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Two Separate Continually Online-Trained
Neurocontrollers for a Unified

Power Flow Controller
Ganesh K. Venayagamoorthy, Senior Member, IEEE, and Radha P. Kalyani, Student Member, IEEE

Abstract—The crucial factor affecting the modern power sys-
tems today is load flow control. The Unified Power Flow Controller
(UPFC) provides an effective means for controlling the power flow
and improving the transient stability in a power network. The
UPFC has fast complex dynamics and its conventional control
is based on a linearized model of the power system. This paper
presents the design of neurocontrollers to provide better damping
during transient and dynamic control. Two separate neurocon-
trollers are used for controlling the UPFC, one neurocontroller
for the shunt inverter and the other for the series inverter. Simu-
lation studies carried out in the PSCAD/EMTDC environment is
described and results show the successful control of the UPFC and
the power system with two neurocontrollers. Performances of the
neurocontrollers are compared with the conventional proportional
plus integral controllers for system oscillation damping under
different operating conditions for large disturbances.

Index Terms—Indirect adaptive control, neurocontrollers,
neuroidentifiers, power system, Unified Power Flow Controller
(UPFC).

I. INTRODUCTION

WITH the ever-increasing complexities in power systems
across the globe and the growing need to provide

stable, secure, controlled, economic, and high-quality electric
power—especially in today’s deregulated environment—it is
envisaged that flexible ac transmission system (FACTS) con-
trollers are going to play a critical role in power transmission
systems [1]. Transmission congestion results when there is
insufficient capacity to transmit power over existing lines and
maintain the required safety margins for reliability. FACTS
enhance the stability of the power system both with its fast
control characteristics and continuous compensating capability.
The two main objectives of FACTS technology are to control
power flow and increase the transmission capacity over an
existing transmission corridor [2].

Gyugyi proposed the Unified Power Flow Controller (UPFC),
a new generation of FACTS devices in 1991 [3]. The UPFC is a
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combination of a static synchronous compensator (STATCOM)
and a static synchronous series compensator (SSSC) which are
coupled via a common dc link, to allow bidirectional flow of
real power between series output terminals of the SSSC and the
shunt terminals of the STATCOM, and are controlled to provide
concurrent real and reactive series line compensation without
an external electric energy source. Practically, these two devices
are two voltage-source inverters (VSIs), one connected in shunt
with the transmission line through a coupling transformer and
the other is inserted in series with the transmission line through
an insertion transformer. The UPFC by means of angularly un-
constrained series voltage injection is able to control, concur-
rently or selectively, the transmission line voltage, impedance,
and angle or, alternatively, the real and reactive power flow in
the line. The UPFC may also provide independently controllable
shunt-reactive compensation.

Neural networks are suitable for multivariable applications
since they can easily identify the interactions between the
system’s inputs and outputs. Their ability to learn and store
information about system nonlinearities allows neural networks
to be used for modeling and designing intelligent controllers
for power systems [4], [5]. Thus, they offer alternatives for
traditional linear and nonlinear control. A radial basis function
(RBF) neural network controller for a UPFC based on the direct
adaptive control scheme has been reported to improve the tran-
sient stability performance of a power system [6]. It is known
that indirect adaptive control is able to control a nonlinear
system with fast changing dynamics better, such as the power
system. This is as a result of the dynamics being continually
identified by a model. Advantages of the neurocontrollers
over the conventional controllers are that they can adapt to the
changes in system operating conditions automatically unlike
the conventional controllers whose performances degrade for
such changes and are required to be retuned to give the desired
performance.

