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Adaptive Critic Design Based Neurocontroller for a STATCOM Connected to a 
Power System 

 
Salman Mohagheghi, Jung-Wook Park, Ronald G. Harley                              Ganesh K. Venayagamoorthy                          

 
 
 
 
 

 
Abstract- A novel nonlinear optimal neurocontroller for 
a static compensator (STATCOM) connected to a 
power system using artificial neural networks is 
presented in this paper. The heuristic dynamic 
programming (HDP), a member of the adaptive critic 
designs (ACDs) family, is used for the design of the 
STATCOM neurocontroller. This neurocontroller 
provides nonlinear optimal control with better 
performance compared to the conventional PI 
controllers.  

 
I. INTRODUCTION 

 
Static Compensators (STATCOMs) are power 

electronic based shunt Flexible AC Transmission System 
(FACTS) devices which can control the line voltage at the 
point of connection to the electric power network. 
Regulating reactive and active power injected by this 
device into the network provides control over the line and 
the DC bus voltage inside the device respectively [1]. A 
power system containing generators and FACTS devices is 
a nonlinear system. It is also a non-stationary system since 
the power network configuration changes continuously as 
lines and loads are switched on and off. 
 

In recent years most of the papers have suggested 
methods for designing STATCOM controllers using linear 
control techniques, in which the system equations are 
linearized at a specific operating point and based on the 
linearized model, PI controllers are tuned in order to have 
the best possible performance [2, 3]. The drawback of such 
PI controllers is that their performance degrades as the 
system operating conditions change. Nonlinear adaptive 
controllers on the other hand can give good control 
capability over a wide range of operating conditions, but 
they have a more sophisticated structure and are more 
difficult to implement compared to linear controllers. In 
addition, they need a mathematical model of the system to 
be controlled. 
 

Artificial neural networks offer a solution to this 
problem, they are able to identify and model such 
nonlinear systems and they can be trained online without 
requiring large amounts of offline data [4]. This paper 
deals with designing a novel neurocontroller using the 

heuristic dynamic programming (HDP) method which is a 
member of the Adaptive Critic Designs (ACDs) family, in 
order to provide nonlinear optimal control. A power 
system network consisting of a single machine infinite bus 
system (SMIB) is considered together with a STATCOM 
connected to the middle of the transmission line in this 
paper. Multilayer Perceptron (MLP) neural networks are 
used to identify/model the power system network called 
the plant. Simulation results of the neurocontroller training 
are given and a detailed comparison between the 
conventional PI STATCOM controller and the proposed 
ACD STATCOM controller will be presented in a    
follow-up paper. 

 
II. STATCOM IN A SINGLE MACHINE INFINITE 

BUS SYSTEM 
 

Fig. 1 shows a STATCOM connected to a single 
machine infinite bus system, and it is simulated in PSCAD. 
The generator is modeled together with its automatic 
voltage regulator (AVR), exciter, governor and turbine 
dynamics all taken into account [5]. The generator is a 
37.5 MVA, 11.85 kV (line voltage) machine. System 
parameters  which have been used in the simulations 
appear in the Appendix. 

 
 
 
 
 
 
 
 
 
 
 

Fig 1. STATCOM connected to SMIB system (plant) 
 
The STATCOM is first controlled using a 

conventional PI controller as described in [2] (Fig. 2).     
D-axis and Q-axis voltage deviations are derived from the 
difference between actual and reference values of the 
power network line voltage V and the DC bus voltage Vdc 
(inside the STATCOM) respectively, and are then passed 
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through two PI controllers, whose output values de∆  and 

qe∆ in turn determine the modulation index am and 
inverter output phase shift α applied to the PWM module 
as in (1). 
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Controlling the voltage V at the point of connection to 
the network is the main objective of the STATCOM 
considered in this paper. 

 
Parameters of the STATCOM PI controllers are tuned 

so that the controller provides satisfactory and stable 
performance when the system is exposed to small changes 
in reference values as well as large disturbances such as a 
three phase short circuit on the power network. PI 
controllers are tuned at a single operating point (Active 
and reactive power at the generator terminals are 0.6 p.u 
and 0.2 p.u respectively). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. STATCOM controller 
 

The “Plant” indicates the generator, its controllers, 
transmission line, the STATCOM and the PWM module 
with de∆  and qe∆ as inputs and V∆ (line voltage 
deviation) and 

dcV∆ (DC bus voltage deviation) as outputs, 
whereas “Controller” represents line voltage and DC bus 
voltage control loops. 

