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Stability of Discrete-Time Matrix Polynomials

Kanh T. Ngo and Kelvin T. Erickson

Abstract—This paper derives conditions for the stability of discrete-time
systems that can be modeled by a vector difference equation, where the
variables arem � 1 vectors and the coefficients arem � m matrices.
Stability of the system is related to the locations of the roots of the
determinant of a real m � m matrix polynomial of nth order. In this
case, sufficient conditions for the system to be stable are derived. The
conditions are imposed on the1-norm of two matrices constructed
from the coefficient matrices and do not require the computation of the
determinant polynomial. The conditions are the extensions of one of the
Jury sufficient conditions for a scalar polynomial. An example is used to
illustrate the application of the sufficient conditions.

Index Terms—Matrix polynomials, model predictive control, stability
analysis.

I. INTRODUCTION

A linear discrete-time system can be modeled by a vector difference
equation

Any(k) + An�1y(k � 1)+

� � �+A1y(k � n+ 1) +A0y(k � n)

= B1u(k � 1) + � � �+Bqu(k� q) (1)

where y(k)’s are m � 1 vectors that represent the outputs of the
systems,u(k)’s are r � 1 vectors that represent the inputs of the
system,Ai’s are m � m matrices, andBi’s are m � r matrices.
The right side of (1) is a linear combination of the values of past
inputs, fromq samples before the current time up to the last sample
before the current time. These values do not affect the stability of
the system. Stability of the system is related only to the left side of
the equation. Therefore, for stability analysis, we consider a simpler
form of (1), namely

Any(k) + An�1y(k � 1)+

� � �+A1y(k � n+ 1) +A0y(k � n)

= f(k) (2)

where nowf(k) represents the right side of (1).

II. STABILITY ANALYSIS

As discussed in the previous section, the system is modeled by
the vector difference equation (2). We will discuss stability for
three different forms of the leading coefficient (square) matrixAn:

Section II-A will present conditions for stability whenAn is the
identity matrix. Next, stability results are derived whenAn is a
general nonsingular matrix in Section II-B. Section II-C will discuss
stability whenAn is singular. An illustrative example is presented
in Section III.
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A. The Leading Coefficient is the Identity Matrix

WhenAn is the identity matrix, stability is related to the number
of roots inside the unit circle of the characteristic polynomial

g(z) = det[Imz
n + An�1z

n�1 + � � �

+ A2z
2 + A1z + A0]

which is the determinant of a matrix polynomial.
For real scalar polynomials, one common approach is to use the

necessary and sufficient conditions of Jury [1] on the coefficients
of the polynomial. Other conditions are derived by Kalman [2], [3]
and Parks [4], among others. These conditions are expressed by the
positiveness of the principal minors of a matrix or, equivalently,
by the positive definiteness of a related matrix. In either case, the
matrix elements are rational functions of the polynomial coefficients.
Therefore, these conditions are often not suitable for control system
synthesis. In practice, some other sufficient conditions—although
more conservative—are used to design controllers.

When the characteristic polynomial is the determinant of a matrix
polynomial, two difficulties arise in applying the necessary and
sufficient conditions for scalar polynomials. First, the closed forms
of the coefficients of the characteristic polynomial as functions of the
coefficient matrices are still unknown. Second, even if those functions
can be derived, they are definitely very complicated. As a result,
since the effects of the coefficient matrices on the coefficients of
the characteristic polynomial are unknown, the synthesis problem is
almost impossible. Ahn [5] and Hmamed [6] formulated a sufficient
condition for the stability of discrete matrix polynomials. However,
these methods involve checking the positive definiteness of a large
matrix and hence are still not suitable for control system synthesis.

This section presents a set of sufficient conditions applied directly
to the coefficient matrices. These conditions reduce to one of the Jury
sufficient conditions when the matrices are scalars. Thus, the result
is an extension of one of the Jury sufficient conditions to matrix
polynomials. Furthermore, the conditions are not more conservative
than those in the case of scalar polynomials.