This paper presents the design of neurocontrollers (NCs) to
control the UPFC and the power system in a single machine
infinite bus power system setup. The design of a NC for only
the series branch of UPFC has been proposed by the authors in
[7]. The design of the series and shunt continually online trained
(COT) NCs to replace the existing proportional plus integral (PI)
controllers in the series and the shunt branches of a UPFC are
based on the indirect adaptive control scheme. In addition, two
other neural networks called neuroidentifiers (NIs) are designed
to identify the hybrid complex nonlinear dynamics of the UPFC
and the power system. The neurocontrollers are trained based

0093-9994/$20.00 © 2005 IEEE



VENAYAGAMOORTHY AND KALYANI: TWO SEPARATE CONTINUALLY ONLINE TRAINED NEUROCONTROLLERS 907

Fig. 1. SMIB system with the UPFC (the “plant”).

on the dynamics modeled by the neuroidentifiers. In all, four
COT neural networks are used for the complete UPFC control.
A comparison of the performances of the neurocontrollers and
PI controllers for damping system oscillations and voltage reg-
ulation are presented for a power system experiencing large dis-
turbances at different operating points and conditions.

II. POWER SYSTEM WITH UPFC

For identifying and controlling the dynamics of a UPFC and
a power system, the single-machine infinite-bus (SMIB) power
system in Fig. 1 is simulated in a PSCAD/EMTDC environment.
EMTDC is an electromagnetic transient simulator of electric
networks with the capability of modeling complex power elec-
tronics, controls and the nonlinear power network [10]. PSCAD
is the graphical user interface to EMTDC. The PSCAD/EMTDC
combination is a powerful tool for visualizing the enormous
complexity of portions of the electric power system [10].

The power system in Fig. 1 comprises a synchronous gen-
erator with exciter-automatic voltage regulator (AVR) and
turbine-governor combinations connected to an infinite bus
through two sections of transmission lines. The UPFC is placed
between the two sections of the transmission lines, between
bus 1 and 2 as shown in Fig. 1. This simple system is chosen
in order to evaluate the performance of the UPFC with two
different control strategies.

The series inverter provides the main function of the UPFC
by injecting a voltage with magnitude , which is controllable
and a phase angle in series with the line via an insertion trans-
former. This injected voltage acts essentially as a synchronous
ac voltage source. The transmission line current flows through
this voltage source resulting in a reactive and active power ex-
change between itself and the ac system. The inverter generates
the reactive power exchanged at the ac terminal internally. The
active power exchanged at the ac terminal is converted into dc
power, which appears at the dc link as a positive or negative real
power.

Fig. 2. Series inverter control with conventional PI controllers and
neurocontroller.

The basic function of shunt inverter is to generate or absorb
the real power demanded by series inverter at the common dc
link. The power demand by the series inverter at the dc link is
converted back to ac by the shunt inverter and fed to the trans-
mission line bus via a shunt-connected transformer. In addition
to this, the shunt inverter can also generate or absorb control-
lable reactive power if desired and thereby provides indepen-
dent shunt reactive compensation for the line [11]–[14].

The three main control parameters of UPFC are voltage mag-
nitude, voltage angle and shunt reactive current. Control of real
and reactive power can be achieved by injecting series voltage
with an appropriate magnitude and angle. The transient stability
model for the shunt and series branch of a UPFC in the refer-
ence frame are given in the literature [8], [15]. The conventional
shunt and series branch control of the UPFC is briefly described
below.

A. Series Branch Control

The block diagram of the conventional PI controllers for se-
ries branch of the UPFC is shown in Fig. 2 (with the switches
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S and S at position 1) [8], [15]. The control of series inverter
can be achieved using PQ-decoupled control. The outputs of the
control system are the modulation index and phase shift .
Neglecting the inverter losses, the injected active power , re-
active power , output active power , and reactive power

are given by

(1)

(2)

(3)

(4)

where

(5)

It can be seen from (3) that is mainly affected by
whereas (4) shows that is affected by both and .
In incremental form, the line active and reactive power can be
expressed in terms of and as given by (6a) and (6b).

(6a)

(6b)

However, it can be assumed in practice that is close to unity
and is close to zero since the phase angle between the two
buses (receiving and sending ends) on a transmission line is less
than 30 , which leads to (7)

(7)

The NI is trained with switches S and S at position 2 and the
NC controls the UPFC with switches S and S at position 3.
The design of NI and NC are explained in Sections III and IV,
respectively.

