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he incidence of malignant melanoma- T the deadliest form of skin cancer - is 
now more than 15 times higher than it was 
in the 1930s [ 1, 2 ,  31. Medical costs are 
soaring, and skin biopsies have become 
the most frequently reimbursed Medicare 
procedure [4]. When diagnosed in the 
early stages, melanoma is relatively easy 
to treat, and patients show survival rates 
near one hundred percent [ I ,  51. Auto- 
mated diagnosis, if deemed feasible, may 
increase the chances of early detection and 
lower the cost of unnecessary biopsies. 
Even if the success rate is not sufficiently 
high for automated diagnosis, this tool 
could prove a useful adjunct in the screen- 
ing of skin tumors on a mass scale. 

Computer vision methods have been 
previously applied to the problem of skin 
tumor diagnosis [6,7, 8,9, 10, 11, 121. In 
general, computer vision methods are 
used to find tumor borders, segment out 
the tumor from the rest of the image, and 
extract features from the tumor. Then, 
automatic induction or other methods are 
used to generate a classification rule based 
on the extracted features. Next, the classi- 
fication rule is tested on a different set of 
images to determine its accuracy. This 
computer vision front-end provides the 
necessary inputs to an expert system that 
is used for diagnosis. In this article, we 
focus on artificial intelligence (AI) classi- 
fication methods to differentiate mela- 
noma from non-melanoma. 

Materials and Methods 
Images 

The images used in this research were 
digitized by researchers at the University . 
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of Missouri-Rolla from 35-mm color 
slides obtained from a private dermatol- 
ogy practice and from the New York Uni- 
versity Department of Dermatology. The 
digital images had spatial resolution of 
5 12x512 pixels, a brightness resolution of 
256 levels per color plane (8 bits), and 
consisted of three color planes (red, green 
and blue) for a total of 24 bits per pixel. 
The set of images used here consisted of 
92 melanoma images and 169 benign im- 
ages, for a total of 25 1 images. 

Software 
The software for this research was de- 

veloped in the standard (ANSI) C pro- 
gramming language on a SUN 
workstation operating under the Sun OS 
operating system. Classification methods 
for the skin tumors were generated by the 
1 stclass automatic induction software 
[ 131 and by the AIM [14] numeric model- 
ing tool, both operating on an IBM com- 
patible personal computer. 
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Automatic Induction 
Induction is the process of producing a 

general classification algorithm from a set 
of specific examples [ 121. The mechanism 
used by 1stClass is based on an algorithm 
known as ID3 [14]. The ID3 algorithm is 
the induction engine of the 1 st-Class soft- 
ware, and operates by generating decision 
trees based on input examples [14]. A 
representative, albeit short, decision tree 
coded in the C programming language is 
shown in Fig. 1. The AIM induction tool, 
on the other hand, bases its analysis on 
mathematical models known as polyno- 
mial networks. A polynomial network 
combines the neural network concept with 
statistical regression techniques [ 141, and 
consists of a network of functional nodes 
that compute an output function based on 
a number of inputs. For this experiment, 
the output of AIM was a number between 
0 and 1, with 0 considered non-melanoma 
and 1 considered melanoma. Figure 2 
gives an example of an AIM polynomial 
equation. Both 1st-Class and AIM can 
generate source code in the C program- 
ming language. This code was incorpo- 
rated into the software developed to 
classify the skin tumors. 

Features 
The set of 16 features used in this experi- 

ment were extracted from the digitized color 
images using computer vision techniques. In 
the cases of elevation and area, the feature 
was manually estimated by a dermatologist 
as being present or not present. The follow- 
ing features were used. 

