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ABSTRACT
Land cover classification from remote sensing mul-
tispectral images has been traditionally conducted 
by using mainly spectral information associated with 
discrete spatial units (i.e. pixels). Geometric and to-
pological characteristics of the spatial context close 
to every pixel have been either not fully treated or 
completely ignored. This article provides a review of 
the strategies used by a number of researchers in or-
der to include spatial and topological properties in 
image segmentation. It is shown how most of resear-
chers have proposed to perform -previous to classifi-
cation- a grouping or segmentation of nearby pixels 
by modeling neighborhood relationships as 4-con-
nected, 8-connected and (a, b) – connected graphs. 
In this object-oriented approach, however, topolo-
gical concepts such as neighborhood, contiguity, 
connectivity and boundary suffer from ambiguity 
since image elements (pixels) are two-dimensional 
entities composing a spatially uniform grid cell (i.e. 
there are not uni-dimensional nor zero-dimensional 
elements to build boundaries). In order to solve such 

topological paradoxes, a number of approaches are 
proposed. This review discusses how the alternati-
ve of digital images representation based on Carte-
sian complexes suggested by Kovalevsky (2008) for 
image segmentation in computer vision, does not 
present topological flaws that are typical for conven-
tional solutions based on grid cells. However, such 
approaches have not yet been applied to multispec-
tral image segmentation in remote sensing. This re-
view concludes suggesting the need to research on 
the potential of using Cartesian complexes for mul-
tispectral image segmentation.
Keywords: multispectral images, segmentation, to-
pologic space.

RESUMEN
La clasificación de la cobertura de la tierra a par-
tir de imágenes multiespectrales de sensores remo-
tos tradicionalmente se ha llevado a cabo usando 
principalmente la información espectral asociada 
con los píxeles. Las características geométricas y to-
pológicas del contexto espacial cercano a un píxel 
particular han sido usualmente ignoradas o tratadas 
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INTRODUCTION

Land cover classification from remote sensing im-
ages has been traditionally conducted by using 
mainly spectral information associated with dis-
crete spatial units (i.e. pixels). However, there have 
been a number of attempts to include both geo-
metric and topological characteristics of the pixel 
neighborhood in the image analysis process (de 
Jong & Van der Meer, 2004). In the last decade, a 
number of concepts, methods and techniques for 
object-oriented image analysis (OBIA) have been 
developed and evaluated (Blaschke, 2010). The 
OBIA analysis process starts by grouping spectrally 
similar and spatially close pixels into segments. A 
meaningful segmentation is essential for the sub-
sequent analysis stages (Lizarazo & Elsner, 2009).

Most of the multispectral image segmenta-
tion algorithms assume images are a continuous 
space similar to the real world they depict. How-
ever, the digital representation that is finally avail-
able in any computer is performed by sampling the 
space and discretizing reality. In addition, multi 

and hyper-spectral digital images are composed of 
square picture elements with similar size, which is 
clearly inaccurate (Cracknell, 1998). This inaccur-
acy is present in representations of images such as 
4-connected, 8-connected and -connected graphs 
(Rosenfeld, 1970; Kong & Rosenfeld, 1991).

Digital image processing based on represen-
tations of space that do not meet the topological 
axiomatic postulates causes finally geometric al-
gorithms to be affected by paradoxes that lead to 
ambiguous or erroneous decisions. While it can 
be accepted that a raster image matches human 
perception to some degree, the truth is that sev-
eral important concepts for image analysis, such as 
the connectivity of regions, their boundaries, and 
the adjacency between them, are ambiguously 
represented. This lack of topological awareness of 
grid-based image representation is clearly an im-
portant limitation for image analysis in computer 
environments (Kovalevsky, 1989). The alternative 
approach of digital images representation is based 
on complex Cartesian, suggested by Kovalev-
sky (2008). This concept does not present topo-
logical paradoxes that are typical of conventional 

de una manera incompleta. En este artículo se reali-
za una revisión de las estrategias que han sido em-
pleadas por diversos investigadores con el propósito 
de incluir características topológicas y espaciales 
en segmentación de imágenes. La revisión muestra 
cómo la mayoría de ellos se han enfocado en rea-
lizar, antes de la clasificación, un agrupamiento o 
segmentación de los píxeles cercanos modelando las 
relaciones de vecindario como grafos 4-conectados, 
8-conectados y (a,b)-conectados. Sin embargo, en 
este enfoque orientado a objetos, conceptos topo-
lógicos como vecindario, contigüidad, conectividad 
y límite sufren de ambigüedad ya que los elementos 
de la imagen (píxeles) son entidades bidimensiona-
les que componen una retícula espacialmente uni-
forme. Existen algunas propuestas alternativas que 