B. Shunt Branch Control

Control of the shunt active and reactive current is achieved by
varying the shunt inverter voltage active and reactive com-
ponents , respectively. The reactive power flow and shunt
input voltage can be regulated by active voltage component
and the dc-link capacitor voltage support can be achieved
by regulating . Fig. 3 shows a typical block diagram of the
conventional PI controllers for the UPFCs shunt branch control
[8], [15]. The outputs of this control system are the modulation
index and phase shift . The PI controllers are replaced by
the neurocontroller with switches S and S at position 3. The
design procedure of the neuroidentifier and neurocontroller is
explained in Sections III and IV, respectively.

Fig. 3. Shunt inverter control with conventional PI controllers and
neurocontroller.

Fig. 4. E (one of the PRBS signals) applied to the series branch of UPFC
with the switches S and S in position 2 in Fig. 2.

III. DESIGN OF NEUROIDENTIFIERS

Two neuroidentifiers, one for the series inverter and the other
for the shunt inverter are used to identify the hybrid dynamics of
the UPFC and the power system. These networks dynamically
identify the controlling parameters of UPFC , and

which are the outputs of the controllers (Figs. 2 and
3). The NIs are developed using the series-parallel nonlinear
autoregressive moving average (NARMA) model [4]. The two
neuroidentifiers are continually online trained simultaneously to
provide dynamic models at all times. The training of NIs takes
place in two phases, namely, a pre-control phase and a post-
control phase [5].

A. Pre-Control Phase

During this phase, the switches S and S in Figs. 2 and 3
are at position 2. The inputs to the NIs in this phase are the out-
puts from plant and the pseudorandom random binary signals
(PRBS) in Figs. 4 and 5.

1) Series Neuroidentifier: The series UPFC branch
neuoidentifier (SENI) in Fig. 6 is a three-layer feedfor-
ward neural network [also known as the multilayer perceptron
(MLP)] with 13 inputs, a single hidden layer with 15 sigmoidal
neurons, and two outputs. There are two different types of
training that are carried out for SENI, namely, the forced
training and the natural training.

During forced training, the dynamics of the plant are tracked
by applying pertubations using PRBS which are fed to the plant
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Fig. 5. E (one of the PRBS signal) applied to the shunt branch of UPFC
with the switches S and S in position 2 as shown in Fig. 3.

Fig. 6. Structure of neuroidentifier with 13 inputs, 15 sigmoidal neurons, and
two outputs.

Fig. 7. Training of SENI to update the weights of the NI by backpropagating
the error signals at F.

at in Fig. 7 by placing switch P1 at position 1. During natural
training the inputs to the plant at are the controller outputs,
where the controller can be a conventional PI controller or a
neurcontroller (switch P1 at 2). There are four different types of
inputs, the first two types are the differences between the fol-
lowing signals: the measured real power and its reference value

, and, the measured reactive power and its reference value
. The other two input types during forced training are the

PRBS training signals— and (Fig. 4). In the
pre-training phase, PRBSs are applied to excite all possible dy-
namics of the plant [4], [5]. These PRBS are fed to the series

Fig. 8. Training of SHNI to update the weights of the NI by backpropagating
the error signals at F.

inverter at and SENI at with the switches and at po-
sition 2 (Fig. 2).

The typical PRBS signal applied is shown in Fig. 4. The fre-
quency content of this signal is 1, 3, and 5 Hz. This is required
to cause perturbation of all possible system dynamics so as to
allow the SENI to learn better. All four different types of in-
puts are time delayed (TDL) by one sample period and together
with their eight previously delayed values form the 12 inputs
to the SENI. The outputs of the SENI in Fig. 7 at are the
estimated difference in the real power— and in the reac-
tive power— at the next time step. The outputs of SENI at

are compared to outputs of the plant at and the error sig-
nals at are used to update the weights of the SENI using the
backpropagation (BP) algorithm. This process is repeated until
a satisfactory error goal is obtained for the SENI training over
a number of operating points of the plant.

