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Abstract—In this paper, a novel neural network (NN) based 
online reinforcement learning controller is designed for 
nonaffine nonlinear discrete-time systems with bounded 
disturbances. The nonaffine systems are represented by 
nonlinear auto regressive moving average with eXogenous input 
(NARMAX) model with unknown nonlinear functions. An 
equivalent affine-like representation for the tracking error 
dynamics is developed first from the original nonaffine system. 
Subsequently, a reinforcement learning-based neural network 
(NN) controller is proposed for the affine-like nonlinear error 
dynamic system. The control scheme consists of two NNs. One 
NN is designated as the critic, which approximates a predefined 
long-term cost function, whereas an action NN is employed to 
derive a control signal for the system to track a desired 
trajectory while minimizing the cost function simultaneously. 
Offline NN training is not required and online NN weight tuning 
rules are derived. By using the standard Lyapunov approach, 
the uniformly ultimate boundedness (UUB) of the tracking 
error and weight estimates is demonstrated. 

I. INTRODUCTION 
Past literature [5]-[8] has reported the design of adaptive 

NN controllers for affine nonlinear discrete-time systems. 
However, for an unknown nonaffine nonlinear discrete-time 
system, such controller techniques cannot be directly 
employed. Further, reinforcement learning control 
techniques, which offer near optimal control solutions for 
nonaffine nonlinear discrete-time systems is not available 
except for affine systems [8]. 

One of the most popularly used nonaffine nonlinear 
discrete-time representation is nonlinear autoregressive 
moving average with eXogenous input (NARMAX) model, 
which is studied in [1]-[3]. Due to the difficulty in developing 
the controller design for nonaffine nonlinear discrete-time 
systems, an affine-like representation is first obtained and 
subsequently a controller is designed [1]-[3]. However, 
certain stringent assumptions are exerted, e.g. boundedness 
of control input changes, which limits its applicability for 
many practical applications. Moreover, reinforcement 
learning is no utilized and disturbances are not considered. In 
this paper, an affine-like representation is first derived by 
using Mean Value Theorem from the original NARMAX 
model and by relaxing the stringent assumption on the input 
changes [2]-[3]. Furthermore, to the best of our knowledge, 
so far no researcher has addressed the controller optimality 
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for nonaffine nonlinear discrete-time systems, which is the 
main motivation of this effort.   

Dynamic programming (DP) is a widely used methodology 
for solving optimization problems over time [4]. However, 
DP methods encounter the problem of “curse of 
dimensionality”.   Further, the DP schemes require that a) the 
nonlinear system under consideration is time-invariant, and 
b) large number of offline trials can be performed for the 
controller to approach optimality, which are usually not 
practical in real-time control.  

To overcome the problems above, several appealing online 
neural network (NN) designs were introduced in [4]-[6], 
which were also referred to as forward dynamic programming 
(FDP) or adaptive critic designs (ACD). The central theme of 
this family of methods is that the optimal control law and cost 
function are approximated by parametric structures, such as 
NNs, which are trained over time along with the feedback 
from the plant. In other words, instead of finding the exact 
minimum, the ACDs approximate the Bellman equation: 

( ) ( ) ( ){ }
( )

( ) min ( 1) ( ), ( )
u k

J x k J x k U x k u k= + + , where ( )x k  is the state 

and ( ) ( ( ))u k u x k=  is a control law at time step k. The 
strategic utility function ( ( ), ) ( ( ))J x k u J x k=  represents the 
cost or performance measure associated with going from k to 
final step N, while ( ( ), ( 1))U x k x k +  is the utility function 
denoting the cost incurred in going from ( )x k  to ( 1)x k +  
by using control ( )u k . 

A new NN learning algorithm based on gradient descent 
rule is introduced in [7] for ACD design by using a simplified 
binary reward or cost function. The work in [8] proposes a 
near optimal controller design using standard Bellman 
equation for general affine nonlinear discrete-time systems.   