Irregularity - a measure of the irregu- 
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#define BENIGN 0 
#define MELANOMA 1 
int analyze(doub1e Irregularity, double Asymmetry, int Red-variance, int Green-variance, 
int Blue-variance, double Red-rel-chroma, double Green-rel-chroma, double 
Blue-rel-chroma, 

int Sphericlength, int SphericangleA, int SphericangleB, int Lightness, 
int Chromaticity, int Hue, int Elevation, int Area) { if (Area 0.50) ( 
if (Irregularity < 1.27) ( 

return(BEN1GN); 

return(MELAN0MA); 

if (Red-variance 33.50) 

else if (Red-variance = 33.50) 

1 
else if (Irregularity >= 1.27) 

return(MELAN0MA); 

1 
else if (Area = 0.50) ( 

retum(BEN1GN); 

if (Red-variance < 9.50) ( 
if (Hue > 33.00) 

return(BEN1GN); 
else if (Hue = 33.00) 

return(MELAN0MA); 

else if (Red-variance >= 9.50) { 

if (Red-rel-chroma e 0.12) 
return(MELAN0MA); 

else if (Red-rel-chroma >= 0.12) { 
if (Lightness < 55.50) ( 

if (Irregularity < 1.13) 
return(MELAN0MA); 

else if (Irregularity >= 1.13) 
return(BEN1GN); 

if (SphericangleA c 71 .OO) 

else if (SphericangleA >= 71 .OO) [ 

1 

if (Irregularity < 1.14) ( 

1 
else if (Lightness >= 55.50) ( 

if (Irregularity < 1.09) 
return(BEN1GN); 

else if (Irregularity >= 1.09) 
return( MELANOMA); 

1 
1 

1 
else if (Irregularity >= 1.14) 

return(MELAN0MA); 

1 
1 

1 
1 

1. A decision tree produced by 1st-Class coded in the C programming language. 
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larity of the tumor border 191. This feature 
is estimated by the ratio of the square of 
the perimeter to the area of the tumor; 

Asymmetry - a measure of the asym- 
metry of the tumor, estimated by the 
nonoverlapping areas after an imaginary 
"folding" operation along the best axis of 
symmetry[ 81: 

Variance of the red, green and blue 
color components in the tumors -an indi- 
cation of the tumor texture; 

Relative chromaticity ofthe three color 
components - The intensity of the three 
color components in the tumor relative to 
the color components of the surrounding 
skin [lo]; 

Spherical coordinates - A repre- 
sentation of color developed specifically 
for detection of variegated coloring in skin 
tumors [ I O ] :  with length (intensity) and 
two angles representing the relative con- 
tent of the three colors: 

IHS coordinates - A representation of 
color consisting of lightness (brightness), 
chromaticity (color/wavelength), and 
saturation (amount of white in, or impurity 
of color) [ I O .  121: 

Elevation - A feature indicating 
whether or not the tumor was elevated by 
2 mm or moreover the surrounding skin, 
estimated by a dermatologist; 

Area - A feature indicating whether 
or not the greatest tumor diameter ex- 
ceeded 6 mm. 

T r a i n h o e s t  Set Paradigm 
In statistical studies, data are often 

separated into two sets. One set is used for 
training or developing the algorithms, and 
the other is used for testing the algorithms 
developed. This procedure allows for un- 
biased results from the test set [ I O ] .  The 
problem of selecting the training and test 
sets is complex. In order to develop the 
best algorithm possible, the size of the 
training set should be maximized: but in 
order to have confidence in the results, the 
test set should be made as large as possi- 
ble. In this study, the sizes of the training 
and test sets were vaned. In addition, ten 
experiments were run for each combina- 
tion of training and test set sizes. The train- 
ing sets were assigned a number according 
to their size. For instance, of the ten train- 
ing sets that consisted of sixty percent of 
the entire tumor set, the fifth set would be 
numbered 6005. This number was entered 
as a seed to the C rand function, which 
returned a random sequence of integers. 
These integers were scaled to the range 
0-250. and used as indices into a list of all 

July/August 1995 



2. An example of the polynomial network generated by AIM. The input variables 
are on the left side. The N represents a normalizing factor for the input. The triple 
and double are nodes in the network. The formula of the highlighted triple is shown 
at the bottom of the figure. X1, X2, and X3 are the first three input variables. 
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3. Percentage of melanomas correctly diagnosed as a function of training set size us- 
ing 1st-Class. Results of part one of the experiment, atypical moles are included. 
The vertical lines represent one standard deviation. 
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4. Percentage of melanomas correctly diagnosed as a function of training set size 
using 1st-Class. Results of part one of the second experiment, atypical moles are in- 
cluded. The vertical lines represent one standard deviation. 