2) Shunt Neuroidentifier: The shunt UPFC branch neu-
roidentifier (SHNI) is a three-layer feedforward neural network
with 13 inputs, a single hidden layer with 18 sigmoidal neurons,
and two outputs [similar to Fig. 6(a)]. As mentioned above
for the SENI, the training of the SHNI is carried out in two
phases—the forced and the natural training. There are four dif-
ferent types of inputs; the first two inputs to the NI are, namely,
the deviation signals between the measured shunt voltage
and its reference value , the measured dc-link voltage
and its reference , and the other two input types during
forced training are the PRBS training signals and

(swicth P2 at position 1 in Fig. 8) with magnitudes
in proportion to the real and reactive components of shunt
inverter voltage and , respectively.

All four types of inputs are time delayed by one sample period
and together with their eight previously delayed values form
the12 inputs to the SHNI at (Fig. 8). The outputs of the SHNI
at are the shunt voltage deviation and dc-link voltage
deviation which are estimated one time step ahead. These
PRBS signals are only fed to the shunt inverter at and to the
plant at during the pre-training phase with the aid of switches
S and S (Fig. 3). The outputs of SHNI in Fig. 8 at are
compared to outputs of the plant at and the error signals at

are used to update the weights of the SHNI using the BP
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algorithm. This process is repeated until a satisfactory error goal
is obtained for the SENI training over a number of different
possible operating points of the plant.

B. Post-Control Phase

During this phase, online training of the SENI and SHNI con-
tinue while the controllers (PI/NCs) are controlling their respec-
tive branches of the UPFC, with the switches S and S now at
position 3 in Figs. 2 and 3. The design of the neurocontrollers is
described in Section IV. The PRBS signals used in the pre-con-
trol phase are now set to zero and the outputs from the con-
trollers are applied to the plant. The post-training steps for NIs
(Figs. 7 and 8 with switches P1 and P2 at position 2) are de-
scribed below.

1) The plant output signals at are sampled and time de-
layed by one, two, and three sample periods.

2) The sampled signals from step 1) above are fed at to
the controllers which then calculates the control signals

, (SHNC) and (SENC) which are
applied to control the plant.

3) These control signals are time delayed by one, two, and
three sample periods, and, together with the signals from
step 1) are fed to the NIs at .

4) The outputs at ( of series branch and
of shunt branch) and the outputs of NIs

at ( of SENI and of
SHNI) are subtracted, respectively, to produce error sig-
nals at which are backpropagated to update weights of
the respective NIs.

IV. DESIGN OF NEUROCONTROLLERS

In the series and shunt UPFC branch neurocontroller design,
each consists of two separate neural networks, one for the identi-
fier/model (described in Section III) and other for the controller.
The neurocontroller is used to replace the conventional PI con-
trollers in each branch (Figs. 2 and 3). The training of neurocon-
trollers like the neuroidentifiers also takes place in two phases,
namely, a pre-control phase and a post-control phase [5]. Both
neurocontrollers are trained simultaneously.

A. Pre-Control Phase

During the pre-control phase the inputs to the NCs are the
perturbated outputs from the plant as shown in Figs. 9 and 10.
The PRBS signals (switches P3 and P4 at position 1) are applied
as inputs to the NIs and to the plant to cause the necessary per-
turbations.

1) Series Neurocontroller: The series UPFC branch neuro-
controller (SENC) in Fig. 9 is a three-layer feedforward neural
network with six inputs, a single hidden layer with 18 sigmoidal
neurons, and two outputs. There are two types of inputs to the
SENC, namely, the and the . These signals at time

, and form the six inputs. The two outputs
of SENC ( and ) are the control signals .

The outputs of the plant are fed into the desired response pre-
dictor (described in Section V), [4], which predicts
and at (Fig. 10). The output of SENI at is

Fig. 9. Structure of neurocontroller with six inputs, 18 sigmoidal neurons, and
two outputs.

Fig. 10. Training of SENC to update the weights of the NC by
backpropagating the error signals at L.

subtracted from the output of the desired response predictor at
to produce the error signal at which is backpropagated

through the SENI to obtain desired control signal . The
difference between and the outputs of SENC gen-
erates the error signal at which is used to update the weights of
the SENC using BP. Pretraining is terminated when the weights
of the SENC have converged for the PRBS signal applied over
a number of operating points of the plant.