buscan resolver dichas paradojas topológicas. En 
este artículo se analiza cómo la representación al-
ternativa de imágenes digitales con base en comple-
jos cartesianos sugerida por Kovalevsky (2008), para 
la segmentación de imágenes de visión de compu-
tador, no presenta las paradojas topológicas de las 
soluciones convencionales basadas en retículas. 
Sin embargo, dicha propuesta no se ha explorado 
en los procesos de segmentación y clasificación de 
imágenes de sensores multiespectrales. Esta revi-
sión concluye sugiriendo la necesidad de investigar 
el potencial de los complejos cartesianos en la seg-
mentación de imágenes multiespectrales.
Palabras clave: espacio topológico, imágenes multi-
espectrales, segmentación.
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solutions based on grid cells. Kovalevsky (2006) 
suggested such an alternative image representa-
tion using axiomatic locally finite spaces (ALFS) 
based on Cartesian complexes, a type of abstract 
cell complexes (ACC) (Listing, 1862). It has been 
stated that this alternative space does not arise 
topological paradoxes commonly found in con-
ventional solutions (Pavlidis, 1977; Kovalevsky, 
1984). Furthermore, it has been suggested that this 
alternative spaces could be a strong foundation for 
image segmentation in computer vision (Kovalev-
sky, 2006). However, to the best knowledge of the 
author, the usage of such ALFS spaces has not been 
yet explored for segmentation and classification of 
remotely sensed multispectral images.

On the other hand, it is well known that al-
gorithms based on geometric characteristics 
have high complexity since the number of pos-
sible situations to be considered increases signifi-
cantly as it increases objects’ dimension under 
evaluation (Worboys & Duckham, 2004). Addi-
tionally, another problem that arises during the im-
plementation phase of geometric algorithms is the 
impossibility of having an accurate arithmetic in 
terms of real numbers (de Berg, Cheong, Kreveld, 
& Overmars, 2008). A number of authors have at-
tempted to reduce this algorithmic complexity of 
geometric spaces by selecting a subset of geomet-
rical characteristics and transforming them into 
combinatorial structures using oriented matroids 
(Whitney, 1935; Oxley, 2003; Richter-Gebert & 
Ziegler, 2004). Examples for complex applications 
that have benefitted from such approaches are 
counter clockwise (CC) systems (Knuth, 1992), tri-
angulation of point sets (Pfeifle & Rambau, 2002; 
de Loera, Rambau, & Santos, 2010), and terrain 
visibility analysis (Saeedi, 2012). While algorith-
mic complexity is part of the research reported 
here, it will not be further discussed due to lengths 
limitations.

This article begins introducing digital image 
segmentation basic principles. Next, it shows sev-
eral attempts for involving geometric and topologic 
features in image segmentation. Then, it describes 

how Kovalevsky`s (2008) proposal unambiguously 
includes topologic feature through the definition 
of digital topological spaces. Finally, conclusions 
are presented.

DIGITAL IMAGES SEGMENTATION

Traditional image segmentation is the process of 
subdividing an image into smaller regions based 
on some notion of homogeneity or cohesiveness 
among groups of pixels (Grady, 2012). Regions are 
determined by two dual kind of methods (Brun, 
Mokhtari, & Domenger, 2003): (i) the edge-de-
tection methods, and (ii) the region based seg-
mentation methods. The former determine edges 
between regions and then close them in order to 
define a partition. The latter group pixels according 
to a homogeneity criterion aiming to obtain a par-
tition of the image into homogeneous regions. The 
segmentation on an image X (the space domain) 
subdivides it, based on a function   (the feature do-
main) defined on X, using a logical predicate P on 
subsets S of X (Equation (1) (Horowits & Pavlidis, 
1976).

    (1)

where e is a prescribed error tolerance. It should 
be noted that in general, for multispectral images, 
the space domain              and the feature domain  
              ;  so                  , and                         .  A 
segmentation of X is a partition of X into subsets  Sj 

,i = 1, ... , m for some  such that: (i)                           , 
(ii)                            ,  (iii)                           , and   
(iv),                                                        and  Sj are ad-
jacent in X. The conditions (i) and (ii) ensures that 
the image is partitioned into a set of regions. The 
condition (iii) ensures that each region is homo-
geneous according to the homogeneity criterion 
P. The condition (iv) ensures that all regions are 
maximal, thus that any merge of two adjacent re-
gions produces a non-homogeneous region (Brun, 
Mokhtari, & Domenger, 2003). Region detection 
methods can be addressed by two ways (Horow-
its & Pavlidis, 1976): The first one, also referred to 
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as merging or bottom-up, divides the image into 
a large number of small regions, which are then 
merged to form larger regions. The other one, also 
referred to as splitting or top-down, successively 
divides the image into smaller and smaller regions 
until certain criteria are satisfied. 

