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Optimal Control of a Photovoltaic Solar Energy
System with Adaptive Critics

Richard L. Welch, Student Member, IEEE and Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract — This paper presents an optimal energy control
scheme for a grid independent photovoltaic (PV) solar system
consisting of a PV array, battery energy storage, and time
varying loads (a small critical load and a larger variable non-
critical load). The optimal controller design is based on a class of
Adaptive Critic Designs (ACDs) called the Action Dependant
Heuristic Dynamic Programming (ADHDP). The ADHDP class
of ACDs uses two neural networks, an “Action” network (which
actually dispenses the control signals) and a “Critic” network
(which critics the Action network performance). An optimal
control policy is evolved by the action network over a period of
time using the feedback signals provided by the critic network
The objectives of the optimal controller in order of decreasing
importance is to first fully dispatch the required energy to the
critical loads at all times; secondly to dispatch energy to the
battery whenever necessary so as to be able to dispatch energy to
the critical loads in any absence of energy from the PV array;
and lastly to dispatch energy to the non-critical loads while not
interfering with the first two objectives. Results on three
different US cities show that the ADHDP based optimal control
scheme outperforms the conventional PV -priority control scheme
in maintaining the stated objectives almost all the time.

I. INTRODUCTION

As the cost of fossil fuels rise and their availability falls, it
is becoming important to look for alternate forms of
energy. Currently, there are many alternative energy sources,
including wind, solar, hydroelectric and geothermal. Of these,
solar energy is perhaps the most well suited to employ on a
wide scale, both supplying energy and possibly lowering
stresses on the power grid through distributed generation.
Additionally, photovoltaic (PV) arrays have no moving parts
and therefore require very little maintenance and generally
perform reliably while the sun is shining.

As the price of solar energy falls [1] through higher
production volumes and technology improvements, its
adoption rate has increased. However, even in light of rising
utility prices, solar energy is still relatively expensive. The
payback time (the time it takes for a PV installation to pay for
itself) can be as high as 30 years (or more). Fortunately, the
life span of many PV arrays usually matches this time.
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In order to make the system cheaper, and hence shorten the
payback period, optimal control can be employed to better
dispatch the energy from the PV array to the system loads and
battery storage. This optimal control can lead to a system
with a smaller, less costly solar array while still powering all
of the critical loads, such as cntical refrigeration or
communications equipment.

Traditionally, the energy control that is employed for PV
systems 1s called the “PV-Priority” control scheme [2] and
simply uses all available energy from the PV array to power
the loads, and if there is any excess energy then it is stored in
the battery, and if there is not enough energy coming from the
PV array to power the loads then energy from the battery is
used. Other types of energy controllers have been reported,
such as a controller using Q-learning [2] and another using
fuzzy logic [3].

In this paper, the proposed optimal energy dispatch
controller 1s based on an adaptive critic design (ACD)
approach called action dependant heuristic dynamic
programming, or ADHDP [4, 5, 6]. Adaptive critic designs
are based on a combination of reinforcement leaming and
dynamic programming. The ADHDP topology is the simplest
form of ACD and the computationally simplest, using only 2
neural networks, one called the action (or actor) and the other
called the critic. The objectives of the optimal controller in
order of decreasing importance is to first fully dispatch the
required energy to the critical loads at all times; secondly to
dispatch energy to the battery whenever necessary so as to be
able to dispatch energy to the critical loads in any absence of
energy {rom the PV array; and lastly to dispatch energy to the
non-critical loads while not interfering with the first two
objectives.

Section I presents the grid independent PV solar energy
system studied in this paper. Section II describes the standard
PV-priority controller. Section IV describes the ADHDP
optimal controller design. Section V presents the evaluation
and comparison of the ADHDP optimal PV controller and the
standard PV-priority controller performances on Typical
Meteorological Year (TMY) data of three cities in the United
States of America. Finally, the conclusion is given in Section
VI

II. GRID INDEPENDENT PV SOLAR ENERGY SYSTEM

The complete photovoltaic system model 1s composed of
the PV array, maximum power point tracker, controller,
battery charge controller, batteries, inverter, critical loads and
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non-critical loads. The critical load consists of loads that
should not be dropped (such as refrigeration, emergency radio
communication), while the non-critical load contains items
which are non-essential (television, etc).