2) Shunt Neurocontroller: The shunt UPFC branch neuro-
controller (SHNC) in Fig. 11, is a three-layer feedforward neural
network with six inputs, a single hidden layer with 18 sigmoidal
neurons, and two outputs. Fig. 11 shows the SHNC development
block diagram and, the respective inputs and outputs for the pre-
training phase. The PRBS signals are applied to the input of the
shunt UPFC branch and the SHNI by placing the switch P4 at
position 1. The outputs of the plant are fed into the desired re-
sponse predictor, which predicts and
at . The output of SHNI at is subtracted from the output of
the desired response predictor at to produce the error signal
at which is backpropagated through the SHNI to obtain de-
sired control signal . The difference between and
the outputs of SHNC generates the error signal at which is
used to update the weights of the SHNC using BP. Pre-training
is terminated when the weights of the SHNI and SHNC have
converged over a number of operating points.
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Fig. 11. Training of SHNC to update the weights of the NC by
backpropagating the error signals at L.

The next phase of the training (post-control) for the NCs are
carried out while the NCs are allowed to control the plant.

B. Post-Control Phase

During this phase, online training of the NCs continue while
NCs are controlling their respective branches of the UPFC. The
PRBS signals used in the pre-control phase are now set to zero
and outputs from the NCs are applied to the plant (with switches
P3 and P4 in Figs. 10 and 11 at position 2). The following steps
are carried out during the post-control phase.

1) In the post-training of NCs, the output of the NIs at
( of SENI and

of SHNI), and the desired response at (
of series branch and

of shunt branch) are subtracted, respectively, to pro-
duce a second set of error signals at . The error signals
at are backpropagated through the NIs and their deriva-
tives are obtained at (with the weights of NIs fixed).
The backpropagated signals at are subtracted from the
output signals of the NCs to produce other error signals at

.
2) These error signals at are then used to update the

weights of the NCs using the BP algorithm. This causes
the NCs to change its output in a way driving the error
signals at to zero.

3) New control signals are calculated for the
shunt branch and for the series branch using
the updated weights in step 2) and are then applied at next
time step to the plant at .

4) These steps are repeated for the subsequent time periods
[4].

V. DESIRED RESPONSE PREDICTOR

The desired response predictor (DRP) in Figs. 10 and 11 is
designed [17] to have the following characteristics.

1) It must be flexible enough to modify the dynamic perfor-
mance of the neurocontroller such as the rise time and
damping.

2) The desired response signal must ensure that the UPFC is
inherently stable at all times. In other words, the predictor
must be stable.

3) The desired response signal must incorporate the effects
of a damping controller for the plant.

The DRP is designed on the basis of guiding the disturbed
output variables to a desired steady operating point or set
point, in a step-by-step fashion. In other words, a desired trace
of outputs from to can be predicted, based on the present
and past-time values of the outputs. The equation of the DRP is
given in (8)

(8)

are chosen so that any disturbed output
variable always transfers toward the desired steady operating
point, that is the DRP is always globally asymptotically stable.

is the value predicted for the next immediate time step and
for example in the case of the shunt branch of the UPFC can be
the voltage deviations at the bus where the shunt inverter is
connected or its dc capacitor voltage deviations.

In (8), it is assumed that each output variable of the DRP is
a linear combination of the independently predicted output vari-
ables of the dynamic system. The magnitude of the coefficients,

, determine the magnitude of the error signal between the neu-
roidentifier output and the desired response signal (or predictor)

, and therefore, the magnitude of the error to be backpropa-
gated to the neurocontroller to adapt its weights.

If the output is bounded for and

(9)

then a predictor can be designed which forces the UPFC device
to respond, by means of the neurocontroller, to return the system
to its desired setpoints [17]. The magnitude of the forcing signal
depends on the coefficients .