25 1 tumors. The tumors corresponding to 
the indices were then selected for inclu- 
sion in the training set. The use of multiple 
experiments for each combination of 
training and test set sizes yielded statistical 
information regarding result validity. 

Two two-part experiments were per- 
formed with each AI tool. Part one of each 
experiment consisted of applying 1 st-Class 
and AIM towards the entire set of 251 im- 
ages, while for part two, a subset of 91 
images was excluded from the experiment. 
The excluded images were atypical moles 
-a benign type of skin lesion. The atypical 
moles were excluded because it was sus- 
pected that an AI tool would have trouble 
distinguishing them from malignant mela- 
nomas. This group of benign but atypical 
melanocytic nevi (moles) is undergoing an 
evolution in classification by dermatologists 
and dermatopathologists. Some uncertainty 
still exists regarding definition and clinical 
behavior of this group. 

For the first experiment with AIM, we 
chose to use a cutoff of 0.5, so that output 
values greater than or equal to 0.5 were 
interpreted as melanoma, while a value 
below 0.5 indicated a benign tumor. In the 
second experiment with AIM, this thresh- 
old was lowered to 0.25. All other parame- 
ters, including the training and test sets, 
remained unchanged. 

The second experiment with 1st-Class 
was performed to verify the statistical sig- 
nificance of the first experiment. A 
slightly different method was used to gen- 
erate the training and test sets to ensure 
that they would be different from those of 
the first experiement. 

It should be noted that the ability to 
diagnose correctly melanoma is by far the 
most important property that an automated 
system must have. The consequence of 
failure to diagnose correctly a malignant 
tumor may lead to the eventual death of 
the patient. On the other hand, misclassi- 
fying a benign tumor as malignant will 
cause temporary and comparatively insig- 
nificant emotional distress to the patient. 
We refer to this fact by stating that the cost 
of misclassifying melanoma is much 
higher than the cost of misclassifying a 
benign tumor. 

Results 
The success rates using 1st-Class to 

diagnose melanoma in the test images in 
the first and second experiments are de- 
picted in Figs. 3 and 4, respectively. The 
figures show a plot of the average success 
rate from ten randomly selected training 

July/August 1995 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 41 3 
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using AIM 
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Training set as percentage of all tumors 

5. Percentage of melanomas correctly diagnosed as a function of training set size us- 
ing AIM. Results of part one of the experiment, atypical moles are included with a 
threshold of 0.5. The vertical lines represent one standard deviation. 
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6. Percentage of melanomas correctly diagnosed as a function of training set size 
using AIM. Results of part one of the experiment, atypical moles are included with 
I threshold of 0.25. The vertical lines represent one standard deviation. 
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7. Percentage of melanomas correctly diagnosed as a function of training set size 
using 1st-Class. Results of part two of the experiment, atypical moles are excluded. 
The vertical lines represent one standard deviation. 

and test sets for different set sizes. One 
standard deviation above and below the 
mean is indicated by the vertical lines in 
each figure. In both experiments, moder- 
ate success was achieved, with 70 percent 
of the malignant tumors correctly classi- 
fied when the size of the training set was 
60 percent. The standard deviation was 
also low -less than 5 percent. Equivalent 
success rates using AIM are shown in 
Figs. 5 and 6. In Fig. 5, the diagnostic 
threshold on the AIM output was 0.5, 
while the threshold was 0.25 in Fig. 6. As 
expected, the number of melanomas cor- 
rectly identified increased when the 
threshold was lowered. AIM performed 
better than 1 st-Class when using a thresh- 
old of 0.25, but had lower accuracy when 
a 0.5 threshold was employed. 