Theorem 1: For the polynomial

f(z) = z
n + an�1z

n�1 + � � �+ a1z + a0

with complex coefficients, all the roots will lie strictly inside the unit
circle if the following inequality is satisfied:

1> jan�1j+ jan�2j+ � � �+ ja1j + ja0j:

Note that this sufficient condition is one of the sufficient conditions of
Jury [1, p. 116], but the following proof will be based on the matrix
norm since that approach can be extended to matrix polynomials.
(Also see Marden [7, pp. 140, 141].)

Proof: The roots of the polynomialf(z) are the eigenvalues of
the companion matrixA below

A =

0 1
. .. 1

�a0 �a1 � � � �an�1

:

The matrix has 1 on the elements just above the diagonal, the
coefficients of the polynomial on the last row are as shown, and
0 everywhere else. From the assumption of the theorem we have

1> jan�1j+ jan�2j+ � � �+ ja1j + ja0j:

Since we have strict inequality, there exists�> 1 so that

1>�(jan�1j+ jan�2j+ � � �+ ja1j + ja0j)

0018–9286/97$10.00 1997 IEEE
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or

1>�jan�1j+ �jan�2j+ � � �+ �ja1j + �ja0j:

Now let d be the positive number satisfyingdn�1 = �; then

1<d<d
2
< � � � <d

n�1
= �:

Thus

1>�jan�1j + �jan�2j + � � �+ �ja1j + �ja0j

or

1> jan�1j+ djan�2j+ � � �+ d
n�2

ja1j+ d
n�1

ja0j:

Now define the matrixD to be

D = diagf1; d; d
2
; � � � ; d

n�1
g

then

D
�1

= diagf1; d
�1
; d
�2
; � � � ; d

1�n
g:

If we multiply D on the left andD�1 to the right ofA; we have

DAD
�1

=

0 d�1

. ..
d�1

�a0d
n�1 �a1d

n�2 � � � �an�1

:

The matricesK = DAD�1 andA have the same eigenvalues. Recall
that for a given matrix, its spectral radius, i.e., the maximum of the
absolute values of its eigenvalues, is always less than or equal to any
induced-matrix norm. For the companion matrixA above, it is clear
that its induced-1 norm is equal to

kAk1 = max(1; jan�1j+ jan�2j+

� � �+ ja2j + ja1j + ja0j)

and for the matrixK = DAD�1 we have

kKk1 = max(d
�1
; jan�1j+ djan�2j+

� � �+ d
n�2

ja1j+ d
n�1

ja0j):

Thus, if the assumption of Theorem 1 is satisfied, there is a value of
d> 1 so that the1-norm of K is strictly less than one, hence its
spectral radius is strictly less than one, and all eigenvalues ofK (and
A) will lie strictly inside the unit circle.

Now the results for scalar polynomials can be extended to matrix
polynomials. First of all, we transform the problem of finding the
roots of the determinant of a matrix polynomial into the problem of
finding the eigenvalues of a related matrix so that we can apply the
same approach as in Theorem 1.

Let A(z) be the matrix polynomial

A(z) = Imz
n
+ An�1z

n�1
+

� � �+A2z
2
+A1z +A0 (3)

where theAi’s arem�m matrices, then the roots of the determinant
of A(z) are the eigenvalues of the following “block companion“
matrix [8]:

A =

0 Im

Im
...

Im

�A0 � � � �An�1

: (4)

Note that the dimension ofA is nm � nm; and its structure is
similar to that of the matrixA in the case of scalar polynomials:

the elements 1 are replaced by them�m identity matrices, and the
scalar coefficients are replaced by the matricesAi’s.

