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Stability of Discrete-Time Matrix Polynomials A. The Leading Coefficient is the Identity Matrix

When 4,, is the identity matrix, stability is related to the number
of roots inside the unit circle of the characteristic polynomial

g(z) = det[In2" + Ap 12" 4.

Abstract—This paper derives conditions for the stability of discrete-time A0+ A+ Aol
systems that can be modeled by a vector difference equation, where the
variables are m x 1 vectors and the coefficients arem x m matrices. which is the determinant of a matrix polynomial.

Stability of the system is related to the locations of the roots of the For real scalar polynomials, one common approach is to use the

determinant of a real m x m matrix polynomial of nth order. In this L . .
case, sufficient conditions for the system to be stable are derived. The necessary and sufficient conditions of Jury [1] on the coefficients

conditions are imposed on theco-norm of two matrices constructed Of the polynomial. Other conditions are derived by Kalman [2], [3]
from the coefficient matrices and do not require the computation of the and Parks [4], among others. These conditions are expressed by the
determin_ant polynomial. The conditions are th.e extensions of one of the positiveness of the principal minors of a matrix or, equivalently,
Jury sufficient conditions for a scalar polynomial. An example is used o, the nositive definiteness of a related matrix. In either case, the
illustrate the application of the sufficient conditions. . . . . _
matrix elements are rational functions of the polynomial coefficients.
Index Terms—Matrix polynomials, model predictive control, stability — Therefore, these conditions are often not suitable for control system
analysis. synthesis. In practice, some other sufficient conditions—although
more conservative—are used to design controllers.
I. INTRODUCTION When the characteristic polynomial is the determinant of a matrix
. . . . polynomial, two difficulties arise in applying the necessary and
eqﬁ;t?:r?rdlscrete-tlme system can be modeled by a vector d'ﬁerens?l?fficient cgljditions for scalar po!yqomials. Fifst, the cIo;ed forms
of the coefficients of the characteristic polynomial as functions of the
Ang(k) + An_1y(k — 1)+ coefficient matrices are still unI_(n_own. Second, ev_en if those functions
can be derived, they are definitely very complicated. As a result,
ot Ak —n+ 1)+ Aoy(k —n) since the effects of the coefficient matrices on the coefficients of
=Biu(k—1)+---+ Bu(k — q) (1) the characteristic polynomial are unknown, the synthesis problem is
almost impossible. Ahn [5] and Hmamed [6] formulated a sufficient
where y(k)'s arem x 1 vectors that represent the outputs of theondition for the stability of discrete matrix polynomials. However,
systems,u(k)’s arer x 1 vectors that represent the inputs of theéhese methods involve checking the positive definiteness of a large
system,A;’'s are m x m matrices, andB;’s are m x r matrices. matrix and hence are still not suitable for control system synthesis.
The right side of (1) is a linear combination of the values of past This section presents a set of sufficient conditions applied directly
inputs, fromg samples before the current time up to the last sample the coefficient matrices. These conditions reduce to one of the Jury
before the current time. These values do not affect the stability sdfficient conditions when the matrices are scalars. Thus, the result
the system. Stability of the system is related only to the left side &f an extension of one of the Jury sufficient conditions to matrix
the equation. Therefore, for stability analysis, we consider a simplgolynomials. Furthermore, the conditions are not more conservative
form of (1), namely than those in the case of scalar polynomials.
Theorem 1: For the polynomial

F(2)=2"4an 12" P+ Farz+ao

Kanh T. Ngo and Kelvin T. Erickson

oo+ Ary(k—n+ 1)+ Aoy(k —n)
= f(k) @

with complex coefficients, all the roots will lie strictly inside the unit
circle if the following inequality is satisfied:

where nowf (k) represents the right side of (1). 1> |an—a|+ |an—2| + -+ |a1| + |ao].