The information provided by a partition may be 
mainly geometric or topological. The geometrical 
information relate to each region considered sep-
arately from the partition. The set of pixels com-
posing one region, the region including one pixel 
or the boundary of a given region, may be clas-
sified as geometrical information. The topological 
information describe the relationships between re-
gions. The set of regions adjacent to a given region 
or the set of regions included in one region belong 
to the topological information field (Brun, Mokh-
tari, & Domenger, 2003).

Image segmentation can be seen as a labeling 
problem (Ishikawa, 2012), taking from the image 
only the neighborhood topologic relationships and 
putting them on an undirected region adjacency 
graph (RAG) (Brice & Fennema, 1970; Cheevasu-
vut, Maitre & Vidal-Madjar, 1986; Guigues, Ie Men 
& Cocquerez, 2001) along with a set of labels. The 
problem is then to find the best labeling according 
to the criteria in the problem’s requirements. An 
energy is a translation of the criteria into a function 
that evaluates how good the given labeling is. A 
smaller energy for a labeling means a better corres-
ponding solution to the problem. Thus, the prob-
lem becomes an energy minimization one that can 
be solved using general algorithms. As minimiza-
tion of such energies, in general, is known to be 
NP-hard, graph cuts methods utilizing the s-t min-
cut algorithms known in operations research are 
used.

For segmentation quality assessment, it is com-
mon to use similarity metrics between a reference 
segmentation and the segmentation obtained, see, 
for example, Neubert, Herold, Meinel, & Blaschke 
(2008) (Lizarazo, 2014).

PREVIOUS WORK ON TOPOLOGY 
PRESERVING SEGMENTATION

Kovalevsky (1989) showed how abstract cell 
complexes allow for implementing topological 
relations needed to unambiguously perform seg-
mentation of digital images in computer vision by 
developing some algorithms (Kovalevsky, 2001), 
(Kovalevsky, 2005). However, the authors are not 
aware of recent studies that rigorously evaluate the 
appropriateness of Kovalevsky’s approach.

Felzenszwalb & Huttenlocher (2004) addressed 
the image segmentation problem by defining a 
predicate for measuring the evidence for a bound-
ary between two regions using a graph-based rep-
resentation of the image (Urquhart, 1982), (Zahn, 
1971) and developing a greedy algorithm. An im-
portant characteristic of the method is its ability 
to preserve detail in low-variability image regions 
while ignoring detail in high-variability regions. 
The evidence for a boundary between two regions 
is measured by comparing intensity differences 
across the boundary, and intensity differences be-
tween neighboring pixels within each region.

Yu et al. (2006) assessed the capacity of Digit-
al Airborne Imaging System (DAIS) high resolution 
images and topographic data for vegetation clas-
sification. Image objects were generated using the 
fractal network evolution (FNEA) segmentation 
approach by considering spectral, textural, topo-
graphic and geometric attributes. Initially for FNEA 
each pixel is an image object. Then, pairwise ob-
jects are subsequently merged to form bigger ob-
jects by using as merging criterion that the average 
image objects heterogeneity weighted by their size 
in pixels should be minimized (Baatz & Schape, 
2000), (Benz, Hofmann, Willhauck, Lingelfelder, 
& Heynen, 2004). Through a hierarchical classifi-
cation scheme and a set of features selected for 
each vegetation category, the authors carried out 
a detailed classification and obtained much more 
accurate results than those provided by the conven-
tional pixel-based nearest neighbor and maximum 



Topological challenges in multispectral image segmentation  

José Antonio Valero Medina, Iván Alberto Lizarazo Salcedo, Paul Elsner

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 136-149
[ 140 ]

likelihood methods. Furthermore, they claimed to 
achieve full correction of the salt-and-pepper ef-
fect present in the latter classification technique.

