calculation of the vector 

F 

- I  

[X:x.+61] e a =  [&O,a$ . “  & N - ~ , I ] ‘ .  ( 5 )  

However faster convergence and/or a lower converged 
system misadjustment can be achieved if M is set to a lower 
value. FAP achieves O ( N )  complexity for the calculation of 
E, when M is set to one. 

If N and M are set to one, relations (1) and (2) reduce to 
the familiar NLMS algorithm. Thus, APA is a generalization 
of NLMS. 

- 



Projections Onto An Af6m Subsp8ce and Convergence 
By manipulating equations (1). (2), and (4). and assuming 

that 6 is small enough to be ignored and the additive system 
noise, y, is zero. the APA tap update can be expressed as. 

Where 

- 
h,=Q,h,-Af+P,h, 0) 

r 1 - 1  

P,=I-Q,.  (9) 
and the diagonal matrix in (8) has N (1 -k)'s and L N  1's 
along the diagonal. The matrices. Q, and P, represent 
projection matrices onto onhogonal subspaces when p = 1 and 
relaxed projection matrices when O< p < 1. Thus (7). and 
therefore (1) and (2). represent the (relaxed) projection of 
h,  - M  onto the affine subsppce defined by the (relaxed) linear 
b o j d o n  matrix. Q,. and the offset vector. P,h,. 

Equation (7) provides insight into the convergence of h ,  
toh,. Assumethatp=l. AsNincreasesfroml towardL 
the contribution to h, from decreases because the 
nullity of Q, is increasing, whde the contribution from h ,  
increases because the rank of P, is maeasmg. In principle. 
when N =L. ha should converge to L, m one step. s i n e  Q. 
has a rank ofzero and Pa a rank o n .  In practice however, 
as N approaches L the condition number of the matrix, X i  X, 
begins to grow. As a resulk the inverse of XiX,  becomes 
more and more dubious and must be replaced with either a 
regularized or pseudo-inverse. 
The Connection Bemeem APA, IS, and RLS 

This section shows the connection between APA. least 
squares (U). and RLS. Using the matrix invasion lemma it 
can be shown that the APA tap update described in (2) can be 
written 

- 1  

h.=h.-Af+p [x.x: +61] X,e, (11) 

Note that XI X i  is an L by L rank deficient estimate of the 
autocorrelation matrix and that its inverse is regularized by 
the matrix 61. Now, consider the case where the sample 
advance. M. is one and consider the vector e,. By definition. 

r 1 

Where the matrix has dimension L by (N-1) and 
consists of the N-1 left-most (newest) columns of X,-l and 
the N-1 length vector 3. - consists of the N-1 upper (newest) 
elements of the vector 5, - I  . 

First. consider the lower N - 1 elements of (12). Define 
the a posteriori residual echo vector for sample period n-1. 
el,"-l as 

! 3 , m - l  =s - 1  -x:-lha-l (13) 1" 

L 

Now make the approximation. 

x:-]x,-l +61=X:-lx,-, (14) 
which is valid as l a g  as 6 is signiiicantly smaller than the 
eigenvalues of X:-lX,-l. Of course. this muns  that 61 no 
longer regulrrizes the inverse of the N by N sample 
 elation matrix. However it still regularizes the rank 
deficient L by L sumple autocomlation matrix inverse of 
(1 1). using this rpproximatioxL 

gl,,-l=(1-P)gn-l. (15) 
Recognizing that the lower N - 1 elements of (12) are the 

sameastheupperN-1 elementsof (13).(15)canbeusedto 
express e,  as 

r 1 

L J L  J 

Where I,,-1 is an N-1 length vector cont.ining the uppermost 
elements of em-]. This is a key approximation and is 
essential m the derivation of FAP in the next section. For 
p= 1, 

Using (17) in (11). 

h,,=h,,-l+ [ X I X : +61 ]-I x , e , .  (18) 

Equation (18) is a regularized. rank deficient least squares tap 
update. If N = n .  6=0, and the matrix invasion lemma is 
applied to a rank-one update of the inverted matrix in (18). 
(18) becomes the growing windowed RIA algorithm. 

Indeed, equation (18) can be used as an alternative 
starting point to our algorithm and FAP (with p= 1) can be 
thought of as a fast. regularized, rank deficient least squares 
algorithm. One advantage of this interpretation is that one 
can work backwards from (18) and obt 'n 11) where an 

altemative definition for e,. namely, e, = is used. As a 

side benefif this obviates the need for the approximation in 
(14) and 6 can once again be chosen large enough to 
regularize small eigenvalues in X:X,. While the two 
algorithms represented by relations (2) and (18) are slightly 
different, they yield the same convergence curves with only a 
modification of the parameter 6. 

FJ 
3. The F8st A f h e  Projection Algorithm 

In this section two fast APA algorithms are derived. one 
with relaxation. O< p <  1, and one without relaxation, p= 1. 
In both cases the sample advan~e. M. is set to one. 

Both the relaxed and non-relaxed algorithms can be 
thought of as close approximations to a fast APA when 6 is 
set to a small value compared to the smaller eigenvalues of 
X:X,. Alternately. the fast algorithm without relaxation can 
be thought of as an exact fast regularized rank deficient least 
squares algorithm. These philosophical considerations are a 
direct result of whether relation (16) is taken as an 
approximation or an equality. 

In the echo cancellation problem, as in other problems. 
the residual echo. e is the directly obsmed part of the 
algorithm and the d p t i v e  film taps. h,  are "buried," so to 
speak, in the RAM of some signal processor somewhere. 

