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Special Section Transactions Briefs

DFT Techniques and Automation for Asynchronous NULL
Conventional Logic Circuits

Venkat Satagopan, Bonita Bhaskaran, Waleed K. Al-Assadi,
Scott C. Smith, and Sindhu Kakarla

Abstract—Conventional automatic test pattern generation (ATPG) algo-
rithms fail when applied to asynchronous NULL Convention Logic (NCL)
circuits due to the absence of a global clock and presence of more state-
holding elements, leading to poor fault coverage. This paper presents a
design-for-test (DFT) approach aimed at making asynchronous NCL de-
signs testable using conventional ATPG programs. We propose an auto-
matic DFT insertion flow (ADIF) methodology that performs scan and test
point insertion on NCL designs to improve test coverage, using a custom
ATPG library. Experimental results show significant increase in fault cov-
erage for NCL cyclic and acyclic pipelined designs.

Index Terms—Automated design-for-test (DFT), global feedback, local
feedback, NULL Convention Logic (NCL), scan insertion.

I. INTRODUCTION

Asynchronous circuits fall into two main categories: delay-insen-
sitive and bounded-delay models. Delay-insensitive paradigms, like
NULL Convention Logic (NCL) [1], assume that delays in both logic
elements and interconnects are unbounded, although they assume that
wire forks within basic components, such as a full adder, are isochronic
[2], meaning that the wire delays within a component are much less
than the logic element delays within the component, which is a valid
assumption even in future nanometer technologies.

Testing asynchronous circuits has been a major challenge compared
with their synchronous counterparts due to the fact that existing au-
tomatic test pattern generation (ATPG) tools have been developed to
support clock-based-type circuits [3], [4]. NCL uses a delay insen-
sitive, self-timed paradigm to achieve synchronization by means of
handshaking, leading to the presence of asynchronous feedback paths,
which in turn pose a serious problem for ATPG programs. Analysis of
NCL fault coverage using existing ATPG tools reveals two important
causes for fault degradation: 1) untestable faults in feedback paths and
2) unobserved faults in paths propagating through many logic levels.

In this paper, we propose an automatic design-for-test (DFT) in-
sertion flow (ADIF) methodology to enhance testability by inserting
test points (TPs) and scannable observation latches (SOLs). A custom
ATPG library of NCL primitive gates has been designed, which is used
in conjunction with our ADIF methodology. Experimental results on
several NCL circuits are included to show the validity of the proposed
ADIF methodology.

This paper is organized as follows. Section II overviews the NCL
paradigm. Section III reviews the previous work on testing NCL cir-
cuits. Section IV presents the developed ADIF methodology. Section V
compares the fault coverage results of the proposed techniques applied
to various multipliers and a 72+32�32MAC and Section VI provides
conclusions and directions for future work.
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TABLE I
DUAL-RAIL ENCODING

Fig. 1. THmn gate.

Fig. 2. Gate-level model of TH23 gate.

II. NCL OVERVIEW

NCL provides an asynchronous design methodology by incorpo-
rating data and control information into one mixed path, so there is no
need for worse case delay analysis and control path delay matching [1].
NCL relies on symbolic completeness of expression to achieve self-
timed behavior. Traditional Boolean logic is not symbolically com-
plete, since the output of a Boolean gate is only valid when refer-
enced with time. NCL eliminates this problem of time-reference by em-
ploying dual-rail or quad-rail signals. A dual-rail signal D consists of
two mutually exclusive wiresD0 andD1, which may assume any value
from the set {DATA0, DATA1, NULL}, as shown in Table I. Simi-
larly, a quad-rail signalQ consists of four mutually exclusive wiresQ0,
Q1, Q2, and Q3, which may assume any value from the set {DATA0,
DATA1, DATA2, DATA3, NULL}.

NCL uses threshold gates with hysteresis for its composable logic
elements. Such an operator consists of a set condition and a reset con-
dition that the environment must ensure are not both satisfied at the
same time. If neither condition is satisfied, then the operator maintains
its current state. One type of threshold gate is the THmn gate, where
1 � m � n as depicted in Fig. 1. THmn gates have n inputs. At least
m of the n inputs must be asserted before the output will be asserted,
which is the gate’s set condition. Because NCL threshold gates are de-
signed with hysteresis, all asserted inputs must be deasserted before the
output will be deasserted, which is the reset condition [5]. Thus, any
threshold gate can be represented in terms of its set and reset condition:
Z = f+(g�Z�), where f is the set condition, g is the complement of
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Fig. 3. NCL system framework.

the reset condition, and Z� is the previous value of the output Z . Most
threshold gates employ gate internal feedback paths (GIFs) in order to
satisfy the hysteresis condition, represented by g � Z� in the previous
equation. As an example, consider the TH23 gate whose outputZ is as-
serted when at least two of its three inputs (i.e., A, B, C) are asserted,
and remains asserted until all inputs are deasserted. The TH23 gate is
represented by Z = AB + BC + AC + ((A+ B + C) � Z�), and
is depicted in Fig. 2.