With (3) and (4), we can apply the matrix-norm approach in
Theorem 1 to find sufficient condition(s) for all eigenvalues ofA

to lie strictly inside the unit circle. To facilitate the result, we define
the matrixB as follows:

B = [A0 A1 � � � An�1]

then it is easy to see that

kAk1 = max(1; kBk1):

Now supposekBk1< 1; then as in the arguments of Theorem 1,
there is �> 1 so that �kBk1 is still less than one. Letd> 1

satisfyingdn�1 = �; and letD be the matrix

D = block fIm; dIm; d
2
Im; � � � d

n�1
Img

then the matrixK = DAD�1 has the form

K =DAD
�1

=

0 d�1Im

d�1Im
. ..

d�1Im

�dn�1A0 �dn�2A1 � � � �An�1

:

From the form ofK; it can be seen that

kKk1 � max(d
�1
; �kBk1)< 1:

Thus, we have just proved the following theorem.
Theorem 2: Let A(z) be the matrix polynomial

A(z) = Imz
n
+An�1z

n�1
+ � � �+ A2z

2
+ A1z + A0 (5)

and define them � nm matrix B as

B = [A0 A1 � � � An�1]:

If kBk1< 1; then all the roots of the determinant ofA(z) lie strictly
inside the unit circle. Note that this condition is much simpler than
the conditions of Ahn [5] or Hmamed [6], which require checking
the positive definiteness of amn �mn matrix.

Corollary 1: Under the assumptions of Theorem 2, if the sum of
the1-norms of the coefficient matricesAi’s is less than one, then all
the roots of the determinant ofA(z) lie strictly inside the unit circle.

Proof: Let vTj be thejth row of the matrixB: Also let wT
ij

be thejth row of the matrixAi; for 0 � i � n � 1: ThenvTj can
be expressed as

v
T
j = [w

T
0j w

T
1j � � � w

T
n�1;j ]:

Since the 1-norm of a vector is the sum of the absolute values of its
elements, it follows that

kv
T
j k1 = kw

T
0jk1 + kw

T
1jk1 + � � �+ kw

T
n�1;jk1

�kA0k1 + kA1k1 + � � �+ kAn�1k1

and

kBk1 = max
1�j�m

kv
T
j k1

�kA0k1 + kA1k1 + � � �+ kAn�1k1:

The result then follows from Theorem 2.
The condition of Corollary 1 is clearly more conservative than that

of Theorem 2. This corollary is stated because it is reduced to one
of Jury’s conditions [1, p. 116] when theAi’s are scalars. Hence, we
have, in fact, an extension of a sufficient condition from the scalar
polynomials to the matrix polynomials.
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It is reasonable to expect some results in terms of the1-norm of
some related matrix that involves the transposes of theAi’s. To do
that, taking the transpose ofA(z) in (5), we have

[A(z)]
T

= Imz
n

+ A
T

n�1z
n�1

� � �+ A
T

2 z
2
+A

T

1 z +A
T

0 :

Since the determinants ofA(z) and its transpose are the same, the
roots of detA(z) are the eigenvalues of the following matrix:

AT =

0 Im
Im

...
Im

�AT0 � � � �AT
n�1

whereAT is A with theAi’s replaced by its transposes. Hence, we
have the following result.

Theorem 3: Let A(z) be the matrix polynomial

A(z) = Imz
n

+ An�1z
n�1

+ � � �+A1z + A0

and define them � nm matrix BT as

BT = [A
T

0 A
T

1 � � � A
T

n�1]:

If kBT k1< 1; then all the roots of the determinant ofA(z) lie
strictly inside the unit circle.

Theorem 3 gives another sufficient condition. In Theorem 2, the
quantities to be small are related to the elements of the rows of
the matricesAi’s. Now Theorem 3 gives a criterion related to the
elements of the columns of the matricesAi’s. Furthermore, as an
analogous result to Corollary 1, we have the following corollary.

Corollary 2: Under the assumptions of Theorem 3, if the sum of
the 1-norms of the coefficient matricesAT

i
’s is less than one, or

equivalently if the sum of the 1-norms of the coefficient matrices
Ai’s is less than one, then all the roots of the determinant ofA(z)

lie strictly inside the unit circle.
Proof: The proof is identical to the proof of Corollary 1, with

BT in place ofB; andAT
i

in place ofAi for 0 � i � n� 1:

Theorems 2 and 3 and their corollaries give extensions from
the scalar polynomials to the matrix polynomials in two directions.
Roughly speaking, the determinant of a matrix polynomial will have
all the roots inside the unit circle if either the rows or the columns
of the coefficient matrices are dominated by one.