Kong, Xu, & Wu (2006) extracted land use in-
formation from a high spatial resolution image by 
using a multi-scale image segmentation approach. 
Urban land use was divided into different levels 
forming a hierarchical network structure, in which 
objects on the upper level are composed of objects 
in the lower level. Classification of image objects 
was performed based on attributes of color, shape, 
hierarchy and correlation characteristics between 
neighboring objects. Results showed that by in-
cluding a variety of spectral and spatial features, 
it was possible to differentiate urban land use cat-
egories that cannot be separated through conven-
tional per-pixel classification methods based on 
spectral data only.

Letscher & Fritts (2007) introduced a hybrid 
split-merge method for image segmentation based 
on computational geometry and topology by using 
persistent homology. The algorithm uses edge-
directed topology to split the image into three 
types of regions based on Delaunay triangulations 
of points in the edge map. One type of region cor-
responds to objects of interests, and the remaining 
two types correspond to smaller regions that can 
be attached either to the first ones or form new 
objects themselves. Preliminary results showed a 
high quality image segmentation.

Johansen, Coops, Gergel, & Stange (2007) as-
sessed the capacity of high spatial resolution sat-
ellite images to discriminate structural stages of 
vegetation in forest ecosystems. Based on semi-
variogram (Tso & Mather, 2009) experiments, they 
established that the most appropriate windows sizes 
for textural analysis were 3 x 3 and 11 x 11 pixels. 
They subsequently applied an object-oriented spec-
tral and textural classification algorithm to produce 
a map of structural vegetation classes. The joint use 
of spectral and texture features improved thematic 
accuracy between 2% and 19% compared to the 
accuracy based only on spectral features.

Li & Sun (2010) proposed an “active image” 
segmentation method that distorts the image in or-
der to match the so-called “initial” outlines and be 
able to segment multiple objects simultaneously. 
The deformation field was modeled using B-Spline 
free-form deformations. By penalizing the bending 
energy, they claimed to preserve both shape and 
local topology of objects of interest. Preliminary 
results, obtained using both synthetic and real im-
ages, showed that the proposed method allowed 
coping with low-contrast and occlusion issues that 
cannot be overcome using simple criteria for im-
age segmentation.

Arbeláez P., Maire, Fowlkes, & Malik (2011) 
presented a unified approach to contour detection 
and image segmentation. To produce high-quality 
image segmentations, the contour detector is linked 
with a generic grouping algorithm consisting of two 
steps. In the first one, a new image transformation 
called the Oriented Watershed Transform (OWT) 
is introduced for building a hierarchical segment-
ation by exploiting the information in the con-
tour signal (Arbeláez P., Maire, Fowlkes, & Malik, 
2009). In the second one, using an agglomerative 
clustering procedure, an initial graph is built where 
the nodes are the initial regions. The links are the 
initial arcs separating adjacent regions, and the 
weights are a measure of dissimilarity between re-
gions. The algorithm proceeds by sorting the links 
by similarity and iteratively merging the most simi-
lar regions. The process produces a tree of regions 
where leaves are the initial regions, the root is the 
entire image, and the inclusion relation orders the 
regions in a multiscale fashion.

Chen, Freedman, & Lampert (2011) proposed 
a new method for integrating image topological 
properties within a random field image segment-
ation model that does not pose topological re-
strictions in the energy minimization stage. Using 
such approach, they claimed to achieve an image 
segmentation that guarantees topological proper-
ties. It should be noted, however, that they used 
a graph-based image representation based on the 
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conventional (and inaccurate) 4-connected and 
8-connected neighborhood relationships.

Arbeláez P., Maire, Fowlkes, & Malik (2009) pro-
posed a bottom-up strategy improving the agglom-
eration using more information besides boundary 
mean. Using supervised machine learning tech-
niques they predicted whether two super pixels 
should be merged or not. In case of obtaining fea-
tures combination lacking training data, addition-
al training examples are generated by applying an 
active learning paradigm at every agglomeration 
hierarchy level. In active learning, the algorithm 
determines what example it wants to learn from 
at each iteration, based on the previous training 
data. The learning process is checked for accuracy 
using a coarse-scale ground truth image. They re-
port the usage of a region adjacency graph (RAG), 
but do not provide a special topological represen-
tation for it.

To summarize: It is apparent that, unlike the 
Kovalevsky’s approach, no other proposed method 
reports the usage of a space representation meet-
ing the axiomatic postulates for topological spaces. 
Other approaches assume the correctness of either 
the underlying image representation using the 
conventional grid cell model or the graph-based 
image representation using 4- and 8-connected 
connectivity.