When the atypical moles were ex- 
cluded, the diagnostic accuracy of both AI 
tools increased. Figures 7 and 8 depict the 
results obtained with 1st-Class. Figure 7 
indicates accuracy rates as high as 95 per- 
cent were obtained when 60 percent of the 
images were used for training. The fact 
that the two 1st-Class experiments illus- 
trated in Figs. 7 and 8 resulted in slightly 
different accuracy rates (about 10 percent, 
on average) serves to illustrate the some- 
what unpredictable nature of AI tools. 

Figures 9 and 10 show the increased 
success rates using AIM for the case when 
the atypical moles were excluded. For Fig. 
9, the output threshold was 0.5, while for 
Fig. 10 the threshold was 0.25. 

Discussion 
As Fig. 3 indicates, the standard devia- 

tion for a training set size of 80 percent 
using 1st-Class tops out at about 10%. The 
relatively consistent results and small 
standard deviations obtained in the experi- 
ments, lead us to conclude that our results 
are representative of those that would be 
obtained in an actual application. Overall, 
1 st-Class produced results with smaller 
standard deviations than did AIM. We 
think this indicates greater reproducibility 
and possibly greater reliability on the part 
of 1st-Class. 

The increased accuracy for part two of 
the experiment indicates that the presence 
of atypical moles confused the automatic 
induction mechanism, as suspected. This 
finding is important, because it means that 
the diagnosis ratio can be significantly 
improved if an effective method can be 
found to rule out atypical moles. 
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8. Percentage of melanomas correctly diagnosed as a function of training set size us- 
ing 1st-Class. Results of part two of the second experiment, atypical moles are ex- 
cluded. The vertical lines represent one standard deviation. 
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9. Percentage of melanomas correctly diagnosed as a function of training set size us- 
ing AIM. Results of part two of the experiment, atypical moles are excluded with a 
threshold of 0.5. The vertical lines represent one standard deviation. 
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10. Percentage of melanoma correctly diagnosed as a function of training set size us- 
ing AIM. Results of part two of the experiment, atypical moles are excluded with a 
threshold of 0.25. The vertical lines represent one standard deviation. 

Features 
The 1st Class automatic induction soft- 

ware used only a subset of the 16 available 
features to generate each classification 
rule. The most frequently used features 
were asymmetry, irregularity, hue, and 
area. These features appeared in about 
90% of the decision trees. Less often used 
were the red variance, the length (from 
spherical coordinates), angle a (from 
spherical coordinates) [ 10,131, and the 
green variance. Blue variance, relative 
chromaticity, and lightness were used in 
about 35% of the classification rules. The 
other features were seldom or never used. 
Three of the four most frequently used 
features were high-level features. This 
may indicate that some of the low-level 
features should be discarded or modified 
in future experiments. The features most 
often used by 1st-Class are considered by 
experts to be reliable indicators of mela- 
noma [ l ,  2,4]. 

Because AIM works by forming a poly- 
nomial network, the analysis of AIM is not 
as straightforward as with a decision tree. 
We have indications, however, that AIM 
places less weight than 1 st-Class on features 
generally considered to be reliable indica- 
tors of melanoma, and that this may account 
for the large standard deviations resulting 
from some of the AIM networks. 

Conclusions 
This research has shown that features 

extracted from color skin tumor images by 
computer vision methods can be reliable 
discriminators of malignant tumors from be- 
nign ones. Reliability was demonstrated by 
the monotonically increasing success ratios 
with increasing training set sue and by the 
small standard deviations from the mean 
success rates. An average success rate of 70 
percent in diagnosing melanoma was at- 
tained for a training set size of 60 percent. 

The presence or absence of atypical 
moles in the training and test sets was 
shown to have a dramatic impact on the 
effectiveness of the generated classifica- 
tion rules. This was the case with both 
AIM and 1st-Class, and indicates a high 
potential for success if a method can be 
found for discriminating between atypical 
moles and melanoma. 
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