B. The Leading Coefficient IsAAAnnn—A Nonsingular Matrix

Now we consider the case whenAn in (2) is a general nonsingular
matrix. SinceAn is nonsingular,A�1

n
exists, and from (2) we have

y(k) +A
�1

n
An�1y(k � 1) + � � �+A

�1

n
A0y(k � n) = A

�1

n
f(k):

The new system has the leading coefficient matrix equal to the identity
matrix so we can apply the results in Section II-A to derive the
conditions for stability.

Theorem 4: Define the matrix polynomialA(z) as

A(z) = Imz
n

+A
�1

n
An�1z

n�1
+ � � �+ A

�1

n
A0

and the matrixA as

A =

0 I
. ..

I

�A�1
n
A0 � � � � � � �A�1

n
An�1

then:

1) system (2) is asymptotically stable if and only if all the roots
of detA(z) lie strictly inside the unit circle;

2) alternatively, system (2) is asymptotically stable if and only if
�(A)< 1; where�(A) is the spectral radius ofA;

3) system (2) is asymptotically stable ifkBk1< 1=kA�1
n
k1 or

if kBT k1< 1=kA�1
n
k1; where

B = [A0 A1 � � � An�1]

BT = [A
T

0 A
T

1 � � � A
T

n�1]:

Proof: The result in Part 1) is standard. Stability can be verified
without having to find the roots of detA(z) (see Ngo [9]). Part 2)
follows from Part 1) and (3) and (4). We prove only Part 3).

We havekAk1 = max (1; kA�1
n
Bk1): Using a scaling tech-

nique as in the proof of Theorem 2, it follows thatkA�1
n
Bk1< 1

will imply �(A)< 1: Now the result follows since:

kBk1<
1

kA�1n k1
implieskA�1

n
k1kBk1< 1

and

kA
�1

n
Bk1 � kA

�1

n
k1kBk1< 1:

Furthermore, since detA(z) = det[A(z)T ]; theAi’s can be replaced
by their transposes, and an alternative condition is

kBT k1<
1

k(AT
n
)�1k1

=
1

kA�1n k1

whereBT = [AT0 AT1 � � � AT
n�1]; and the proof is complete.

Note: Since X�1 = Adj(X)=det X; we can replace the
conditions in Part 3) by

kBk1<
det An

kAdj(An)k1

or

kBT k1<
det An

kAdj(An)k1

which may be numerically better.

C. AAAnnn Is Singular

For simplicity, we will assume thatA0 is nonsingular. Multiplying
both sides of (2) byA�1

0
we have

A
�1

0 Any(k) + � � �+ A
�1

0 A1y(k � n+ 1)

+ y(k � n) = A
�1

0 f(k):

Defining new variables

z1(k) = y(k)

z2(k) = y(k � 1)

...

zn(k) = y(k � n+ 1)

we have

Az(k) = z(k � 1)� F (k) (6)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997 541

where

A =

0 I
.. .

I

�A�1
0
An � � � � � � �A�1

0
A1

z(k � 1) =

z1(k� 1)

z2(k � 1)

� � �

zn(k� 1)

; z(k) =

z1(k)

z2(k)

� � �

zn(k)

F (k) =

0

0

� � �

A�1
0
f(k)

:

Note that sinceAn is singular, so areA�1
0
An and A: There are

conditions onF (k) and the initial conditionz(0) so that (6) has a
solution. The details can be found in Campbell [10, pp. 181–183].
For stability analysis, we only need to consider the homogeneous
equation of (6)

Az(k) = z(k � 1) (7)

and assume that the initial valuez(0) belongs to some consistent set
so that (7) has a solution. Letl (a positive integer) be the index of
A (see the Appendix). SinceA is singular,l > 0; and we have

z(k � 1) =Az(k) = A
2

z(k + 1) = � � �

=A
l
z(k + l� 1) (8)

and

z(k) =Az(k + 1) = A
2

z(k + 2) = � � �

=A
l
z(k + l): (9)