In order to simplify the simulation and focus on the
controller aspect of this system, all of the supporting system
components (such as the inverter, maximum power point
tracker, wiring, etc), are assumed to operate at 100%
efficiency. Also, the efficiency of the PV array model is taken
as 11% to account for various non-optimal conditions (such as
array misalignment, dust on the arrays, etc). This value is
representative of the current commercially available range of
efficiencies for PV arrays. Generally, PV panels vary in
efficiency from 6% to up to 30%,; although the high efficiency
panels are generally reserved for spacecraft usage because of
their high radiation tolerances and higher power-to-weight
ratio. A rough equivalent to the PV arrays being simulated in
this paper would be an array of eight Kyocera KC200GT
panels. These panels are over 16% efficient and will output
200W during optimal conditions [7]. The minimum charge
for the battery of 30% is required to supply energy to the
loads (this 1s consistent with standard deep cycle lead-acid
batteries).

Due to insufficient and no PV energy during winter months
and nights respectively, a control system is required to decide
the amount of energy to be dispatched the different loads
including the charging of the battery. The complete system in
schematic diagram form is shown below in Fig. 1 (energy
flows in the direction of the arrows).

Energy Dispatch Controller

Charge/
discharge

Critical Load
Y Constant 0.124 kW

F

Non-Critical Load

Variable 0 kW to 0.365 KW

Fig. 1. Schematic diagram of the PV system model (this control is applicable
only when there is insufficient PV collector energy to supply the critical loads,
non-critical loads and the charge the battery).

III. PV-PRIORITY CONTROLLER

The standard controller called the “PV-Priority” controller
is a very simple controller which always tries to meet the
loads (the critical and then the non-critical) before charging
the battery. At any one time, if there is not enough energy
from the PV array to supply the loads then the balance is
drawn from the battery. If instead there is an excess, then
whatever is left over after supplying the loads is dispatched to

2

the battery. In this way, the controller will attempt to power
all loads and charge the battery as best it can, without any
considerations given to the time varying states of the system.

This controller works well when there is sufficient PV
energy. However, when there is not sufficient PV energy,
then the battery will not be fully recharged and the loads will
be dropped. The weather and user loads are stochastic in
nature; therefore there is no one definitive model at all times.
Thus, it makes sense to look at intelligent model-free learning
methods of controlling such a system.

IV. ADHDP OPTIMAL CONTROLLER

One such intelligent system can involve the use of adaptive
critic designs. ACDs utilize neural networks and are capable
of optimization over time in conditions of noise and
uncertainty. A family of ACDs was proposed by Werbos [4]
as a new optimization technique combining the concepts of
approximate dynamic programming and reinforcement
learning. With ACDs, for a given series of control actions
that must be taken sequentially (and not knowing the effect of
these actions until the end of the sequence), it is possible to
design an optimal controller using the traditional supervised
learning based neural network.

The adaptive critic method determines an optimal control
for a system by adapting two neural networks: an Action
network and a Critic network. The Action network is
responsible for driving the system to the desired states, while
the Critic network is responsible for providing the Action
network with performance feedback with respect to reaching
the desired states over time. With this feedback, the Action
network 1s able to adapt its parameters continuously to
maximize its objective. The Critic network learns to optimize
the Action network by approximating the Hamilton-Jacobi-
Bellman equation associated with optimal control theory.

This Actor-Critic adaptation process starts with a non-
optimal or suboptimal policy by the action network; the Critic
network then guides the Action network toward an optimal
solution at each successive adaptation. During the adaptations,
neither of the networks needs any “information” of an optimal
trajectory, only the desired cost needs to be known
Furthermore, this method determines optimal control policy
for the entire range of initial conditions. Additionally, it needs
no external training, unlike other neural-controllers [5].