Note that this sufficient condition is one of the sufficient conditions of
Il. STABILITY ANALYSIS Jury [1, p. 116], but the following proof will be based on the matrix

As discussed in the previous section, the system is modeled /™M Since that approach can be extended to matrix polynomials.
the vector difference equation (2). We will discuss stability fofAISC see Marden [7, pp. 140, 141].) )
three different forms of the leading coefficient (square) mattix Proof: The roots of the polynomiaf (=) are the eigenvalues of
Section II-A will present conditions for stability wher,, is the (h& companion matrixi below

identity matrix. Next, stability results are derived wheh, is a 0 1

general nonsingular matrix in Section 1I-B. Section 1I-C will discuss A= 1
_stablllty_ when A,, is singular. An illustrative example is presented —ay —a; o —ay_y
in Section 111

The matrix has 1 on the elements just above the diagonal, the
coefficients of the polynomial on the last row are as shown, and
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or the elements 1 are replaced by thex m identity matrices, and the
scalar coefficients are replaced by the matride’s.

1> alanaf+ afan—a| 4 +alar] + alao]. With (3) and (4), we can apply the matrix-norm approach in

Now let d be the positive number satisfyinf ! = «, then Thgorenj 1to f_ind sufficit_ent_condition(s_)_for all eigenvaluesA)f_
N - to lie strictly inside the unit circle. To facilitate the result, we define
I<d<d <. <d'7 =0 the matrix B as follows:
ThUS B = [AO 441 o An—]]
1> alan 1| + alan 2|+ -+ alar]| + afag] then it is easy to see that
or | A|lso = max(1,||B||s)-
1> |an 1|+ d|an_o| + - 4+ d" Zlar| + d" " |aol. Now supposé|B||- < 1, then as in the arguments of Theorem 1,

there isa>1 so that«a||B||« is still less than one. Letl >1

Now define the matrixD to be satisfyingd” ! = «, and letD be the matrix

D = diag(1,d,d",---,d" ™"} D = block {Ln, dlp, d* I, -+ d" " I}
then then the matrix = DPAD™! has the form
D' =diag{l,d ", d 2, ,d" "} K =DAD™'
—1
If we multiply D on the left andD~' to the right of A, we have 0 d" I P
0 ! _ T
DAD ' = - . A",
U —d" Ay —d %A, e —An
—apd™™ Y —a d®T? o —aa_

From the form of/C, it can be seen that
The matricesi = DAD™* andA have the same eigenvalues. Recalll

~ -1
that for a given matrix, its spectral radius, i.e., the maximum of the [Kllee < max(d™", o Bl) <1.

absolute values of its eigenvalues, is always less than or equal to 8Y,s we have just proved the following theorem.
induced-matrix norm. For the companion matrxabove, it is clear

e ) Theorem 2: Let A(z) be the matrix polynomial
that its inducedsc norm is equal to

, AG) =T z" + A2 o+ 42"+ A2+ A0 (B)
||f1||0< = IIla‘X(l./ |a‘n—l| + |a/‘n—2|+

and define then x nm matrix B as
-~~—|—|a2|—|—|a1|+|u‘o|) n X nm

o 4 B=[4, Ay - An_]
and for the matrixk = DAD™" we have
- —1 If || B|| < 1, then all the roots of the determinant éf =) lie strictly
1l = macx(d =t |+ dlan 2|+ inside the unit circle. Note that this condition is much simpler than
e d" P lan] +d"aol). the conditions of Ahn [5] or Hmamed [6], which require checking
th positive definiteness of mn x mn matrix.

Corollary 1: Under the assumptions of Theorem 2, if the sum of
the co-norms of the coefficient matrices;’s is less than one, then all
the roots of the determinant of( =) lie strictly inside the unit circle.
Proof: Let v be thejth row of the matrixB. Also let w/;

for 0 < i < n—1. Thenv; can

Thus, if the assumption of Theorem 1 is satisfied, there is a value
d > 1 so that theco-norm of K is strictly less than one, hence its
spectral radius is strictly less than one, and all eigenvalués (dnd
A) will lie strictly inside the unit circle.