In this paper, we are considering NNs for the control of 
nonaffine nonlinear discrete systems with quadratic- 
performance index as the cost function. The entire closed- 
loop system consists of two NNs: an action NN to derive the 
optimal (or near optimal) control signal to track not only the 
desired system output but also to minimize the long-term cost 
function; an adaptive critic NN to approximate the long-term 
cost function ( ( ))J x k  and to tune the action NN weights. 
Closed-loop stability is demonstrated using Lyapunov. 

II. BACKGROUND 

A. System Dynamics 
Consider the following non-affine discrete-time system 
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with disturbance given in NARMAX form [1] by 
    

1 1 1( ) ( , , ( ), ) ( , ( ), )k k k k ky k f y u u k d f w u k dτ ττ − + − + −+ = =  (1) 

where
1,

TT T
k k kw y u −⎡ ⎤= ⎣ ⎦ , [ ]( ),..., ( 1) T

ky y k y k n= − + , 

[ ]1 ( 1),..., ( 1) T
ku u k y k n− = − − +  denotes the system outputs 

and inputs respectively. The term [ ]1 ( 1),..., ( ) T
kd d k d kτ τ+ − = + −  

is the disturbance, and τ  represents the system delay, or the 
relative degree of the system [2]. Note that the output ( )y k  is 
considered measurable with initial values in a compact set 

0yΩ .Furthermore, several mild assumptions are needed in 

order to proceed. 
Assumption 1: The unknown nonlinear function ( )f ⋅  in (1) 
is continuous and differentiable. 
Assumption 2: The disturbance ( )d k  is bounded with a 
known bound ( ) Md k d≤ , and the partial derivative 

( ) Mf d k D∂ ∂ ≤  is also bounded, with 
MD  a positive 

constant.  
With assumption 2, by using Mean Value Theorem, 

equation (1) can be rephrased as 
1 1( ) ( , ( ), ) ( , ( ),0)

( , ( ),0)
k

T
k k k f k

k d

y k f w u k d f w u k d

f w u k
τ ττ δ

δ
+ − + −+ = = +

= +
 (2) 

where
( 1) ( 1) ( ) ( )

,...,
( 1) ( )

T

f
d k d k d k d k

f f
d k d k

ξ ξτ τ

δ
τ + − = + − =

⎡ ⎤∂ ∂⎢ ⎥=
∂ + − ∂⎢ ⎥⎣ ⎦

, 

1k

T
d f kd τδ δ + −= , 

and ( )d kξ
 is between 0 and ( )d k , or ( ) 0 ( ( ) 0)d k d kξ λ= + − , 

[ ]0,1λ ∈ . Through this paper, they have the same meaning, 
and we will present by the former fashion for simplicity. 
Lemma 1: 

kdδ is bounded by
kd M MD dδ τ≤ . 

Proof: Use (2) and Assumption 2. 
Our objective is to design a control law to drive the system 

output ( )y k to track a desired trajectory ( )dy k . Before we 
proceed, let us construct the following virtual system, which 
is free of disturbance. 
                           ( ) ( , ( ),0)n ky k f w u kτ+ =  (3) 
Assumption 3: ( ) ( )f u k g k∂ ∂ =  is bounded and satisfies 

min0 ( ) maxg g k g< ≤ ≤ , where 
ming and 

maxg  are positive 
constants [8]. 
Assumption 4: Virtual system (3) is invertibly stable [9], 
which means bounded system output implies bounded system 
input. 

From Assumptions 3 and 4, we can draw the conclusion 
that for any output trajectory ( ) ( , ( ),0)n ky k f w u kτ+ = , there 
exists a unique and continuous (smooth) function 

1( ) ( , ( ),0)k nu k f w y k τ−= +  [2], [11]. 