The design ladder of ACDs includes three basic
implementations: Heuristic Dynamic Programming (HDP),
Dual Heuristic Programming (DHP) and Globalized Dual
Heuristic Programming (GDHP), in the order of increasing
power and complexity. The interrelationships between
members of the ACD family have been generalized and
explained in [6]. In this paper, an Action dependent HDP
({ADHDP) approach is adopted for the design of an optimal
PV controller. Action dependent adaptive critic designs do not
need system models to develop the optimal control policy
{action network output).

As mentioned, the objective of the optimal PV control is
threefold - to maximize or fully dispatch the required energy
to the critical loads at all times, dispatch energy to charge the
battery whenever necessary so as to dispatch energy to the
critical loads in the absence of energy from the collector and
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the last objective is to dispatch energy to the non-critical loads
not comprising on the first two objectives. The optimal
controller is not used for instances where there 1s sufficient
solar energy to power all loads as well as completely charge
the battery. When this occurs, all loads are satisfied and the
battery is completely charged.

This optimal controller uses two networks (the Action and
Critic networks) as previously mentioned. The mnputs to the
Action network correspond to the states of the system while
the outputs correspond to the amount of energy to be
dispatched to the critical loads, battery and non-critical loads.
The inputs to the Critic consist of the inputs to the Action
network at time ¢, t-7, and #2, as well as the outputs of the
Action network at time ¢, -1, and 1-2. The Critic then uses the
information from the current states and actions in the current
time step (as well as from the recent past) to derive the Action
network over time to evolve an optimal control policy. Fig. 2
shows the connection between the Action network, Critic
network and the PV system.

Systemn states
PV
system [
*
Critic Training Signal E(t)
System §
Control s
states Signals y P
Jit
v i)
Action Network P Critic Network
", DU DAL )

Jit-1)

Action Training Signal
Fig. 2. Structure of the ADHDP based optimal PV controller design.

A. Critic Neural Network

The Critic network 1s a multilayer feedforward network
trained using the standard backpropagation (BP) training
algorithm. The input, hidden and output layers consists of
twenty-two linear neurons, twenty sigmoidal neurons and one
linear neuron respectively. As previously mentioned, the
inputs to the Critic network are the outputs and inputs of the
action network, at times £, -1 and -2. A diagram of the Critic
network is shown in Fig. 3.

The output of the critic network 1s the estimated cosit-to-go
function J of Bellman’s equation of dynamic programming,
which is given by (1).

J()= Y Uct+i) (1)
=0

Where y 1s the discount factor for finite horizon problems with
the range of [0, 1] and is chosen to be 0.8 in this study. Uy#) is
known as the utility function or the local cost function. This
utility function guides the Critic in critiquing the Actor’s
performance. In this study, Uf#) in (2) is chosen to be a
function of critical load (CL), state of battery charge (BC) and
non-critical load (NCL).

U(t)=(30/23)% abs(1— (ECL /ACL+ M * MCL ))) +

(15/23)* abs(1— (EB/((MBC —CBC )+ M * MBC ))) +

(13/23)* abs(1— (ENCL /A NCIL + M * MNCL }})
Where:
ECL = Energy Dispatched to the Critical Load

@

CL = Critical Load

MCL = Maximum Critical Load

EB = Energy Dispaiched io the Batiery

MBC = Maximum Battery Charge

CBC = Current Battery Charge

ENCL = Energy Dispatched to the Non Critical Load

NCL = Non Critical Load

MNCI. = Maximum Non Critical Load

M = Multiplier (used to ensure divisor is non-zero; for this
experiment, a value of 0.1 was used).

Energy to CL fi)

v

Energy to ML f)—0VJ

Energy to Baitery (t)—]

PV Energy (t)—
it
Critical Load (1]

Nor-Critical Load (H—

I2ART INAUL
I2ART UappPIH
IDART ThAING

Battery Charge (&)

A 4

Fig. 3. Critic neural network.

In the Ut function given in (2), a higher priority is given
to meeting the critical load at all times over the batteries being
charged or the non-critical load being supplied by assigning
different weightings - 30/23 to the CL term, 15/23 to the BC
term, and 13/23 to the NCL term. This U(t) meets the
threefold objective for the optimal PV controller design.