Now the results for scalar polynomials can be extended to matrix . /
polynomials. First of all, we transform the problem of finding th@e thejth row of the matrix4,,
roots of the determinant of a matrix polynomial into the problem df€ €xPressed as

finding the eigenvalges of a related matrix so that we can apply the U}’ = [wg;- wf] u’fﬂ,]’]-
same approach as in Theorem 1. ) ) )
Let A(z) be the matrix polynomial Since the 1-norm of a vector is the sum of the absolute values of its

) elements, it follows that
A(Z) = mZn + A7171Zn7 +

e Ay b Ays o+ Ao @) o) 1l = llwojlls + il + -+ llwi— 1l
<l Aolloe + llAlloe + -+ [ An—1lleo
where theA;’s arem x m matrices, then the roots of the determinant
of A(z) are the eigenvalues of the following “block companion‘an .
matrix [8]: IBlloe = |max lloj Il
0 In ) ) ,
s <l Aolloe + 1 Alloe + - 4 [An -1l
A= ] 4) The result then follows from Theorem 2. a
7 The condition of Corollary 1 is clearly more conservative than that
4 —AT_l of Theorem 2. This corollary is stated because it is reduced to one

of Jury’s conditions [1, p. 116] when thé&;’s are scalars. Hence, we
Note that the dimension ofd is nm x nm, and its structure is have, in fact, an extension of a sufficient condition from the scalar
similar to that of the matrix4 in the case of scalar polynomials: polynomials to the matrix polynomials.
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It is reasonable to expect some results in terms ofsth@orm of 2) alternatively, system (2) is asymptotically stable if and only if
some related matrix that involves the transposes of4tis. To do p(A) <1, wherep(A) is the spectral radius ofi;
that, taking the transpose of(z) in (5), we have 3) system (2) is asymptotically stable|j3]|e < 1/]|4,. || OF

. , o , . . if [|Br|loo <1/||47" 1, where
(AT =" 4 AT 2l po AT 22 4 AT AT 157lloe <1147l

Since the determinants of(z) and its transpose are the same, the B=[40 A1 -+ A.]
roots of detA(z) are the eigenvalues of the following matrix: Br =[AY Al .. Al )
0 In
I, Proof: The result in Part 1) is standard. Stability can be verified
Ap = - without having to find the roots of det(z) (see Ngo [9]). Part 2)

follows from Part 1) and (3) and (4). We prove only Part 3).

We have||Al|.c = max (1,[]4,,'B||«). Using a scaling tech-
nique as in the proof of Theorem 2, it follows that,, ' B||. < 1
where Ar is A with the A;’s replaced by its transposes. Hence, wevill imply p(A) < 1. Now the result follows since:
have the following result.

: In
—At —AT |

. Alz i i 1 . . —
Theorem 3: Let A(z) be the matrix polynomial 11| < o implies || A7 ||| Bl|w < 1
fl(l) :Irn/:” +A4n—lzn_l +"'+Alz+f10 o =
and define then x nm matrix By as and
Br=[A) 4] .. Al

A7 Blloo <147 ||| Bll e < 1.

If ||Br|le <1, then all the roots of the determinant cf(z) lie

strictly inside the unit circle. Furthermore, since det(z) = det[A(2)"], the A;'s can be replaced
Theorem 3 gives another sufficient condition. In Theorem 2, thyy their transposes, and an alternative condition is

guantities to be small are related to the elements of the rows of

the matrices4;’s. Now Theorem 3 gives a criterion related to the |1 Br oo < ,,,1 _ 1
elements of the columns of the matricds’s. Furthermore, as an 1CAT) =] oo A
analogous result to Corollary 1, we have the following corollary.
Corollary 2: Under the assumptions of Theorem 3, if the sum afhere By = [AOT AT ... *4£—l]= and the proof is complete. [
the oco-norms of the coefficient matriced! ’s is less than one, or  Note: Since X~' = Adj(X)/det X, we can replace the

equivalently if the sum of the 1-norms of the coefficient matricesonditions in Part 3) by
A;’s is less than one, then all the roots of the determinant @f)
lie strictly inside the unit circle. det A,