AXIOMATIC LOCALLY FINITE SPACES 
(ALFS)

The classical conception of space applied in geo-
graphic information systems (GIS) and multispec-
tral imaging analysis is based on several concepts, 
including continuity. Continuity refers to the fact 
that a region can be always subdivided into smaller 
sub-regions (Stell & Webster, 2007). This concept is 
also known as dense sets (Worboys & Duckham, 
2004). However, the digital representation is per-
formed through space sampling that discretizes rea-
lity. As it is impossible to find a bijective function  
(Cantor, 1883), traditional models of digital repre-
sentation of geographical phenomena (Schneider, 

1977) suffer from imprecision and inaccuracy and 
do not include, in the particular case of the digital 
images, a measure of topology. These imprecisions 
and inaccuracies are particularly significant when 
geographical relationships are modeled based on 
concepts such as neighborhood, contiguity, con-
nectivity and boundary. If the digital representation 
of those relationships is not expressed properly, 
GIS technology may not be able to give appropria-
te responses to several typical problems for remote 
sensing image analysis such as segmentation and 
classification.

Multi and hyper spectral digital images are com-
posed of square picture elements with similar size, 
which is clearly inaccurate (Cantor, 1883). This in-
accuracy is present in representations of images 
such as 4-connected, 8-connected and -connected 
graphs (Rosenfeld, 1970; Kong & Rosenfeld, 1991).

Figure 1. (a) Connection in a continuous space is 
established by removing a single element from the 
boundary between two sets; (b) there is a topological 
paradox to establish boundaries using 4-connected 
criteria in a conventional digital space 

Source: own work.
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Figure 1(a) illustrates that in a continuous space, 
withdrawing a point from the boundary between 
the interior and exterior sets, previously discon-
nected by a Jordan curve, these become connect-
ed. Figure 1(b) shows how, in a discrete space, 
removing the element encircled in red from the 
boundary (blue points) does not connect the cor-
responding interior and exterior sets based on the 
4-connected criterion, which is illustrated using 
two neighborhoods (the central element of each 
one is depicted as a point encircled in red). Actual-
ly, it is not possible either to establish unambigu-
ously such a connectivity using the 8-connected 
criterion. In this case, for the example shown, the 
two sets remain always connected even without 
removing the element under consideration from 
the boundary.

Figure 2a shows how, in a continuous space, 
the boundaries of the interior and exterior sets, are 
one-dimensional and coincide perfectly (red line). 
Figure 2b shows how, in the conventional digital 
space, each of the two sets have different boundary 
(exterior’s boundary is red and interior’s bound-
ary is green), and that both boundaries are two-di-
mensional (all the elements comprising this space 
are two-dimensional). These paradoxes are par-
ticularly significant for image segmentation and 
classification when considering topological rela-
tionships such as neighborhood, contiguity, con-
nectivity, and boundary.

Digital image processing based on represen-
tations of space that do not meet the topological 
axiomatic postulates (Munkres, 1999) causes fina-
lly geometric algorithms are affected by paradoxes 
that lead to ambiguous or erroneous decisions. Se-
veral important concepts for image analysis, such 
as the connectivity of regions, their boundaries, 
and the adjacency between them, are not expli-
citly represented. This lack of topological aware-
ness of grid-based image representation is clearly 
an important limitation for image analysis in com-
puter environments (Kovalevsky, 1989, 2005)

Kovalevsky (2008) performs a compendium of 
his proposal for the construction of a discrete geo-
metry based on the Cartesian complex using the 
definition of topological spaces based on the axio-
matic locally finite spaces provided by abstract cell 
complexes. His proposal seeks to provide an alter-
native representation of space based on a digital 
topology which is not affected by the paradoxes 
found on conventional representations of images 
such as 4-connected, 8-connected and (a, b) – 
connected graphs (Rosenfeld, 1970; Kong & Ro-
senfeld, 1991). In his work, Kovalevsky shows how 
Cartesian complexes allow for implementing topo-
logical relations needed to perform digital images 
segmentation without any ambiguity. A digital spa-
ce should be a locally finite space in which each 
element has a neighborhood composed finitely of 
several elements with various topological proper-
ties. A locally finite space (LFS) is a non-empty set 

Figure 2. (a) There is a common boundary a continuous 
space (line in red); (b) there is a “duplicated” boundary 
in a discrete space (both red elements and green 
elements).boundary and double in a conventional 
digital space (b)

Source: own work.
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in which each element is assigned other elements, 
some being finite subsets. An LFS is called an axio-
matic LFS (ALFS) when satisfies the following four 
axioms:

Axiom 1: For each space element there are cer-
tain subsets containing it, which are its neighbor-
hoods. The intersection of two neighborhoods of 
an element is also a neighborhood of that element.