In the training of the Critic network, the objective is to
minimize (3) given below.

s 22 1) 3
t=0
where
E(1)=U(t)+ §{1) - J(1-1) (4)
The weight change and update equations for the Critic
network using the BP algorithm is given by (5) and (6)
respectively.
as(t)
[
Wa(t+1)=Wa(1)+ AW, (1)

)
(©)

AW (t)=m..E(t).

Where 5, and ¥, are the leaming rate and the weights of the
Critic neural network respectively.

B. Action Neural Network

The Action network is a multilayer feedforward network
trained using the BP algorithm. The input, hidden and output
layers of the Action network consists of five linear neurons,
thirty sigmoidal neurons and three linear neurons respectively,
as is shown in Fig. 4. The Action network inputs consist of
the following:
= Solar energy from the PV array (as a fraction of total

possible energy from the PV array)
= Critical load (as a fraction of total load)
= Non-critical load (as a fraction of total load)
= Current battery charge (as a fraction of total charge)
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= Bias term.
The Action network outputs consist of the following:
= Hnergy dispatched to the critical load (ECL)
= Hnergy dispatched to the non-critical load (ENCL)
=  Energy dispatched to the battery (EB), this can be
positive or negative, depending on whether the battery is
being charged or being used as a source.
Additionally, the Action network’s outputs are checked to
ensure the sum of energy dispatched is no more than is
available at the inputs. This is accomplished by performing
the following series of steps immediately after calculating the
outputs from the action network:

1). Verify that the energy dispatched to each of the loads

does not exceed the load demand, and is not negative.

Also ensure that the energy to the battery is not higher

than the energy collected by the PV arrays.

Venfy that the battery is not being overcharged, or over

depleted.

The outputs (including the energy dispatched to the

battery if it is being charged) are scaled by the ratio of

energy inputs to outputs.

. After scaling (step 1i1), another round of checks is made
on the Action network outputs in order to be certain that
they are not greater than the load or less than zero.

PV Energp (i ey _ ; 9
ol Load {f el & £ |— Energy 1o Battery
Now-Critical Load (i E w 4 ‘I E e Brergrto CL
Betery Change (a1 % g E It Evcrgy to NCL
s % | |E | |8

Fig. 4. Action neural network.

The change in the Action network weights AW, are
calculated by backpropagating the current Ji#) value back
through the trained Critic network as shown in Fig. 2 to obtain
&J/é4. The error in the Action network output is given by (7).

B (t)=2aJ(t)/ dA(t) (7
The change in the Action network’s weights AW, obtained

using the BP algorithm and update weight equations are given
by (8) and (9) respectively.

A1)
AWA(I)znA.EA(r).aWA (8)
Wa(t+1)=Wa(t)+ AW (1) ®

Here i, and W, are the learning rate and the weights of the
Action neural network respectively.

C. Actor/Critic Training

The flowchart in Fig. 5 outlines the training steps for both
the Critic and Action networks. During the iterative training
phase, several metrics can be used to determine if the Actor’s
performance is increasing. For this study, the simple sum of
the utility function for each cycle of tramning the Action
network 1s used. This means that when the sum of the utility
function is decreasing, the performance of the Action network
is improving. The simulation is run for a fixed number of
iterations, but if the sum of the utility function increases

during training then the new Action network weights are
discarded and replaced with the previous best weights. When
this happens, a very small perturbation (a random number
between -0.01 and 0.01) is added to the Action network
weights such that the network avoids getting stuck in a local
minimum.

After the best Action network weights are found, these
weights are then used to optimally dispatch energy to the
critical loads, the non-critical loads and the battery.

Step 1: Initialize weights of Critic and Actien networks to small random walues ([-0.1,
0.1

|

Step 2: Pre-train Action network to learn the conventional PV priority controller’s
performance

|

Step 3 Prerainftrain Critic network with the pre-traine dftrained &ction network
cutput with the setup as in Fig. 2 using a discount facter of 0.8

Step 4. Train pre-trained Action network from step 2 further with the setup asin Fig. 2
using the pretrained Critic network from step 3. Back-propagate the Critic output
threugh the Critic netwerk to obtain dJiEVaA). Use enline training to update the

weights of the Action network based on dF2VdAfY) using the standard backpropagation

algorithm. If controller does not improvwe, revert to older weights and add small
perturbation

Mo

Has utility
functicn been
minimized to
satisfaction?