Now multiplying AD on the left of (8) yields

A
D
z(k � 1) =A

D
Az(k) = � � �

=A
D
A
l
z(k + l� 1)

=A
D
A
l+1

z(k + l):

Then using (14) and (15) we have

A
D
z(k � 1) =A

D
A
l+1

z(k + l)

=A
l
z(k + l): (10)

From (9) and (10) it follows that

z(k) = A
D
z(k � 1): (11)

Furthermore, it can be shown that (11) is equivalent to (7) (Campbell
[10, p. 182]). But from (11), it is easy to see that the system is
asymptotically stable if and only if�(AD)< 1; where� denotes the
spectral radius.

Since An; henceA; is singular, we cannot expect sufficient
conditions in terms of the matricesAi’s, since they would be so
conservative that they would be useless [see Theorem 4, Part 3)].
Instead, we try to use another technique to check the condition
�(AD)< 1 without having to calculateAD: Thus we have the
following theorem.

Theorem 5: When An is an m � m singular matrix butA0 is
nonsingular, then the system is asymptotically stable if and only if
the nonzero eigenvalues of the matrixA in (6) are strictly outside
the unit circle.

Proof: There is a nonsingular matrixP so that

A = P
C 0

0 N
P
�1 (12)

whereC is nonsingular andN is a nilpotent of index equal to the
index ofA: It follows that all eigenvalues ofN are zero. Thus in the
canonical form ofA in (12),C represents the nonzero eigenvalues of
A; andN represents the zero eigenvalues ofA: From (12) we have

A
D
= P

C�1 0

0 0
P
�1

:

Therefore,�(AD)< 1 if and only if all eigenvalues ofC�1 are
strictly inside the unit circle, if and only if all eigenvalues ofC
are strictly outside the unit circle, and the proof is complete.

It is also interesting to note that the eigenvalues of the matrixA

are the roots of the determinant of the following matrix polynomial:

A(z) = Imz
n
+ A

�1

0
A1z

n�1
+ � � �+ A

�1

0
An

which are also the roots of the determinant of

A1(z) = A0z
n
+ A1z

n�1
+ � � �+An:

Let g(z) = det A1(z): Then g(z) hasnm roots, q of which are
zero. Using contour integration (see Ngo [9]), we can check stability
as follows.

1) Find the rank ofAn; and letq = m� rank(An). Thenq is the
number of zero eigenvalues ofAn: SinceA�1

0
An has the same

rank asAn; andA has the same rank deficiency asA�1
0
An; q

is also the number of zero eigenvalues ofA:

2) Find g(z) = det A1(z):

3) Find s
jzj=1 g0(z)=g(z) dz; if the value of the integral is equal

to q the system is asymptotically stable; if the value of the
integral is greater thanq, the system is unstable (see Ngo [9]).

The results above are based on the assumption thatA0 is non-
singular. Stability results could also be derived when bothAn and
A0 are singular (see the solution of (2) in Campbell [10] when both
A0 andAn are singular), but they would be very complicated. In
applications, it is usually not too restrictive to assume that at least
An or A0 is nonsingular.

III. I LLUSTRATIVE EXAMPLE

This example is taken from Erickson and Otto [11] and is the
problem that motivated the development of these theorems. The
process, a distillation column from [12], is a first-order, two-input,
two-output system. The transfer function of the process is

G(s) =

2:56e�s

16:7s+ 1

�5:67e�3s

21s+ 1
1:32e�7s

10:9s+ 1

�5:82e�3s

14:4s+ 1

where the time is in minutes. Using model predictive control, the
stability of the controller is related to the stability of the matrix
polynomial

A(z) = Apz
N�p

+Hp+1z
N�p�1

+ � � �+HN

whereHk is the2�2 matrix of thekth impulse response coefficient,
Ap = �

p
i=1Hi; p is the control horizon, andN is the truncation order

of the impulse response. The sampling time is 1 min, andN is chosen
equal to 60. When the necessary and sufficient conditions of Jury [1]
are applied tof(z) = detA(z) to determine stability, the minimum
control horizon for the first output isp1 = 2; the minimum control
horizon for the second output isp2 = 4: When the techniques in
Theorems 2 and 3 are used, the minimum values ofp1 and p2 are
15 and 16, respectively.
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This example shows that the tests using Theorems 2 and 3 are
simple but conservative, as expected. The theorems give simple tests
to apply when both the order of the system and the dimension of the
coefficient matrices are large, so that finding the eigenvalues of the
matrix A is impractical.