Axiom 2: There are space elements whose 
smallest neighborhood (SN) consists of more than 
one element.

Axiom 3: The frontier                 of any subset     
              is thin.

Axiom 4: The frontier of the frontier of a subset 
of an LFS is equal to the frontier of the subset.

Since the space is locally finite, there exists the 
smallest neighborhood (SN) for each of its elements 
that is the intersection of all the neighborhoods of 
a particular element. If one element belongs to the 
SN of the other, it is said that the one is incident 
(IN) to the other. An incidence path (IP) between 
a pair of elements of a subset of an LFS is a se-
quence of elements between the one and the other 
in which each pair of subsequent elements are in-
cident. If it is possible for each pair of elements 
of a given subset of an LFS to find an IP entire-
ly contained in that subset, it can be said that the 
subset is connected (CN). However, the classical 
topology of a space  is defined if a set of subsets 
of S called the open subsets, satisfies the following 
axioms (Munkres, 1999):

Axiom C1: The entire set  and the empty subset  
θ are open.

Axiom C2: The union of any number of open 
subsets is open.

Axiom C3: The intersection of a finite number of 
open subsets is open.

Axiom C4: The space has the separation property.
As for the axiom C4, in the case of LFSs, is only 

needed that for any pair of elements of the space 
there is an open subset which contains exactly 
one of the elements (axiom of separation T0). The 
LFS open set concept is materialized for a subset 
0 when along with each element contains its SN. 

When it contains all the elements of its frontier it 
is closed. Open subsets so defined satisfy the con-
ditions of the axioms C1 to C3 and, therefore, are 
open in the classic sense. The SN of any element of 
an ALFS is open in the classic sense and is called 
the smallest open neighborhood (SON) of a given 
element of the space. All elements bounded by a 
given element are part of its SON. The SON of an 
element of the space satisfies the axiom of separa-
tion (T0).

Abstract Cells Complexes

An important special case of LFS are abstract cells 
complexes (Listing, 1862). In this case, the space 
is characterized by a relationship of partial order 
among its elements and a function of dimension 
dim (a) which maps to an element  of the space 
a non-negative integer so that if another element   
b     SON (a), then dim (a)       dim (b). If dim (a) = k, 
then the element a is of dimension (k-dimensional). 

An abstract cells complex (ACC) C= (E,B, dim) 
is a set E of abstract elements (cells) with a binary 
bounding relationship B    ExE which is antisym-
metric, irreflexive and transitive among its ele-
ments and a function dim E          provided dim 
(e´)           dim (e´´) for (e´, e´´)    B. Between two   
elements a and k of an ACC establishes a bounding 
path if it is possible to find a sequence of elements 
between  and  so that each element bounds the fol-
lowing. The number of elements in the sequence 
minus one is the bounding path length. The dimen-
sion of a complex is given by the greatest dimen-
sion of all its cells. Given E´    E and B´=B   (E´xE´), 
S = (E´, B´) is a subcomplex of C. A subcomplex will 
be open or closed depending on the complex from 
which is subcomplex.

For example, given the complex C= (E,B) where 
E=                                     the dimension   
function is such that dim(ei)   dim(lj) with   
B= 
                           the subcomplex T= (E´, B´) with  
E´=                   and B´=                 is neither open nor 
closed in C. However, for the subcomplex E= (B´´, 
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B´´) with E´´=                        B´´=                                              
                  and the same dimension function defin-
ition than before, T is open in S.

Given two subsets t and T of a space S such that 
t       T      S, the set containing with each cell a     t 
also all cells of T bounding a is named the closure 
of t in T denoted by CL(t, T). The set t — Fr(t, T) is 
called the interior of t in T and is denoted by Int(t, 
T). The set t — T— Fr(t, T) is called the exterior of  
t in T and is denoted by Ext(t, T).

The size and shape of the SON of a cell c de-
pends on the complex C with base in which this is 
defined and is denoted by SON(c, C). Two sub-com-
plexes of a complex are mutually incidents, if any 
of the two contains at least one cell that is incident 
with any cell of the other.

CARTESIAN COMPLEXES AND 
COMBINATORIAL COORDINATES 

A particular case of ACC are Cartesian complexes. 
A complex C= (E,B) where E=
with m     1, the bounding relationship B is such 
that each element e1, with even index i, bounds the   
elements          and          , with odd index, 
is a 1-dimensional connected ACC. Here each 
0-dimensional cell is closed, while each 1-dimension-
al cell is open. The cells indexes are called combina-
torial coordinates in the one-dimensional space.