If (9) does not hold then the control variables will not return
the system to its setpoints after a disturbance. The fundamental
assumption made in this design is that it is possible for a con-
troller to return system variables to its set points after a distur-
bance as explained in [4] and [17].

The desired response predictor used for training SENC is
given by (10) and (11). Similarly the desired response predictor
for training SHNC is given by (12) and (13)

(10)

(11)

(12)

(13)

The next section describes the simulation results of the power
system with single and double transmission lines.
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Fig. 12. SMIB with a single transmission line and a UPFC.

Fig. 13. Actual signalP of the plant and estimated signal P̂ by the SENI..

Fig. 14. Actual signal Q of the plant and estimated signal Q̂ by the
SENI..

VI. SIMULATION RESULTS

A. SMIB With Single Transmission Line

The system model in Fig. 12 comprises a synchronous
generator (590 MVA, 38 kV line to line) [9] operating at real
power, p.u and reactive power, p.u, with a
single transmission line. The governor and turbine models are
the IEEE standard models of PSCAD/EMTDC [10]. The pa-
rameters of PI controllers are fine tuned for this operating point
using the time response analysis [16]. A sampling frequency of
10 kHz is used to sample the outputs of the plant.

1) Neuroidentification of Plant Dynamics: Identification of
the error signals by SENI and
by SHNI are carried out at different operating points and their
weights are continually updated. The training signals fed to
NIs— , and are
like those shown in Figs. 4 and 5. Figs. 13 and 14 show the
outputs of SENI and, Figs. 15 and 16 show
the outputs of SHNI . It is observed from the
plots that the series identifiers reach an error goal of 0.000 01
p.u in 100 s of simulation while the shunt identifiers reach an
error goal of 0.001 p.u in the same time during the training in
the pre-control phase. This convergence is sufficient for the NC
design.

2) Neurocontrol of Plant: The SENC and SHNC attain error
goals in similar time periods comparably to the SENI and SHNI,

Fig. 15. Actual signal V of the plant and estimated signal V̂ by the SHNI.

Fig. 16. Actual signal V of the plant and estimated signal V̂ by the
SHNI.

Fig. 17. Terminal voltage response of the synchronous generator operating
(P = 0:5 p.u and Q = 0:1 p.u) for a 180-ms three-phase short circuit at bus 2.

respectively, during the pre-control training phase. The NCs and
the PI controllers’ performances are evaluated by applying a
180-ms three-phase short-circuit fault at bus 2 at three different
operating points given below. The figures below show the re-
sponse of the plant with the NCs (SENC and SHNC) in solid
lines and with the PI controllers in dashed lines.

a) First Operating Point— p.u and
p.u: Figs. 17 and 18 show the terminal voltage and speed re-
sponses, respectivel, for the two controllers (NCs and PIs). It
can be observed from these figures that the performances of both
controllers are similar at this operating point. The rise time and
settling times of the responses with the PI controllers and neu-
rocontrollers are the same. This is because the PI controllers are
fine tuned initially for this operating point.

b) Second Operating Point— p.u and
p.u: Figs. 19 and 20 show the terminal voltage and load angle
responses, respectively. For this operating point, it can be seen
that the responses with the NCs are better than that with the PI
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Fig. 18. Speed response of the synchronous generator operating (P = 0:5 p.u
and Q = 0:1 p.u) for a 180-ms three-phase short circuit at bus 2.

Fig. 19. Terminal voltage response of the synchronous generator operating
(P = 0:65 p.u andQ = 0:12 p.u) for a 180–ms three-phase short circuit at bus
2.

Fig. 20. Load angle response of the synchronous generator operating (P =

0:65 p.u and Q = 0:12 p.u) for a 180-ms three-phase short circuit at bus 2.

controllers for damping the system oscillations. It can be ob-
served especially from Fig. 20 that the PI controllers’ perfor-
mances have degraded. The maximum overshoot with the PI
controllers is about 20% more than seen with the neurocon-
trollers and settling time with PI controllers is about 60% longer
than that with neurocontrollers.

Fig. 21. Terminal voltage response of the synchronous generator operating
(P = 0:8 p.u and Q = 0:15 p.u) for a 180-ms three-phase short circuit at bus
2.