B. Optimal Control 
In this paper, we consider the long-term cost function as 

  0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J y k u r k i

q y k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑

       (4) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, u  is a given 
control policy, R is a positive design constant and 

(0 1)γ γ≤ ≤  is the discount factor for the infinite-horizon 
problem [8].  One can observe from (4) that the long-term 
cost function is the discounted sum of the immediate cost 
function or Lagrangian expressed as 

 
2 2

( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

( ) ( )

T

T T
d d

r k q y k u k Ru k
y k y k Q y k y k u k Ru k

Qe k Ru k

= +

= − − +

= +

(5) 

where Q is a positive design constant. In this paper, we are 
using a widely applied standard quadratic cost function 
defined based on the tracking error ( ) ( ) ( )de k y k y k= −  in 
contrast with [7]. The immediate cost function ( )r k  can be 

viewed as the system performance index for the current step. 
The basic idea in the adaptive critic or reinforcement 

learning design is to approximate the long-term cost function 
( )J k  (or its derivative, or both), and generate the control 

signal minimizing the cost. By online learning phenomenon, 
the online approximator will converge to the optimal cost 
function and the controller will in turn generate an optimal 
signal. As a matter of fact, for an optimal control law, which 
can be expressed as *( ) *( ( ))u k u y k= , the optimal 
long-term cost function can be written as 

*( ) *( ( ), *( ( ))) *( ( ))J k J y k u y k J y k= = , which is just a 
function of the current system output [10]. Next, one can state 
the following assumption. 
Assumption 5: The optimal cost function *( )J k  is finite and 
bounded over the compact set S R⊂  by

MJ . 

III. AFFINE-LIKE DYNAMICS 
Next an affine like representation is derived by applying 

the Taylor series expansion of system (3) with respect to 
( )u k  around ( 1)u k −  yields 

 
2

2
2

( ) ( , ( ),0)

( , ( 1),0)( , ( 1),0) ( )

( , ( ),0)1 ( )
2

( , ( )) ( ) ( )

k

k

k

k d

k
k

k
d

k k d

y k f w u k

f w u kf w u k u k
u

f w u k
u k

u
F w u k G w u k

μ

τ δ

δ

δ

+ = +

∂ −
= − + Δ

∂
∂

+ ⋅ Δ +
∂

= + Δ +

 (5) 

where 
2

2
2

( , ( ),0)1( , ( )) ( , ( 1),0) ( )
2

k
k k

f w u k
F w u k f w u k u k

u
μ∂

= − + ⋅ Δ
∂

 

( , ( 1),0)( ) k
k

f w u kG w
u

∂ −
=

∂
 

where ( )u kμ is between ( )u k  and ( 1)u k +  (or 
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[ ]( ) ( 1) ( ( 1) ( )), 0,1u k u k u k u kμ λ λ= + + + − ∈ ) by using Mean 

Value Theorem. In other words, there are no higher order 
terms in the Taylor series expansion missing, since they are 
incorporated into the second derivative. By observing (5), we 
have the equation similar to the virtual system as 
               ( ) ( , ( )) ( ) ( )n k ky k F w u k G w u kτ+ = + Δ  (6) 
Lemma 2: Consider any desired system trajectory ( )dy k R∈  
and corresponding nominal desired control input 

1( ) ( , ( ),0)d k du k f w y k τ−= + , there exists ( )u kξ
 between any 

input ( )nu k  and ( )du k to the system such that 

1

( , ( ))
( , ( )) ( , ( ))

( , ( ),0)
( ( ) ( ))

k
k n k d

k
n d

F w u k
F w u k F w u k

u
f w y k

y k y k
y

ξ

ξ τ
τ τ

−

∂
= +

∂
∂ +

× ⋅ + − +
∂

 (7) 

where 1( ) ( , ( ),0)ku k f w y kξ ξ τ−= + . 