NCL pipelines can be categorized as cyclic or acyclic based on the
presence of feedback in the datapath. A cyclic pipeline has a feedback
loop in its datapath, whereas an acyclic pipeline does not have datapath
feedback. Both cyclic and acyclic NCL pipelines employ feedback in
their handshaking completion paths. As seen in Fig. 3, each stage in
a pipelined NCL system consists of three components: combinational
logic, registration, and completion logic, all consisting of threshold
gates. In an NCL system, the DATA wavefront and NULL wavefront
are applied alternately [1]. The NCL registers interact with one another
using handshaking signals to ensure that successive DATA wavefronts
are separated by a NULL wavefront. When the register output is DATA
(i.e., not NULL), request for NULL (rfn or logic 0) is generated on its
Ko output; and vice versa, when the register output is NULL, request
for DATA (rfd or logic 1) is generated on its Ko output. These hand-
shaking signals constitute the global feedback paths (GFPs) that exist
between registration stages.

III. PREVIOUS WORK

Several DFT methods for asynchronous delay insensitive circuits
have been reported. Kang et al. [6] proposed a new scan design with low
overhead for asynchronous micropipeline circuits to efficiently detect
stuck-at and delay faults. A partial-scan technique for targeting delay
faults for clockless systems was demonstrated in [7]. Kondratyev et al.
[3] focused on test methodologies for acyclic and cyclic NCL pipelines.

In [3], acyclic pipelines are converted into combinational logic by
removing the registers and completion detection through a process of
fault grading. The stuck-at faults in the completion circuitry are easily
tested and can, therefore, be ignored. Similarly, the faults in the registra-
tion stages are eliminated by fault collapsing using dominance. Every
threshold gate in the remaining combinational logic is then replaced by
equivalent Boolean gates implementing the same logic function. This
method yielded a good correlation between the actual and the equiva-
lent designs, since the actual designs were found to be 100% testable
in most cases. Cyclic pipelines are more complex to test. A partial scan
methodology wherein the designer specifies the points where the scan
latches are to be inserted was proposed to test cyclic pipelines. This
method targets the level sensitive scan design (LSSD) style clocking
with two-phased nonoverlapping clocks. A single register in an acyclic
pipeline, identified as a scan candidate by the designer, would be re-
placed by its equivalent scan version. This technique was tested on cir-
cuits by using conventional ATPG tools to yield high test coverage [3].

While the work by Kondratyev et al. presents proof for the suppo-
sition that an NCL gate’s reset condition is always 100% testable, and

Fig. 4. Insertion of control point and XOR tree.

hence can be excluded while running testability analysis, it would be
very useful to be able to determine the fault coverage of the circuit as
a whole, using conventional ATPG tools, rather than only the set con-
dition. This would also eliminate the additional process of padding the
generated test patterns with NULL patterns to test the original pipeline.
Furthermore, a stuck-at fault in a gate internal feedback path could re-
sult in: 1) premature gate transitions that do not cause the pipeline to
stall [8]; 2) undetected pipeline faults; or 3) the static gate acting as a dy-
namic gate. These stuck-at faults within gates’ internal feedback paths
have not been addressed in any of the previous work, which is the moti-
vation for the proposed NCL ADIF methodology developed herein.

IV. AUTOMATIC DFT INSERTION FLOW (ADIF) METHODOLOGY

Conventional scan-based ATPG programs do not support NCL de-
signs because of the asynchronous feedback paths and absence of a
clock. Asynchronous feedback paths degrade controllability and ob-
servability significantly, which in turn results in poor stuck-at fault
coverage [7], [8]. To test for a fault, two vectors ht1; t2i are required,
where t1 is the initialization vector and t2 is the test vector. For small
circuits, this could be sufficient, but for complex circuits, it could re-
sult in large computation, making this option unfeasible. High testa-
bility for NCL designs utilizing scan-based ATPG programs can be
achieved by enhancing controllability and observability of feedback
paths in NCL circuits. This in turn requires modeling of NCL gates
for ATPG. We propose a methodology, called ADIF, which consists of
two parts: 1) insertion of TPs in GFPs and 2) insertion of SOLs in GIFs
and modeling NCL primitive gates for ATPG.