IV. CONCLUSION

Results of Jury’s sufficient conditions [1] for a scalar polynomial to
have its roots inside the unit circle are extended to the determinant of
a square matrix polynomial. The conditions on the scalar coefficients
in the case of scalar polynomials can be replaced by either the1-
norm or the 1-norm of the matrix coefficients in case of matrix
polynomials. In fact, the conditions are imposed upon the1-norm
of two matrices constructed from the coefficient matrices, which are
definitely less conservative than the conditions on the sum of the
norms of the coefficient matrices. Also, because these conditions are
imposed directly on the matrix coefficients, they can be used for
control system synthesis.

When the leading coefficient matrix is nonsingular, simple suffi-
cient conditions involve the coefficient matricesAi’s and the inverse
of the leading coefficient matrix. When the leading coefficient matrix
An is singular, we no longer have simple sufficient conditions. By
assuming the matrixA0 is nonsingular we can check stability of
a new system which is like a “generalized inverse“ of the original
system. The transformation to the new system involves the Drazin
inverse, but we have stability results applied directly to the original
system without having to calculate the Drazin inverse.

APPENDIX

THE DRAZIN INVERSE

The Drazin inverse [10] is defined only for square matrices. Given
A ann�n matrix, the Drazin inverse ofA; denoted byAD; is defined
to be the uniquen� n matrix satisfying the following conditions:

A
D
AA

D
=A

D (13)

AA
D

=A
D
A (14)

A
k+1

A
D

=A
k (15)

where k is the index ofA; the smallest positive integer so that
rank(Ak+1) = rank(Ak), and hencerange(Ak+1) = range(Ak):

Furthermore, (15) also holds for any integerl > k:

There are many ways to calculateAD from A: For our purpose,
it is enough to present the canonical form ofAD: Given A with
index(A) = k> 0; there is a nonsingular matrixP so that

A = P
C 0

0 N
P
�1

whereC is nonsingular andNk
= 0 (nilpotent of indexk): Then

A
D

= P
C�1 0

0 0
P
�1
:

WhenA is square, the Drazin inverse and the Moore–Penrose inverse
[8], denoted byA+, do not necessarily coincide.A+ is equal toAD

if and only if AA+
= A+A: In that case, it can be shown that the

index of A is less than or equal to one.
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Noninteracting Control of Descriptor
Systems Involving Disturbances

Fotis N. Koumboulis and Konstantinos G. Tzierakis

Abstract—For m-input p-output descriptor systems involving distur-
bances, it is proven that if the problem of disturbance rejection is solvable
via static-state feedback and the input–output transfer function matrix
is right invertible, there always exists a static-state feedback control law
yielding, simultaneous to disturbance rejection, a triangular input–output
relation. The structural properties of the closed-loop system (stability,
pole assignment, etc.) are extensively studied.

Index Terms—Decoupling of systems, descriptor systems, singular sys-
tems, state feedback.

I. INTRODUCTION

Consider the linear, time-invariant, descriptor system

~E _x(t) = ~Ax(t) + ~Bu(t) + ~Dz(t); y(t) = ~Cx(t) (1)

wherex(t) 2 n is the state vector,u(t) 2 m is the input vector,
z(t) 2 � is the vector of unmeasurable disturbances, andy(t) 2 p

is the performance output vector. The system is assumed to be regular,
i.e., det fs ~E � ~Ag 6� 0 (or more widely regularizable). To system
(1), apply the static-state feedback law

u(t) = ~Fx(t) + ~G!(t); !(t) 2 p
: (2)
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