A Cartesian ACC is obtained by performing the 
Cartesian product of two or more of these one-di-
mensional complexes. The cells set of a -dimensio-
nal Cartesian ACC Cn is the Cartesian product of n 
one-dimensional connected ACC sets. The one-di-
mensional complexes are the coordinate axes of  
Cn  which become an -dimensional space. A cell of 
Cn is an n-tuple c= (a1, a2, a3, ..., an) of ai cells be-
longing each one to a particular one-dimensional 
complex and becoming a component cell of c. In 
this case, a cell c1= (a1, a2, a3, ..., an) bounds another 
cell c2= (b1, b2, b3, ..., an) if for each pair of compo-
nent cells ai and bi ai  = bi or ai bounds bi. The di-
mension of a cell is the sum of the dimensions of 
its component cells.

For the one-dimensional ACCs A1 =                       
                       and A2 =                                       , figure 4 
shows a possible two-dimensional Cartesian ACC 
graphical representations. In the figure each com-
plex’s cell is represented as a point, but the cells 
have been differentiated by color.

Figure 3. Graphical representations of a one-
dimensional connected ACC.The 0-dimensional 
cells are represented with black spots while the 
1-dimensional with red dots

Source: own work.

Figure 3 shows a possible graphical represen-
tations of one-dimensional ACC of combinatorial 
coordinates. In the figure each complex’s cell is 
represented as a point, only that conveniently ap-
pears the -dimensional cell with black color and 
the -dimensional with red.

Figure 4. Graphical representations of a two-
dimensional Cartesian ACC. The 0-dimensional cells 
are represented by black dots, the -dimensional with 
red dots while the -dimensional with green dots

Source: own work.

Kovalevsky defined the combinatorial balls 
and spheres in order to avoid “weird” complex-
es (i.e. pathological cases). For example, for the 
2-dimensional Cartesian complex represented in 
figure 4, the subcomplex  
                                                           
        is a 0-dimensional sphere and the subcomplex  
                                                       is a 2-dimen-
sional open ball.
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The concept of ACC enables the definition of 
strange ACCs, but topological concepts such as of 
ball and sphere can constraint the set of valid com-
plexes. These concepts are also necessary for in-
creasing or reducing the granularity of Cartesian 
complex. To increase the granularity, the elemen-
tary subdivision is used, and to reduce it, the blocks 
definition. The elementary subdivision (Stilwell, 

1995) of a 1-dimensional cell C1, replaces it with 
two 1-dimensional cells                 and a 0-dimension-
al cell C0, so that the latter is a common face of 
the other two. In the case of 2-dimensional Car-
tesian complex shown in the figure 4 elementary 
cell subdivision must be conducted in combina-
torial way on each of its two component cells, tak-
ing into account that, in general, the -dimensional 
cells are not subdivided.

Figure 5. Cells elementary subdivision in a -dimensional Cartesian ACC. (a) initial Cartesian complex, (b) 
corresponding elementary subdivision. Red background represents the subdivision of a -dimensional cell and green 
a -dimensional

Source: own work.

recommended to subdivide a complex in sub-com-
plexes that are considered uniform with respect to 
some criterion in particular. The result of dividing a 
cell complex in blocks where each one consists of 
a homogeneous group of cells based on a specific 
criterion is called blocks complex (Rinow, 1975), 
(Kovalevsky, 1989). Consider a partition R of an n-
dimensional complex A in k-dimensional subcom-
plexes     (k= 0,1, ..., n,1_ 0,i, ..., m), the subsets with 
k = 0 are some representative 0-dimensional cells 
of A, while each of the subsets with k     0 is com-
binatorially homeomorphic to a -dimensional ball. 
It is possible to define a complex B whose cells co-
rrespond to the sub-complexes      called the blo-
ck complexes of A and their cells are called block 

For example, in a 2-dimensional Cartesian 
complex, the elementary subdivision of a 2-di-
mensional cell (ei, ej) origins three Combinatorial 
ordered for each component cell                       and           
,                  here the average indexes are closed, 
while integers are open). This produces nine 2-di-
mensional coordinates, four of them correspond to 
-dimensional cells, four to 1-dimensional and one 
is 0-dimensional as shown in figure 5. Two Carte-
sian complexes C1 and C2 are combinatorially ho-
meomorphic if there are elementary subdivisions 
of C1 and C2 so obtained complexes are isomorphic.