A. ADIF-I Algorithm: Insertion of TPs in GFPs

For every registration stage in an NCL pipeline, there is a feedback
path (global) from the Completion Detector (CD) of the succeeding
stage. In this approach, we model each primitive NCL threshold gate
for ATPG as a simple combinational equivalent circuit representing
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Fig. 5. Insertion of SOL.

Fig. 6. ADIF-I GFP test points insertion flow.

only the set function. GFPs are not controllable from the circuit’s pri-
mary inputs (PIs); hence, to make them controllable, an XOR gate con-
trolled by TC , an external PI signal, can be inserted in the completion
feedback paths to provide additional TPs. This allows the ATPG pro-
gram to easily probe and control these paths. The probability of a “1” or
“0” occurring at the output of the inserted XOR gate is equal, thus sim-
plifying fault propagation. To illustrate, let us consider one stage of an
NCL pipeline, as shown in Fig. 4. Note that this is an extremely simpli-
fied system used only to demonstrate the concept. The GFP is broken
by inserting an XOR gate controlled by TC , which is set to “0” during
functional mode, and controlled by the tester during testing mode.

While controllability of the feedback nets is enhanced, undetected
faults still occur on nets that are blocked from being observable at a
primary output (PO). Making these nets POs themselves would im-
prove observability, but would also lead to several undesirable effects,
including increase in cost for adding PO pins and long wire connections
leading to signal integrity problems. A tree of balanced XORs consoli-
dating the unobservable (UO) nets to a single PO is added as demon-
strated in Fig. 4. These XOR gates do not affect functionality; however,
careful design considerations should be taken since adding gates will
change the electrical strengths of the original nets.

This approach assumes that ATPG models for the NCL primitive
gates are purely combinational, representing only the set function. The
advantage of this approach is that the asynchronous nature of the NCL

Fig. 7. Latch insertion in GIF.

Fig. 8. ADIF-II.

TABLE II
COMPARISON OF DFT TECHNIQUES FOR A SMALL 2-STAGE ADDER

TABLE III
COMPARISON OF DFT TECHNIQUES FOR A 4 � 4 DUAL-RAIL FULL-WORD

PIPELINED MULTIPLIER

pipelines is preserved and is, therefore, good for small stand-alone NCL
designs. On the other hand, the disadvantage of the approach is that in
large NCL circuits, the size of the balanced XOR tree can grow at an
exponential rate with the increasing number of faults being flagged as
UO. This adds significantly to the cost of the logic.

As NCL designs can be embedded in synchronous-based SoCs, an
efficient test methodology would be to integrate the control of asyn-
chronous modules with the synchronous ones [7], [8]. SOLs can be
added at nets whose faults are flagged as UO. The advantage is that
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TABLE IV
RESULTS USING ADIF-II: GIF SCAN TECHNIQUE

added SOLs can be integrated with the overall system’s scan chain, en-
abling scan-based ATPG to be performed on the whole design. The con-
cept is illustrated in Fig. 5, where the UO fault sites are grouped using
a NAND gate, followed by a SOL. This scheme does not affect the func-
tionality of the NCL design, but like the insertion of the XOR gates, sev-
eral design considerations should be taken into consideration. In Fig. 5,
we chose to group four UO nets to a NAND gate feeding a SOL. An ef-
ficient grouping approach for nets feeding a SOL to reduce hardware
overhead while enhancing testability is currently being investigated.

Fig. 6 illustrates the ADIF-I algorithm used for the insertion of TPs
approach described before. Due to space limitations, details of this al-
gorithm are not included, but can be found in [9]. Note that once the
target fault coverage is achieved, functional verification is performed
as the final step.

B. ADIF-II Algorithm: GIF Scan Insertion

In ADIF-I, we modeled NCL gate primitives for ATPG using only
the set condition without hysteresis. In this approach, we propose to
insert a scannable latch, similar to the SOL, in the GIF of each NCL
gate, excluding TH1n gates, since these are equivalent to OR gates and,
therefore, do not require internal feedback (i.e., the hysteresis condi-
tion is satisfied by the set condition and is, therefore, redundant), to
form a custom NCL ATPG library. Fig. 7 illustrates the insertion of a
scannable latch for the TH23 gate. In functional mode, the latch looks
like a buffer, while during test mode it becomes part of the system scan
chain.