Lemma 3: Consider the output of the virtual system 
( ) ( , ( ),0)n k ny k f w u kτ+ =  for a given input ( )nu k , then there 

exists ( )y kς τ+  between ( )ny k τ+  and ( )dy k τ+  such that 
1

1
1

1

( ) ( , ( ),0)

( , ( ),0)
( , ( ),0) ( ( ) ( ))

( , ( ),0)
( ) ( ( ) ( ))

n k n

k
k d n d

k
d n d

u k f w y k

f w y k
f w y k y k y k

y
f w y k

u k y k y k
y

ς

ς

τ

τ
τ τ τ

τ
τ τ

−

−
−

−

= +

∂ +
= + + + − +

∂

∂ +
= + + − +

∂

 (8) 
Proof: Lemmas 2 and 3 can be obtained by using Chain Rule 
and Mean Value Theorem. Further, we have following 
lemma. 
Lemma 4: Consider system (6) with Lemma 2 and 3, we have 
 1 1( , ( )) ( , ( ),0) ( , ( ),0)

( ) 1k k k
k

F w u k f w y k f w y k
G w

u y y
ξ ξ ςτ τ− −∂ ∂ + ∂ +

⋅ + =
∂ ∂ ∂

 (9) 
Proof: i) If ( ) ( )n dy k y kτ τ+ = + , then 

( ) ( ) ( )dy k y k y kξ ςτ τ τ+ = + = + . Therefore, (9) could be 

obtained by differentiating (6) with respect to ( )ny k τ+ . 
ii) If ( ) ( )n dy k y kτ τ+ ≠ + , then from (6), one has 

1

1

( ) ( , ( )) ( )( ( ) ( 1))
( , ( ))

( , ( ))

( , ( ),0)
( ( ) ( ))

( )( ( ) ( 1))

( , ( ),0)
( ( ) ( ))

( , ( )) ( )( ( ) ( 1))

(
(

n k n k n

k
k d

k
n d

k d

k
n d

k d k d

y k F w u k G w u k u k
F w u k

F w u k
u

f w y k
y k y k

y
G w u k u k

f w y k
y k y k

y
F w u k G w u k u k

F

ξ

ξ

ς

τ

τ
τ τ

τ
τ τ

−

−

+ = + − −
∂

= +
∂

∂ +
× ⋅ + − +

∂
+ − −

∂ +
+ + − +

∂
= + − −

∂
+

1

1

, ( )) ( , ( ),0)

( , ( ),0)
) ( ( ) ( ))

k k

k
n d

w u k f w y k
u y

f w y k
y k y k

y

ξ ξ

ς

τ

τ
τ τ

−

−

∂ +
∂ ∂

∂ +
+ × + − +

∂

  (10) 

Substituting ( ) ( , ( )) ( )( ( ) ( 1))d k d k dy k F w u k G w u k u kτ+ = + − −  
into (10) yields 

1 1( , ( )) ( , ( ),0) ( , ( ))
( ) 1k k k

k

F w u k f w y k f w y k
G w

u y y
ξ ξ ςτ τ− −∂ ∂ + ∂ +

⋅ + =
∂ ∂ ∂   

Lemma 5: For any ( )y k Sς τ+ ∈  and corresponding control 

input 1( ) ( , ( ),0)ku k f w y kς ς τ−= + , the following statement 

holds 

                
1( , ( ),0) ( , ( ))

1k kf w u k f w y k
u y
ς ς τ−∂ ∂ +

⋅ =
∂ ∂

 (11) 

Proof: It can be straightforward to verify (11) by 
differentiating 1( ) ( , ( , ( )),0)k ky k f w f w y kς ςτ τ−+ = +  with 

respect to ( )y kς τ+ . 

Therefore, substituting (7) into (5) produces the system 
dynamics in terms of the tracking error as 

 

1

( ) ( ) ( )
( , ( )) ( ) ( ) ( )

( , ( ))
( , ( ))

( , ( ),0)
( ( ) ( ))

( ) ( ) ( )

k

k

d

k k d d

k
k d

k
d

k d d

e k y k y k
F w u k G w u k y k

F w u k
F w u k

u
f w y k

y k y k
y

G w u k y k

ξ

ξ

τ τ τ
δ τ

τ
τ τ

δ τ

−

+ = + − +
= + Δ + − +

∂
= +

∂
∂ +

× ⋅ + − +
∂

+ Δ + − +

 (12) 