Proof: The proof is identical to the proof of Corollary 1, with [1Bllee < [1Adj(An)]|co
Br in place of B, and AT in place of4; for 0 < i <n — 1. O
Theorems 2 and 3 and their corollaries give extensions froam
the scalar polynomials to the matrix polynomials in two directions.
Roughly speaking, the determinant of a matrix polynomial will have | B7|loo < de.t An
all the roots inside the unit circle if either the rows or the columns lAdj(An)|lx

of the coefficient matrices are dominated by one.
which may be numerically better.

B. The Leading Coefficient l4—A Nonsingular Matrix

Now we consider the case wheh, in (2) is a general nonsingular C- An Is Singular
matrix. Since4,, is nonsingular,4,, ' exists, and from (2) we have  For simplicity, we will assume that, is nonsingular. Multiplying

both sides of (2) byd; ' we have
g(k) 4+ A An y(k— 1) 4 -+ A  Aoy(k — n) = A F(k). (2) by

The new system has the leading coefficient matrix equal to the identity A7 Apy(R) 4+ + AT Ary(k —n 4+ 1)
matri_x_ SO we can _gpply the results in Section II-A to derive the +y(k—n) = Ay £ (k).
conditions for stability.

Theorem 4: Define the matrix polynomiali(z) as Defining new variables

‘4(7‘/) :Imzn + -4;1‘4n7137171 + Tt + A;lf/lo
z1(k) =y(k)
and the matrix4 as 1(k) (
z(k) =y(k - 1)

A:
I

(k) =y(k — 1
_A;]AO —A;1An_1 ( ) y( n 4+ )

then: we have

1) system (2) is asymptotically stable if and only if all the roots
of det A(z) lie strictly inside the unit circle; Az(k) = z(k = 1) — F(k) (6)
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where Proof: There is a nonsingular matri® so that
0 I e 07 -
A_P{O N}P (12)
A =
I where C' is nonsingular andV is a nilpotent of index equal to the
[—AF A, e e —ATT Ay index of A. It follows that all eigenvalues oV are zero. Thus in the
[z1(k —1) 21 (k) canonical form ofA in (12), C represents the nonzero eigenvalues of
Ak —1) = 2ok = 1) (k) = 2 (k) A, and N represents the zero eigenvalues4fFrom (12) we have
~ ce. v\ T cen b c-!' o .
Zn(k — 1) zn (K) A :P{ 0 ()}P '
[0
0 Therefore, p(A”) < 1 if and only if all eigenvalues ofC~" are
F(k) = . strictly inside the unit circle, if and only if all eigenvalues 6f
AT E(R) are strictly outside the unit circle, and the proof is complete. (I

It is also interesting to note that the eigenvalues of the matrix
Note that sinced,, is singular, so ared;' A4, and A. There are are the roots of the determinant of the following matrix polynomial:
cond_itions onF(k:)_and the initial co_nditionz(O) so that (6) has a A(2) =Lz 4+ A7 A"V 4o 4 AT A,
solution. The details can be found in Campbell [10, pp. 181-183].
For stability analysis, we only need to consider the homogeneowbich are also the roots of the determinant of

equatlon Of (6) Al(z) — A.[)Zn _|_ 4‘112’77'71 _|_ . + 44“.