 
 
III. ACD STATCOM NEUROCONTROLLER 

 
Adaptive Critic Designs (ACDs) are neural network 

based techniques capable of optimization under conditions 

of noise and uncertainty. The HDP based ACD 
neurocontroller configuration with the Critic, Action and 
Model neural networks is shown in Fig.3, where )(tY∆ is 

the plant outputs vector, refY  is the vector of the plant 

reference signals (i.e. ],[ dcrefrefref VVY = ), and )(tA is 
the vector of the controller outputs 
(i.e. )](),([)( tetetA qd ∆∆= ). All three neural networks 
are three layer feedforward multilayer perceptron (MLP) 
type neural networks having a single hidden layer with 
sigmoid activation function and the backpropagation 
algorithm is used for training  these networks [6, 7].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Indirect adaptive control configuration with HDP Critic 
 

The neural network labeled “Model” is an identifier 
that predicts the plant’s outputs at time t+1 using the plant 
input/output values at time t, along with one and two times 
delayed values. The Critic network learns to approximate a 
cost-to-go function J using the estimated plant outputs 
which are fed to the Critic from the Model. The cost-to-go 
function  J is given as follows:  

∑
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k
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where U is the utility function which can be described by a 
linear combination of plant outputs at times t,   t-1 and t-2 
and γ is a discount factor for finite horizon problems 
( 10 << γ ) [7].  The utility function used in this paper is 
given in (3). Details of selecting the coefficients appear in 
[8]. 
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The Action network optimizes the overall cost over 

the time horizon of the problem by minimizing the 
function J. It basically provides the optimal control input 

(1) 

(2) 

(3) 
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to the plant [7]. The three neural networks together form 
the ACD STATCOM neurocontroller. 

 
 

IV. NEUROCONTROLLER TRAINING 
 

A. Neuroidentifier Training 
 
Figure 4 shows how the neuroidentifier is trained to 

identify the plant and track its dynamics. A detailed 
structure of such identifier is given in the authors’ previous 
work in [9]. Two sets of training have been applied to the 
neuroidentifier. The first set which is called forced-
training, trains the identifier to track the plant dynamics 
when it is perturbed using Pseudorandom Binary Signals 
(PRBS). The second set, called natural training, trains the 
identifier to learn the dynamics of the plant when the 
PRBS is stopped and the system is exposed to a large 
disturbance such as a three-phase short circuit. In each 
case the estimated output of the identifier is compared with 
the actual output of the plant and the resultant error vector 
is formed which is backpropagated through the neural 
network to adjust its weights. [10] 

 
 
 
 
 
 
 
 
 
 
 

Fig 4. Neuroidentifier training 
 
At first, the entire system is simulated under normal 

mode (controlled by its PI controllers) until it reaches 
steady state (i.e. the values of controller outputs de∆ and 

qe∆ become constant) after PSCAD is initialized; then the 

PI controllers are deactivated by moving switches 1S and 

2S from position 1 to position 2 (Fig. 2) and their outputs 

de∆ and qe∆ held constant at 0de∆ and 0qe∆  
respectively, while PRBS signals (called forced training) 
with magnitudes limited to ± 10% of the controller 
constant outputs 0de∆ and 0qe∆ are added to each one 
from an external source and the neuroidentifier is trained 
to learn the plant dynamics.  

 
After achieving an acceptable accuracy, the PRBS is 

removed by moving 1S  and 2S into position 3, while the 
controller outputs are still held constant at their steady 

state values 0de∆ and 0qe∆ . A three-phase short circuit is 
now applied for 100 ms at the bus 3 (Fig. 2), while the 
neuroidentifier training continues and the weight matrices 
are still updated. 

 
These tests have been carried out at several different 

operating points in order to ensure that the neuroidentifier 
can model the system across its whole operating area (see 
Appendix). Some simulation results of the identifier 
tracking the plant dynamics are shown in Figs. 5 and 6, for 
forced training with the use of PRBS inputs.  More 
rigorous explanations, results and analyses of the identifier 
appear in [9].  

 
Simulation results show that during small 

perturbations as well as the large disturbances, the 
neuroidentifier succeeds in identifying the plant outputs 
accurately. This happens because online training never 
stops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 5. Actual and estimated V∆ during forced training 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6. Actual and estimated dcV∆  during forced training 
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B. Critic Network Training 
 
Figure 7 illustrates the schematic diagram of training 

the Critic network. The two Critic networks shown are 
identical and they undergo the same weight update. One 
network predicts the real time value of the cost-to-go 
function J at time t whereas the second one predicts its 
value at time t+1. 

 
The Action network shown in Fig. 7 is preliminarily 

trained to generate appropriate control signals, in order to  
ensure the system operates in stable mode. Initial weights 
for the Action network are derived from indirect adaptive 
control scheme [11]. 

 
The structure of the Critic network is shown in Fig. 8. 