Making use of Lemma 4, (12) can be written as 

1

1

( ) ( , ( )) ( ) ( ) ( )

( , ( ),0)
(1 ( ) ) ( ( ) ( ))

( , ( )) ( ) ( ) ( )

( , ( ),0)
(1 ( ) ) ( )

k

k

k d k d d

k
k d

k d k d d

k
k

e k F w u k G w u k y k

f w y k
G w y k y k

y
F w u k G w u k y k

f w y k
G w e k

y

ς

ς

τ δ τ

τ
τ τ

δ τ

τ
τ

−

−

+ = + Δ + − +

∂ +
+ − ⋅ + − +

∂
= + Δ + − +

∂ +
+ − ⋅ +

∂
 (13) 
Combing (11) and (13), one has 

( , ( )) ( )( , ( ),0)
( ) ( ( ))

( )
kk d d dk

k

F w u k y kf w u k
e k u k

u G w
ς δ τ

τ
+ − +∂

+ = + Δ
∂

 (14) 
By defining ( , ( ),0)k kf w u k uς κ∂ ∂ = , (14) can be rephrased 

as 

( ) ( ( , ( )) ( )) ( )
( ) ( )
( , ( ), ) ( )

k

k

k k
k d d k d

k k

a k d k k

e k F w u k y k u k
G w G w
F w y k u k κ

κ κτ τ κ δ

τ κ κ δ

+ = − + + Δ +

= + + Δ +

 (15) 

( , ( ), ) ( ( , ( )) ( ))
( )

k
a k d k k d d

k

F w y k F w u k y k
G w

κτ κ τ+ = − +  

( )k k

k
d

kG wκ
κδ δ=  

Notice that min min0 ,0 ( )k max k maxg g g G w gκ< ≤ ≤ < ≤ ≤  due 
to Assumption 3. By referring to Lemma 1, one also observes 
that 

kκδ  is bounded above by mink max M Mg D d gκδ τ≤ . 

By rewriting the non-affine system into an equivalent 
affine-like representation (15) in terms of error dynamics, the 
difficulty of designing controllers for nonaffine nonlinear 
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discrete-time systems could be avoided. 

IV. ONLINE REINFORCEMENT LEARNING CONTROLLER 
DESIGN 

The purpose of this study is to design an online 
reinforcement learning NN controller for the equivalent error 
dynamics (15), such that 1) all the signals in the closed-loop 
system remain UUB; 2) the output ( )y k  follows a desired 
trajectory ( )dy k S∈ ; and 3) the long-term cost function (4) is 
minimized so that a near optimal control input can be 
generated [8]. Here, the “online” means the learning of the 
controller takes place “in real-time” by interacting with the 
plant, instead of in an offline or iterative manner. 

Non-affine systemAction NN

Critic NN
ˆ( )J k

1z−
ˆ( 1)J k −

1( ) ( , ( ), )k ky k f w u k d ττ + −+ =

( )d k

( )y k τ+

( )dy k τ+

kw ( )u k

z τ−

( )dy k τ+

( )e k τ+( )e k
+

−

 
Fig. 1. Online reinforcement learning neural controller structure. 

 
The block diagram of the proposed controller is shown in 

Fig. 1, where the two NN weights are initialized to zero and 
trained online without any offline learning phase. 

In our controller architecture, we consider the action and 
the critic NN having two layers, and the output of the NN can 
be given by ( )T TY W V Xφ= , where V  and W  are the 
hidden layer and output layer weights respectively. X  is the 
input vector of the NN and we choose ( ) 2 (1 ) 1XX eφ −= + −  
as the activation function. 

We know that any continuous function ( ) ( )Nf X C S∈  can 
be written as 
 ( ) ( ) ( )T Tf X W V X Xφ ε= +                          (16) 
with ( )Xε  a NN functional reconstruction error vector.  In 
our design, W  is adapted online but V  is initially selected at 
random and held fixed [11]. Furthermore, in this paper, a 
novel tuning algorithm is proposed making the NN weights 
robust by relaxing the persistency of excitation (PE) 
condition unnecessary. Next, the following mild assumption 
is needed. 
Assumption 6: The desired trajectory of the system output, 

( )dy k , is bounded over the compact subset of R . 