._ 



Therefore. it is permissible to maintain any form of ha that is 
convenient in the algorithm, as long as the first samj3e of 5, 
is not modified in my  way from that of equation (1). Thic IS 
the basis of FAP. The fidelity of cl is m.intlined %each 
sample period, but h, is not Another vector. ha is 
maintained, where dy , the  last column of X, is weighted 
and accumulated into h, each sample period. Thus, the 
computational complexiiy of the tap-update process is no 
m y e  complex than NLMS. L operations. In addition. the 
residual echo vector calculation is shown to be recursive with 
L + O ( N )  complexity. 

Using (5 )  in (2) the APA tap update can be expressed as. 

h . = h n - l  +PX,E,. (20) 
One can also express the current echo path estimate. h,. in 
terms of the original echo path estimate, io, ana the 

h,=ho+p x X , - i E , - i .  (21) 

S u b q m t  Xi's m d g i ' ~ .  
a - 1  

i = O  

Now, expand the vectorhatrix multiplication, 
I - I N - 1  

- h , = h  - 0  + CI C x z m - j - i E j - n - i .  (22) 
i = O  j=O 

Assuming that x ,  = 0 for nIO. it can be shown that (22) can 
be reminedl as. 

N - l  k 

h n = h O + l  czm-k C E j . n - k + j  (23) 
t = O  j=O N - 1  

+F E ~ _ a - b  z ~ j . n - t + j .  
k = N  j = O  

If the first term and the second pair of summations on the 
right side of (23) are defined as 

a - 1  N - 1  

h n - 1  =hO+p c&-k Ej,m-k+ j  (24) 
k = N  j - 0  

and the first pair of summations in (23) is recognized as a . ,  
vector-mamx-md tiplication. 

- 
N - l  k 

x a g m = p  z n - k  x E j . n - k + j  
k = O  j=O 

where, 

E m = P  

EO.. 

E I . . + E O . " - l  

then, (23) can be expressed as 

It is easily seen bom (24) that 
h m = h a - l  + X m E n .  

Using (29) in (27) the current echo path estimate can 
alternately be expressed as 

+ X n _ E a  (30) 
Where Em is an N-I length vector consisting of the upper 

1 - -  

most N-1 elemmts of _E,. 

recursively. By inspection. 
Obsming (26) it is seen that E ,  can also be calculated 

r o i  

Now, consider the relationship between e, and 
Using (16) one could calculate e,, from e,-l except for the 
fact that is not readily avdable. Kowever, using (U)) 
forh,-l mthefirstmwof(16),e, is. 

where 

i, = s a  -&-I  1 (34) 
(35) 

- -  
E=.. - 1 + x n a a  - X R  -L E, - L . 

a n d e m =  ~ ~ - 1 .  ..., x , - N + ~ ] ' .  [ 
To efficiently compute (31) one needs to find a recursion 

for the vector E,. Define R,=X:X, and let U ,  and in  
denote the optimum forward and backward linear-Fedictors 
for R, and let E, ,, and Eb., denote the& rrspec&ve expected 
prediction error &agies. Also, define R, and R, as N-1 by 
N-1 matrices consisting of the upper left and lower right 
comers of R,. respectively. Then, givem the following 
idatities: 

and the definitions. 

(38) 
- - 1  S,=R,  E ,  

(where Z is an N-1 length vector containing the N-1 lower 
elemen&f e m )  and 

(39) E.=R, e,. 
one can multiply (36) from the right by e ,  and use (5) and 
(38) to obtain, 

- - 1 -  

r n i  , 

Similarly, multiplyingQ?) from the right by e,, using (5 )  and 

(39). and solving for , 

The quantities, E a , ,  E b , .  0,. and 6,. c m  be calculated 
efficiently complexity 1dN) using a skiing windowed FRLS 
algorithm'd . 

The relations derived above can be brought together in the 

Use sliding windowed Fast K h a n  or Fast Transversal 
Filter algorithms to update Ea,n, E,,", g,, and b,. 

relaxed FAP algorithm as follows: 
1. 
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r - 9  

8. E , =  [-' E m - ,  ] + ~ g ,  

9. 
. . a  

h n  =!!n - 1 +X_.-w- l$N- 1.. 

10. E ,+l=( l -F)E,  
Step 1 is of complexity 1ON when FIT is used. Steps 3 

and 9 are both of complexity L. steps 2. 6. and 7 are each of 
complexity 2N. and steps 4.5.8 and 10 are of complexity N. 
This gives an overall complexity of 2L+20N. 

If relaxation is eliminated, that is. p is set to one, 
considerable savings in complexity can be r e a l i d .  FAP 
without relaxation may be written as follows: 

1. Use sliding windowed Fast K h a n  or Fast Transversal 
Filter algorithms to update E,, and a, . 

1 1  

6 .  11=h"-l+X~-(N-l~~N-1.1 

Here, steps 3 and 6 are still complexity L. step 2 is of 
complexity 2N. and steps 4 and 5 are of complexity N. 
Taking into Bccount the sliding windowed ITF. the total 
complexity is 2L+14N. 

4. Simulations 

Figure 1 shows a comparison of initial convergence 
between FIT (Fast Transversal Filter. an FRLS technique) 
and FAP where the system misadpstment is plotted versus 
time. The echo path of length. L = 100. is fixed and the 
additive noise, y.. is 40 dB down from the of the echo , 
&,zm. The excitation signal is a colored noise sequence 
genaaed by sending white Gaussian noise through the filter 
1/(1-.98z-"). Soft initialization was used for both 
algorithms. For FIT. E, and E, were both set to 20; 
(where 0: is the power of x ,  ) and 2.. the forgetting factor 
WBS set to 0.9995. For FAP. E,,0 and Eb.0 were set to 80; 
and N was set to 12. FAP converges at roughly the same rate 
as FIT with 2L complexity versus 7L complexity. 
respectively. Both FAP and FIT converge faster than 
NLMS. 
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