Az(k) = 2(k=1) () Let g(z) = det A;(z). Theng(z) hasnm roots, ¢ of which are

o . zero. Using contour integration (see Ngo [9]), we can check stabilit
and assume that the initial valu¢0) belongs to some consistent set,q foIIowsg g ( go [9) y

so that (7) has a solution. Lét(a positive integer) be the index of

A (see the Appendix). Sincd is singular,! > 0, and we have 1) Find the rank ofd,,, and letg = m —rank(d,.). Theng is the

number of zero eigenvalues df,. SinceA; ' 4, has the same
k-1 =Az(k)=A2(k+1) = rank asd,, and.A has the same rank deficiency 45' A,., ¢
‘ is also the number of zero eigenvalues.4f

1
=Azk+1-1) 8) 2) Find g(z) = det Ai(z).
and 3) Find /.= ¢'(2)/g(z) dz, if the value of the integral is equal
to ¢ the system is asymptotically stable; if the value of the
2y =Az(k+1)=A2(k+2) = integral is greater thag, the system is unstable (see Ngo [9]).
:Alz(k +1). (9) The results above are based on the assumption.hais non-
singular. Stability results could also be derived when hédthand
Now multiplying A” on the left of (8) yields Ao are singular (see the solution of (2) in Campbell [10] when both
b b Ap and A,, are singular), but they would be very complicated. In
ATz(k=1) = A" Az(k) = -+ applications, it is usually not too restrictive to assume that at least
= AP A (k+1-1) A, or Ao is nonsingular.

= AP AT (ke + 1),
lIl. | LLUSTRATIVE EXAMPLE
Then using (14) and (15) we have This example is taken from Erickson and Otto [11] and is the
D D gt problem that motivated the development of these theorems. The
ATk =1) = AZAT 2(k + 1) distillation column from [12], is a first-order, two-input
process, a disti [12], , put,
= A’z(k +1). (10) two-output system. The transfer function of the process is
2.56e™°  —5.67¢™
N — [16.7s+1 21s+1
Glo)= | Taset 5sae
109s+1 144s41
Furthermore, it can be shown that (11) is equivalent to (7) (Campbulhere the time is in minutes. Using model predictive control, the
[10, p. 182]). But from (11), it is easy to see that the system gfability of the controller is related to the stability of the matrix
asymptotically stable if and only j#(.A”) < 1, wherep denotes the polynomial
spectral radius. N _ 4 N—p N-p—1, i
Since 4., hence A, is singular, we cannot expect sufficient A(z) = Apz P+ Hpr 2 o Hy
conditions in terms of the matrices;’s, since they would be so whereH; is the2 x 2 matrix of thekth impulse response coefficient,
conservative that they would be useless [see Theorem 4, Part 3)}.= Xf_, H;, p is the control horizon, and’ is the truncation order
Instead, we try to use another technique to check the conditiofithe impulse response. The sampling time is 1 min, and chosen
p(AP) <1 without having to calculateA”. Thus we have the equal to 60. When the necessary and sufficient conditions of Jury [1]
following theorem. are applied tof (z) = det A(z) to determine stability, the minimum
Theorem 5: When A,, is anm x m singular matrix butd, is control horizon for the first output ig; = 2, the minimum control
nonsingular, then the system is asymptotically stable if and only hibrizon for the second output js, = 4. When the techniques in
the nonzero eigenvalues of the matrikin (6) are strictly outside Theorems 2 and 3 are used, the minimum valuep 0énd p. are
the unit circle. 15 and 16, respectively.

From (9) and (10) it follows that

(k) = APz(k = 1). (11)
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simple but conservative, as expected. The theorems give simple tests o
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have its roots inside the unit circle are extended to the determinant ] S. M. Ahn, “Stability of a matrix polynomial in discrete systemtZEE
a square matrix polynomial. The conditions on the scalar coefficients Trans. Automat. Contryol. AC-27, p. 1122-1124, 1982.
in the case of scalar polynomials can be replaced by eithetthe [6] A. Hmamed, “Stability conditions of delay-differential systemst. J.