Often in topological investigations and AC 
complexes applications to image analysis, the 
complexes contain thousands of cells, so it is 
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cell. The subcomplexes     corresponding to the 
block cells are called blocks. Therefore, block ce-
lls are elements of the blocks complex, while the 
blocks are subcomplexes of the original cell com-
plex. Each block cell dimension corresponds to the 
dimension of the respective subcomplex and the 
ith block with dimension m bounds jth block of di-
mension m,m     k, if there is in A two cell                                      
 and                such that c1 bounds c2. The triplet B(A) 
= (EB, BR, Dim) is called blocks complex of A if 
there is a partition of A in subcomplexes       every 
one homeomorphic to a k-dimensional open ball. 
EB is the set of block cells, each cell                co-
rresponds to a subcomplex      called the k-dimen-
sional block or k-block of A. The ordered pair (bi, 

bj) block cells is in the bounding relationship BR if 
there is in A two cells                   and               such 
that c1 bounds c2. Dimension function Dim assigns 
to each block cell bi of B(A) the dimension of the 
corresponding block     .

original cells complex, there are four 0-block cell, 
six 1- block cell and three 2- block cell in the re-
trieved blocks complex.

DISCUSSION

It has been demonstrated that Kovalevsky´s (2006) 
alternative space representation does not arise topo-
logical paradoxes. Hence, it is suggested that these 
alternative space concepts could be a strong foun-
dation for image segmentation in computer vision. 
Moreover, the usage of such ALFS spaces could be 
explored for remote sensing image analysis. Fur-
thermore, it is relevant to investigate the potential 
of ALFS spaces for conducting a multispectral im-
age segmentation that includes topological and 
geometric relationships besides spectral attributes.

It was discussed that conventional methods 
for remote sensing image segmentation are based 
on digital structures that violate well-established 
topological axioms and geometric algorithms that 
assume a continuous spatial computing model. 
Therefore, it is necessary to conduct a research to 
know how combinatorial properties of ALFS could 
allow the involvement of topological properties so 
that accuracy and efficiency of multispectral image 
segmentation algorithms can be improved.

In particular, it is necessary to evaluate an al-
ternative multispectral image representation using 
Cartesian complexes in order to find an efficient 
solution to the segmentation process that takes 
into account topological and geometric proper-
ties. This implies to devise a conceptual model 
for multispectral image representation based on 
Cartesian complexes of abstract cells which takes 
into account topological and geometric properties. 
This can then build and evaluate a computation-
al framework that enables the implementation of 
Cartesian complexes to adequately represent topo-
logical and geometric image-objects properties 
used in the segmentation of multispectral images.

The main hypothesis is that a spatial computa-
tional framework, based on the axiomatic local-
ly finite spaces improves the accuracy of space 

Figure 6. Example of a blocks complex on a 
-dimensional Cartesian complex

Source: own work. 

Figure 6 shows the elementary subdivision of fi-
gure 5 with a partition into 13 blocks. In figure are 
highlighted conveniently, with a background that 
surrounds the original cells, the sub-complexes 
corresponding to block cells of the blocks com-
plex that would be obtained. The sub-complexes 
correspond to 0,1 and 2-dimensional open balls. 
From 35 0-cells, 58 1-cells and 24 2-cells of the 
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algorithms for multispectral image segmentation, 
since using only combinatorial coordinates es-
tablished by Cartesian complexes preserves topo-
logical and geometric image-objects properties.

The production of a computational framework 
that makes possible the representation of a digital 
image in a way that explicitly takes into account on 
topological data and uses it for digital image seg-
mentation, would constitute a significant techno-
logical development. It would strengthen the 
ability of the Engineering Faculty at Universidad 
Distrital to produce useful solutions to technical 
problems and to improve geospatial knowledge.

CONCLUSIONS

Previous work attempting to produce topology 
preserving image segmentation in remote sensing 
used digital image representations that suffer from 
topological paradoxes. A more rigorous proposal 
for addressing such problems in computer vision 
image segmentation was suggested by Kovalevs-
ky. It was shown that ALFS meet the classical axio-
matic topological postulates and hence are able to 
unambiguously represent adjacency, connected-
ness and boundary relationships which are criti-
cal for appropriate multispectral image analysis, in 
particular image segmentation. It is therefore re-
levant and promising to conduct further in-dep-
th research on the usage of Cartesian complexes 
for obtaining a topologically correct image repre-
sentation in order to produce more accurate and 
effective image segmentation algorithms.
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