It is a three layer MLP type neural network that predicts 
the value of the function J at time t, given the plant outputs 
at times t along with its two times delay as the input.  The 
input vector consists of  the values of V∆ and dcV∆ at 
time t, t-1 and t-2 and the constant input 1. The number of 
neurons in the hidden layer is heuristically chosen to be 
twelve. The Critic network training time step is every    
250 µs, while the PSCAD simulation time step is 50 µs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. HDP Critic network training 
 
In order to train the Critic networks, the system is first 

perturbed by adding PRBS signals with magnitude 
5% ± to the plant reference signals refV and dcrefV  

( refY~ in Fig. 7).  The model network is still being 
continually trained. The error signal is formed as in (4): 

 

)(ˆ)1(ˆ.))(()( tJtJtYUtEc −++∆= γ  
 

The backpropagation algorithm is then used to update 
the Critic network weights. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. Critic neural network structure 
 
 

C. Action Network Training 
 
The Action network is a three layer neural network 

whose input vector consists of the values of the plant 
outputs V∆ and dcV∆ at times t-1, t-2 and t-3, and in turn 

it generates the control signals de∆ and qe∆ for the plant 
(Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 9. Action neural network structure 
 
The Action network goes through two sets of training. 

With the Critic network and the Model network already 
trained, the system undergoes forced training and natural 
training. During forced training, the system references 

refV and dcrefV are perturbed by adding PRBS signals to 

them with their magnitudes limited to 5% ± , while for 
natural training, the PRBS signal is removed and system is 
exposed to three phase short circuit tests. During both the 
forced and natural training steps, the switches 1S  and 

2S in Fig. 2 are in position 1 and the pre-trained Action 
network replaces the PI controllers. 

The objective of the Action network is to minimize 
the function J in the immediate future by generating an 
optimal control signal )(tA , which leads to optimizing the 

(4) 
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overall cost expressed as a sum of all )(tU over the time 
horizon of the problem. In order to achieve this, the Action 
network should be trained with an error signal AJ ∂∂ / . 
Backpropagating the constant 1 through the Critic network 

creates the signal YJ ˆ/ ∂∂ which in turn is backpropagated 
through the Model network in order to generate the error 
signal AJ ∂∂ /  (Fig. 3). [7] 

 
Once the Action network is trained and sufficient 

accuracy is achieved, the weights will be frozen and the 
Critic network will go through forced training and/or 
natural training (Fig. 7). This process will repeat several 
times until both Action network and Critic network 
converge.  

 

V. SIMULATION RESULTS 
 

Preliminary simulation results of the neurocontroller 
appear in Figs. 10 and 11.  

 

 
Fig 10. Actual line voltage during a three phase short circuit 

 

 
Fig 11. Generator terminal voltage during a three phase short circuit (at 

Bus 3) 

Fig. 10 shows the result of a three-phase short circuit 
with the duration of 50 ms (at bus 3 in Fig. 1).  Line 
voltage at the terminals of the generator is also shown in 
Fig. 11. It can be shown that further training of the Action 
and Critic networks will improve the performance of the 
neurocontroller. 

 
 

VI. CONCLUSION 
 

A new nonlinear optimal controller for a STATCOM 
in a power system network is presented using Adaptive 
Critic Designs. Such a controller will provide improved 
dynamic behavior of the STATCOM and enable it also to 
provide intelligent damping during power system 
disturbances. Results have been shown to prove that the 
Model network correctly identifies the plant. More results, 
including that of neurocontroller in controlling the 
STATCOM at different operating points will be presented 
in a follow-up paper, in order to compare its performance 
with that of the conventional PI STATCOM controller.  

 
 

VII. APPENDIX 
 

A. System Parameters 
 
Parameters of the generator and the transmission line 

are given in Table I. An R-L series model is used for the 
transmission line. PSCAD inbuilt models with default 
values have been selected for the generator’s AVR, 
exciter, turbine and governor system (see Table I) [12]. 

 
TABLE I 

System parameters and generator dynamics 
 

System Parameters Actual Values 
Generator base power (three phase) 37.5 MVA 
Generator line voltage  11.85 kV 
Inertia  5.3 kWs/kVA 
Transmission line impedance 0.02+j0.4 p.u 
Armature resistance 0.002 p.u 
Field resistance 0.00107 p.u 
D-axis damper resistance 0.00318 p.u 
Q-axis damper resistance 0.00318 p.u 
Direct magnetizing reactance 1.86 p.u 
Armature leakage reactance 0.14 p.u 
Field total reactance 2 p.u 
Direct damper total reactance 1.9 p.u 
Quadrature magnetizing reactance 1.86 p.u 
Quadrature damper total reactance 1.9 p.u 
Generator dynamics PSCAD Model 
PSCAD AVR and exciter model AC1A 
PSCAD governor model Gov 1 
PSCAD turbine model Tur1 
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B. System Operating Conditions 
 
Figure 12 shows the P-Q curve of the synchronous 

generator. The conventional PI controllers are tuned at 
only one operating point (point A), while the 
neuroidentifier is trained at several different operating 
points, therefore it has learned the dynamics of the system 
in the shaded area shown in Fig. 12. More explanation and 
simulation results appear in [9]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 12. Synchronous generator P-Q curve and the neuroidentifier training 
area 
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