The ADIF-II algorithm flow uses the custom ATPG library to form
scan chains and generate appropriate test patterns to activate and cap-
ture faults, as depicted in Fig. 8. The algorithm accepts a structural
NCL design and the NCL ATPG library, which contains component de-
scriptions of each NCL gate, including the CLK input for all non TH1n
gates. The algorithm replaces each original non TH1n gate with its cor-
responding ATPG model, and counts the number of latched NCL com-
ponents in the circuit architecture, which is used to calculate gate over-
head. The top-level design is also modified to include the CLK input as
a PI. The algorithm outputs a structural VHDL netlist to be used with
the scan-based ATPG program. When the VHDL netlist is processed
by the ATPG program, it identifies the NCL gates using the custom
NCL ATPG library and replaces all gates with their corresponding scan
models. Potentially, the standardized techniques might not produce the
desired fault coverage and may require some design specific tweaks.
If the required fault coverage is not obtained, ADIF-I could be applied
to the design. The choice of techniques at this point is design depen-
dent. For this, the fault list obtained from the ATPG program can be
processed to identify AU (ATPG untestable) or UO type faults.

V. RESULTS AND ANALYSIS

Both ADIF algorithms were applied on a two-stage pipelined adder
with six feedback paths. The custom ATPG library developed for the
NCL primitive gates was used. The analysis was based on the classical

stuck-at fault model. Results in Table II indicate poor fault coverage
(FC) for the circuit with no DFT attributes applied to the circuit. ADIF-I
with the insertion of control points (CPs) and XOR trees yields better
results than SOL insertion. ADIF-II shows much better results.

As the complexity of the circuits increases, the ADIF-I algorithm
does not produce good results. Consider the results for a 4 � 4 dual-
rail full-word pipelined multiplier, shown in Table III, which reveal
that the effectiveness of ADIF-I decreases as pipeline depth increases.
However, ADIF-II with GIF scan latch insertion is more effective in
enhancing testability.

Table IV presents the results of applying ADIF-II on various 4 � 4
multiplier architectures [10], [11] and a 10-stage 72 + 32 � 32 mul-
tiply and accumulate unit (MAC) [12]. The multipliers have an acyclic
datapath, while the MAC has a cyclic datapath. For a given design,
Table IV shows the number of NCL gates used, number of equiva-
lent Boolean gates (EBGs), number of SOLs inserted, gate overhead
(GO), total number of faults modeled as stuck-at faults (TF), number
of untestable faults (UT), percentage of fault coverage (FC), and CPU
time for simulations run on a 900-MHz Sun SPARC machine. EBGs
is calculated by converting each NCL gate to its equivalent number of
Boolean gates, by dividing the number of transistors in each NCL gate
by 4 (i.e., one EBG consists of 4 transistors). GO percentage is then
calculated as ((GIFLatches � 4)=EBGs) � 100, assuming a SOL is
equivalent to four Boolean gates [4].

The fault coverage is 100% for all designs except the bit-wise
pipelined multipliers. Untestable faults on these designs were traced to
GFPs between two registers with no combinational logic in between,
since these GFPs do not contain a completion component, and hence,
are not controllable by the internal scan latches. Applying ADIF-I
techniques to these GFPs increases fault coverage to near 100%.

VI. CONCLUSION

This paper presents the ADIF methodology to enhance testability
of NCL circuits using conventional scan-based ATPG programs. The
ADIF methodology is aimed at targeting untestable faults due to asyn-
chronous feedback paths, both global and gate internal. The method-
ology has two components: insertion of test points in GFPs, and in-
sertion of scannable latches in GIFs. The two ADIF algorithms along
with the custom ATPG modeling of NCL primitive gates allow con-
ventional scan-based ATPG programs to be applied to NCL circuits,
either stand-alone or embedded in clocked-based SoC designs. ADIF-II
results in 100% fault coverage for all full-word completion designs
tested, and at least 96.9% fault coverage for the bit-wise pipelined
designs considered. However, applying ADIF-I in conjunction with
ADIF-II boosted fault coverage to near 100% for the bit-wise pipelined
designs. ADIF-II has been shown to substantially increase testability of
NCL circuits, but at the expense of additional gate overhead.

Future work includes further investigation of SOL insertion and
a more efficient approach for grouping UO nets feeding a SOL, in
ADIF-I.
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