A. The Action NN Design 
Consider system (15), to eliminate the tracking error, a 

desired control law is given by 

 1( ) ( 1) ( , ( ), )d a k d k
k

u k u k F w y k τ κ
κ

= − − +        (17) 

By this means, the tracking error will go to zero afterτ  steps 
if no disturbance presents. 

However, since both of ( , ( ), )a k d kF w y k τ κ+  and 
kκ  are 

unknown smooth nonlinear functions, the desired feedback 
control ( )du k  cannot be implemented directly. Instead, an 
action NN is employed to produce the control signal. From 
(17) and considering Assumption 3 and 4, the desired control 
signal can be approximated by the action NN as 
 ( ) ( ( )) ( ( )) ( ) ( )T T T

d a a a a a a au k w v s k s k w k kφ ε φ ε= + = +  (18) 

where ( ) , ( )
TT

k ds k w y k τ⎡ ⎤= +⎣ ⎦  is the action NN input vector. 

an  is the number of neurons in the hidden layer, and 
1an

aw R ×∈ , 2 an n
av R ×∈  denote the desired weights of the output 

and hidden layer respectively with ( ) ( ( ))a ak s kε ε=  is the 

action NN approximation error. Since av  is fixed, for 
simplicity purpose, the hidden layer activation function 
vector ( ( )) anT

a av s k Rφ ∈  is written as ( )a kφ . 
Considering the fact that the desired weights are 

unavailable for us, the actual NN weights have to be trained 
online and its actual output can be expressed as 
 ˆ ˆ( ) ( ) ( ( )) ( ) ( )T T T

a a a a au k w k v s k w k kφ φ= =               (19) 

where 1ˆ ( ) an
aw k R ×∈  is the actual weight matrix of the 

output layer at instant k. 
Using the action NN output as the control signal, and 

substituting (18) and (19) into (15) yields 

        
( ) ( , ( ), ) ( )

( ( ) ( ))

( ( ) ( ) ( ))

( ) ( )

k

k

k

a k d k k

k d

T
k a a a

k a a

e k F w y k u k

u k u k

w k k k

k d k

κ

κ

κ

τ τ κ κ δ

κ δ

κ φ ε δ

κ ζ

+ = + + Δ +

= − +

= − +

= +

%

 (20) 

where 
 ˆ( ) ( )a a aw k w k w= −%                              (21) 

 ( ) ( ) ( )T
a a ak w k kζ φ= %                               (22) 

 ( ) ( )
ka k ad k k κκ ε δ= − +                            (23) 

Next the critic NN design with updating rule is followed. 

B. The Critic NN Design 
As stated above, a near optimal controller can stabilize the 

closed-loop system along with minimizing the cost function. 
In this regard, a critic NN is employed to approximate the 
unknown long-term cost function ( )J k  for current stage. 

First, the prediction error generated by the critic or the 
Bellman error [9] is defined as  
 ˆ ˆ( ) ( ) ( 1) ( )ce k J k J k r kγ= − − +             (24) 
where the subscript “c” stands for the “critic” and  
 ( )ˆ ˆ ˆ( ) ( ( )) ( ) ( )T T T

c c c c cJ k w k v e k w k kφ φ= =           (25) 

( )Ĵ k R∈  is the critic NN output which is for approximating 
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( )J k . ( ) 1ˆ cn
cw k R ×∈  and 1 cn

cv R ×∈  represent the actual 

weight matrices of the output and hidden layer respectively. 
The term cn  denotes the number of the neurons in the hidden 
layer. Similar to HDP, the tracking error ( )e k  are selected as 
the critic NN input. Again, the activation function vector of 
the hidden layer ( ( )) cnT

c cv e k Rφ ∈  is simply denoted as ( )c kφ . 
Provided with enough number of hidden layer neurons, the 
optimal long-term cost function ( )*J k  can be approximated 

with arbitrarily small approximation error ( )c kε  as 

  *( ) ( ( )) ( ( )) ( ) ( )T T T
c c c c c c cJ k w v e k e k w k kφ ε φ ε= + = +  (26) 