Fig. 22. Load angle response of the synchronous generator operating (P =

0:8 p.u and Q = 0:15 p.u) for a 180-ms three-phase short circuit at bus 2.

c) Third Operating Point— p.u and
p.u: Figs. 21 and 22 show the terminal voltage and load angle
responses, respectively, for this operating point which is much
further away from the one at which the PI controllers are fine
tuned. It can be clearly seen from these figures that the plant
with PI controllers have sustained oscillations in the terminal
voltage and the load angle increases drastically after the fault,
loosing stability. The plant with NCs on the other hand damps
out the oscillations and restores the system to stability. The NCs
give performances similar to those at previous operating points
and maintains plant stability. This is because NCs are trained
online and hence they are able to adapt to changes in operating
conditions with the aid of the neuroidentifiers.

B. SMIB With Double Transmission Line

The system model in Fig. 23 is the same power system as that
in Fig. 12 except that the single transmission line is replaced by
a double transmission line. The UPFC is installed on transmis-
sion line 1 between buses 4 and 5. A load of p.u and

p.u is added at bus 3. The NC and the PI controllers’
performances are evaluated by applying three phase short cir-
cuit fault of different durations for the synchronous generator
operating point at p.u and p.u.
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Fig. 23. SMIB built with two transmission lines, the UPFC on Line1, and a
load at bus 3.

Fig. 24. Terminal voltage response of the synchronous generator (P = 0:8
p.u and Q = 0:2 p.u) for a 200-ms three-phase short circuit at bus 3 (Fig. 23).

Fig. 25. Load angle response of the synchronous generator (P = 0:8 p.u and
Q = 0:2 p.u) for a 200-ms three-phase short circuit at bus 3 (Fig. 23).

1) Three Phase Fault for 200 ms Duration: A three-phase
fault of duration 200 ms is applied at bus 3 (Fig. 23) at time

s. The effective control of the UPFC by SENC and
SHNC can be seen from the responses of terminal voltage and
load angle in Figs. 24 and 25, respectively. It is seen that at
this operating point for this fault, the conventional PI controllers
completely fail and the plant goes unstable. The plant with the
NCs survive through the fault and returns to stability smoothly
in about 3 s.

2) Three Phase Fault for 305 ms Duration: A three-phase
fault of duration 305 ms is applied at bus 2 and at time

Fig. 26. Terminal voltage response of the synchronous generator (P = 0:8

p.u and Q = 0:2 p.u) for a 305-ms three-phase short circuit at bus 2 (Fig. 23).

Fig. 27. Load angle response of the synchronous generator (P = 0:8 p.u and
Q = 0:2 p.u) for a 305-ms three-phase short circuit at bus 2 (Fig. 23).

s. The terminal voltage and load angle responses are shown in
Figs. 26 and 27, respectively. It is observed that at this operating
point for this fault along one of the double transmission lines, the
conventional PI controllers completely fail and the plant goes
unstable, whereas the plant with the NCs survive through the
305-ms fault and returns to stability smoothly in about 4 s.

3) Double Three-Phase Short Circuits: Two three-phase
faults are applied to the plant, first one of duration 200 ms on
bus 3 (Fig. 23) applied at s and then a second one of
duration 105 ms is applied at s on bus 2. Terminal
voltage and load angle responses are shown in Figs. 28 and 29,
respectively.

The plant is found to be stable after these double faults with
the NCs unlike the case with the PI controllers. It is also ob-
served that in all the tests above, the dc voltage excursions are
rapidly damped out and this is essential for the successful oper-
ation of the series and shunt inverters of the UPFC. The system
was not tested for PI controllers because of its failure in the pre-
vious test.

VII. CONCLUSION

In this paper, the design of two continually online trained
neurocontrollers to provide adaptive nonlinear control of the



VENAYAGAMOORTHY AND KALYANI: TWO SEPARATE CONTINUALLY ONLINE TRAINED NEUROCONTROLLERS 915

Fig. 28. Terminal voltage response of the synchronous generator (P = 0:8 p.u
and Q = 0:2 p.u) for two three-phase faults, one for 200 ms at bus 3 applied at
t = 7:5 s and another for 105-ms at bus 2 applied at t = 9:5 s (Fig. 23).