. - . . Contr., vol. 43, pp. 455-463, 1986.
norm or the 1-norm of the matrix coefficients in case of matrix.,, \» Marden, Geometry of Polynomials.RI: Amer. Math. Soc., 1966.

polynomials. In fact, the conditions are imposed upondheorm  [g] J. M. Ortega,Matrix Theory—A Second CourseNew York: Plenum,
of two matrices constructed from the coefficient matrices, which are  1989.

definitely less conservative than the conditions on the sum of thi] K.T.Ngo, “Stability of discrete matrix polynomials and applications to a
norms of the coefficient matrices. Also, because these conditions are model predictive controller,” Ph.D. dissertation, Univ. Missouri-Rolla,

. . : > 1993,
imposed directly on the matrix coefficients, they can be used f?IO] S. L. Campbell and C. D. MeyerGeneralized Inverses of Linear

control system synthesis. Transformations. London: Pitman, 1979.
When the leading coefficient matrix is nonsingular, simple suffi1] K.T. Erickson and R. E. Otto, “Development of a multivariable forward
cient conditions involve the coefficient matricds's and the inverse modeling controller,'Ind. Eng. Chem. Resvpl. 30, pp. 482-490, 1991.

R. K. Wood and M. W. Berry, “Terminal composition control of a binary

. . . : . [12]
of the leading coefficient matrix. When the leading coefficient matnL(l distillation column,”Chem. Eng. Scivol. 28, pp. 1707-1717, 1973.

A, is singular, we no longer have simple sufficient conditions. By

assuming the matrix4o is nonsingular we can check stability of

a new system which is like a “generalized inverse* of the original

system. The transformation to the new system involves the Drazin

inverse, but we have stability results applied directly to the original ) ) ]

system without having to calculate the Drazin inverse. Noninteracting Control of Descriptor
Systems Involving Disturbances

APPENDIX Fotis N. Koumboulis and Konstantinos G. Tzierakis
THE DRAZIN INVERSE

The Drazin inverse [10] is defined only for square matrices. Given . . . . .
A trix. the Drazin inverse o. denoted bvd” . is defined Abstra_ct_—For m-input p-output descnp_tor systems _|nV(_)IV|r_19 distur-
ann xmn matrix, ’ Y, bances, it is proven that if the problem of disturbance rejection is solvable

to be the unique: x n matrix satisfying the following conditions: via static-state feedback and the input—output transfer function matrix
is right invertible, there always exists a static-state feedback control law

DoyaD _ 4D yielding, simultaneous to disturbance rejection, a triangular input—output
A7AAT =4 (13) ) . e
IS I relation. The structural properties of the closed-loop system (stability,
AAY =A"A (14) pole assignment, etc.) are extensively studied.
k D k . . .
AFTIAP =4 (15) Index Terms—Decoupling of systems, descriptor systems, singular sys-

tems, state feedback.

where k is the index of A, the smallest positive integer so that
rank(A**") = rank(A*), and henceange(A*T") = range(A*).
Furthermore, (15) also holds for any inteder k.

There are many ways to calculate” from A. For our purpose,
it is enough to present the canonical form 4f’. Given A with Eﬂ'g(t) — fi,r(t) 4 Bu(f) 4 D2<f)’ y(t) = (:”,T<f) (1)
index(A4) = k > 0, there is a nonsingular matri® so that

I. INTRODUCTION
Consider the linear, time-invariant, descriptor system

wherez(t) € R™ is the state vector(t) € R™ is the input vector,
c 0., z(t) € RS is the vector of unmeasurable disturbances, @il € R?
0 N} P is the performance output vector. The system is assumed to be regular,
i.e.,,det {sE — A} # 0 (or more widely regularizable). To system
(1), apply the static-state feedback law

a-r|

where( is nonsingular andv* = 0 (nilpotent of indexk). Then

u(t) = Fa(t) + Gu(t), w(t) € RP. 2
-1
AP = p ¢ 0 P Manuscript received August 16, 1995; revised April 29, 1996.
0 0 F. N. Koumboulis is with the University of Thessaly, School of Technolog-

ical Sciences, Department of Mechanical and Industrial Engineering, Volos,
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