Similarly, the critic NN weight estimation error can be 
defined as 
 ˆ( ) ( )c c cw k w k w= −%                              (27) 
where the approximation error is given by 
 ( ) ( ) ( )T

c c ck w k kζ φ= %                              (28) 
Thus, we obtain 

       
ˆ ˆ( ) ( ) ( 1) ( )

( ) *( ) ( 1) *( 1)
( ) ( ) ( 1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +
= + − − − −
+ − + −

 (29) 

Next we propose the weight tuning algorithms for both NNs. 

C. Weight Updating for the Critic NN 
Following the discussion from the last section, the 

objective function to be minimized by the critic NN can be 
defined as a quadratic function of Bellman error as 
 ( ) ( ) ( ) ( )21 1

2 2
T

c c c cE k e k e k e k= =               (30) 

Using a standard gradient-based adaptation method, the 
weight updating algorithm for the critic NN is given by 
 ˆ ˆ ˆ( ) ( ) ( )c c cw k w k w kτ+ = + Δ                  (31) 
where 

 ( )ˆ ( )
ˆ ( )

c
c c

c

E kw k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥∂⎣ ⎦
                     (32) 

with c Rα ∈  is the adaptation gain. 
Combining (24), (25), (30) with (32), the critic NN weight 

updating rule can be obtained by using the chain rule as [8] 

 
ˆ( ) ( ) ( ) ( )ˆ ( ) ˆˆ ˆ( ) ( ) ( )( )

ˆ ˆ( )( ( ) ( ) ( ))

c c c
c c c

c c c

c c

E k E k e k J kw k
w k e k w kJ k

k J k r k J k

α α

α γφ γ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂

= − + −

    (33) 

D. Weight Updating for the Action NN 
The objective for adapting the action NN is to track the 

desired output and to lower the cost function simultaneously. 
Therefore, the error for the action NN can be formed by 
combining the functional estimation error ( )a kζ , and the 
critic signal ( )Ĵ k . Let 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1ˆ ˆ

a k a k d k a ke k k J k J k k J kκ ζ κ κ ζ κ
− −

= + − = +   (34) 

where ( )a kζ  is defined in (22). The desired long-term cost 

function ( )dJ k  is nominally defined and is considered to be 

zero (“0”), which means as low as possible [8]. 
Hence, the weights of the action NN ˆ ( )aw k  are tuned to 

minimize the error  
      1( ) ( ) ( )

2
T

a a aE k e k e k=                (35) 

Combining (20), (22), (34), (35) and using the chain rule 
yields 

 

( ) ( ) ( ) ( )ˆ ( )
ˆ ˆ( ) ( ) ( ) ( )

ˆ( )( ( ) ( ))
ˆ( )( ( ) ( ) ( ))

a a a a
a a a

a a a c

T
a a k a

T
a a a

E k E k e k kw k
w k e k k w k

k k J k

k e k d k J k

ζα α
ζ

α φ κ ζ

α φ τ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − +

 (36) 

where a Rα +∈  is the adaptation gain of the action NN.  
Since ( )ad k  is typically unavailable, similar to the ideal case, 

we assume the ( )d k  and the mean value of ( )a kε  over the 
compact subset of R  to be zero [8], and obtain the weight 
updating algorithm for the action NN as 
        ˆˆ ˆ( ) ( ) ( )( ( ) ( ))T

a a a aw k w k k e k J kτ α φ τ+ = − + +  (37) 