Fig. 29. Load angle response of the synchronous generator (P = 0:8 p.u and
Q = 0:2 p.u) for two three-phase faults, one for 200 ms at bus 3 applied at
t = 7:5 s and another for 105 ms at bus 2 applied at t = 9:5 s (Fig. 23).

series and shunt UPFC inverters over a wide range of oper-
ating conditions was presented. It has been shown that two sep-
arate neural networks are able to identify successfully the hy-
brid complex dynamics of a unified power flow controller and
the power system; and another two separate neural networks are
able to control the UPFC better than the conventional PI con-
trollers. A superior performance of the neurocontrollers over the
conventional controllers can be observed as a result of the on-
line training of the neuroidentifiers and neurocontrollers which
never stops. The initial promising results of the neurocontrollers
imply that the electric power system equipped with such intelli-
gent controllers can survive small and large disturbances thus
preventing the power system from brownouts and blackouts.
Future work involves extending the control strategy to a large
power system with multiple FACTS devices. Identifying and
mitigating the dynamics that may result from FACTS device in-
teractions will become necessary.

APPENDIX

The power system used here comprises a synchronous gen-
erator whose parameters given in Table I are obtained from [9].
The ratings of the generator are as follows:

rated power—590 MVA;
rated voltage—22 kV;

TABLE I
GENERATOR PARAMETERS.

rated current—8.39 kA;
inertia, H—3.5 s.

The transmission line parameters are: and
.

The exciter model is the standard IEEE model of PSCAD [10]
and its parameters are as follows:

lead time constant—0.0 s;
lag time constant—0.0 s;
regulator gain—400 p.u;
regulator time constant—0.02 s;
maximum regulator internal voltage ( )—20;
minimum regulator internal voltage ( )—20;
maximum regulator output ( )—10 p.u.;
maximum regulator output ( )—10 p.u.;
rated feedback gain ( )—0.03 p.u.;
rated feedback time constant ( )—1 s
exciter time constant ( )—0.8 s;
exciter constant related to field ( )—1.00 p.u.;
field circuit commutating reactance ( )—0.2 p.u,;
demagnetizing factor—( )—0.38 p.u.;
saturation at VE1—0.1 p.u.;
exciter voltage for SE1—4.18 p.u.;
saturation at VE2—0.03 p.u.;
exciter voltage for SE2—3.14 p.u.

The turbine and governor models are also standard IEEE
models available in PSCAD [10] and their parameters are given
below.
For turbine:

head at rated conditions—1 p.u.;
output power at rated conditions—1 p.u.;
gate position at rated conditions—1 p.u.;
no-load water flow at rated head—0.05 p.u.;
initial operating head—1 p.u.;
water starting time ( )—2 s;
penstock head loss coefficient ( )—0.02 p.u.;
turbine damping constant ( )—0.5.

For governor:

speed reference—1 p.u.;
dead-band value—0;
permanent droop ( )—0.04 p.u.;
maximum gate position—1 p.u.;
minimum gate position—0 p.u.;
maximum gate opening rate—0.16 p.u./s;
maximum closing rate—0.16 p.u./s;
servo motor time constant—0.05 s;
servo gain—5 p.u.;
main servo time constant—0.2 s;
temporary droop—0.4 p.u.;
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dashpot time constant—5 s.
The parameters of the UPFC PI controllers which are ob-

tained by time response analysis are given below.
UPFC ratings:

series branch—185 MVA;
shunt branch—30 MVA;
series transformer ratings—22 kV/180 kV and 185
MVA;
shunt transformer ratings—38.10/1 kV and 30 MVA;

—6 kV;
—9000 F.

For shunt branch:

—1.2;
—0.05;
—0.5;
—0.05.

For series branch:

—3.5;
—0.1;
—3.5;
—0.1.
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