V. MAIN THEORETIC RESULT 
Assumption 7: Let the unknown desired output layer weights 
for the action and critic NNs are upper bounded such that 
 a amw w≤ , and c cmw w≤                     (38) 

where amw R+∈  and cmw R+∈  represent the bounds on the 
unknown target weights. Here ⋅  stands for the Frobenius 

norm [14]. 
Assumption 8: The activation functions for the action and 
critic NNs are bounded by known positive values, such that  
 ( ) ( ),  a am c cmk kφ φ φ φ≤ ≤                           (39) 

where ,am cm Rφ φ +∈  is the upper bound. It is easily satisfied, 
since hyperbolic tangent sigmoid transfer function is chosen. 
Assumption 9: The NN approximation errors or unmodeled 
dynamics ( )a kε  and ( )c kε  are assumed to be bounded above 

over the compact set S R⊂  by amε  and cmε  [10]. 
Lemma 6: With the Assumption 3, 9, the term ( )ad k  in (23) 
is bounded over the compact set S R⊂  by 
 

max min( )a am am max M Md k d g g D d gε τ≤ = +     (40) 

Combining Assumptions 1, 3, and 4 and Facts 1 and 2, the 
main result is introduced next. 
 
Theorem 1: Consider the nonlinear discrete-time system 
given by (1) whose dynamics can be expressed as (15). Let 
the Assumptions 1 through 9 hold with the disturbance bound 

Md  a known constant. Let the control input be provided by 
the action NN (19), with the critic NN (25). Further, let the 
weights of the action NN and the critic NN be tuned by (33) 
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and (37) respectively. Then the tracking error ( )e k , and the 

NN weight estimates of the action and critic NNs, ( )aw k%  and 

( )cw k%  are UUB [12], provided the controller design 
parameters are selected as 
(a)       2 min

2
max

0 ( )a a
gk
g

α φ< <                        (41) 

(b)                             2 20 ( ) 1c c kα φ γ< <                       (42) 

(c)                                       1
2

γ >                         (43) 

where aα  and cα  are NN adaptation gains, and γ  is 
employed to define the strategic utility function. 
Proof: the proof is omitted here due to space limitation. 
Remark: Compared to other adaptive critic or reinforcement 
learning schemes [4]-[7], the proposed approach ensures 
closed-loop stability using the Lyapunov approach even 
though gradient based adaptation is employed. 

VI. SIMULATION RESULTS 
The system under consideration is governed by 

       ( 1) sin( ( )) ( )(5 cos( ( ) ( )))y k y k u k y k u k d+ = + + +  (44) 
The desired output trajectory is set to be a rectangular pulse 

wave with amplitude of 2 units and period of 8s. The time 
interval between two instances is 0.02s and a bounded 
uniformly distributed noise d  with bound of 

Md  is 
introduced into the simulation. Other parameters are listed as: 

TABLE 1 
SUMMARY OF PARAMETERS USED IN SIMULATION OF THE FIRST EXAMPLE 

 

R  Q  γ  cα  aα  an  cn  Md  

0.1 0.1 0.8 0.01 0.01 10 10 0.01 

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

1.5

x1

t(s)

 

 
actual output
desired output

 
Fig. 2. Tracking performance of the online learning controller. 

 
The tracking performance with the online reinforcement 

learning controller is shown in Fig. 2, which demonstrates 
that the actual system output is able to track the target quickly 
even under the influence of noise. Meanwhile, the control 
signal is shown in Fig. 3. From these results, the boundedness 
of the control input is clearly illustrated. 

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u

t(s)  
Fig. 3. Input signal of the online learning controller. 

VII. CONCLUSIONS 
A method to obtain equivalent affine-like model from 

nonlinear unknown nonaffine nonlinear discrete-time system 
is introduced in this paper. The model integrates all higher 
order terms of the Taylor expansion without losing any terms. 
Bounded disturbance is also considered. Subsequently, a 
novel reinforcement online learning scheme is designed to 
deliver a desired performance by using neural networks. The 
proposed NN controller optimizes the long-term cost 
function. To suit practical applications, the controller is 
updated in an online fashion without offline phase.  The UUB 
of the closed-loop tracking errors and NN weight estimates is 
demonstrated by using standard Lyapunov analysis. 
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