Yes

Fig. 5. Flowchart for Critic/Action network training.

V. RESULTS

A one year simulation of the PV system is carried out for
the following areas: Phoenix, AZ, Springfield, MO and
Caribou, ME. These simulations used data from the TMY?2
database [8].

Phoenix receives more solar radiation than Springfield, and
that Springfield receives more solar radiation than Caribou.

The PV energy captured by the solar array is optimally
dispatched to power a time varying load (as shown in Fig. 6).
This figure (displaying the first 200 hours of the year) shows
that for the Caribou trained controller using the Caribou data
set, the optimal PV controller is able to continue to power the
critical loads (at the expense of the non-critical loads) while
the PV priority controller is not. For each city, an action
network 1s separately trained and then this network 1s tested
against the data for each city. The results of these tests are
shown in Tables I, IT and III. Additionally, a row labeled
“Total Score” shows the weighted sum of the results from
each test — the higher the score, the better the result. The
weightings used in this calculation are the same weights used
in the utility function (2). To find this score, each metric in the
column was multiplied by the appropriate weight and all
values in a column are summed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 20, 2009 at 16:42 from IEEE Xplore. Restrictions apply.



Interestingly, the optimal PV controller trained using the
Caribou, ME data set seems to always do better than any other
controller. Also, except for 1 case in Tables [ and 111, it seems
that the performance of the PV-priority controller 1s always
lowest. Fig. 7 shows the state of battery charge for Caribou,
ME for the period of late fall and early winter using both the
PV-priority controller as well as the optimal PV controller
trained using Caribou data. This result was chosen because it
is the most demanding situation.

Pawer (kW)

U 20 a0 60 E0 00 120 w0 16D 0 20
Time thrs)

Fig. 6 — Sum of both critical and non-critical loads (solid black line) being

satisfied by the PV priority controller (small dashed black lines) and the

optimal controller (long dashed red lines).

Table I — Table of all controllers using data from Phoenix, AZ

City: Phoenix, AZ
Controller: PV Optimal PV controller trained with data from:
Priority Phoenix, Springfield, Caribou,
AZ MO ME
Critical Load | 98.68% 98.62% 100% 100%
Satisfied: [1071.9 [1071.2 [1086.2 kWh] [1086.2
kWh] kWh] kWh]
Non-Critical | 98.19% 98.26% 89.06% 93.28%
Load [989.9 [990.6 [897.8 kWh] [940.4
Satisfied: kWh] kWh] kWh]
Average 84.37% 84.37% 90.75% 91.13%
Battery [29.2 [29.2 kWh] [31.4 kWh] [31.5kWh]
Charge: kWh]
Total 2392 2392 2400 2426
Score*:
*Computed using (2)

Table IT — Table of all controllers using data from Springfield, MO

City: Springfield, MO
Controller: PV Optimal PV controller trained with data from:
Priarity Phoenix, Springfield, Caribou,
AZ MO ME
Critical Load | 91.64% 91.29% 100% 100%0
Satisfied: [995 4 [991.6 [1086.2 kWh] [1086.2
kWh] kWwh] kWh]
Non-Critical | 89.05% 89.42% 73.56% 76.89%
Load [897.7 [901.5 [741.6 kWh] [775.2
Satisfied: kWh] kWwh] kWh]
Average 72.66% 72.66% 82.62% 8437%
Battery [25.1 | [25.1kWh] [28.6 kWh] [29.2 kWh]
Charge: kWh]
Total 2.173 2.235 2259 2289
Score*:

*Computed using (2)

Table III — Table of all controllers using data from Caribou, ME

City: Caribou, ME
Controller: PV Optimal PV controller trained with data from:
Priority Phoenix, Springfield, Caribou,
AZ MO ME
Critical 84.22% 83 44% 96.25% 96.54%
Load [914.8 [906.4 [1045.5 kWh] [1048.7
Satisfied: kWh] kWh] kWh]
Non-Critical | 77.21% 78.05% 59.22% 61.87%
Load [778.4 [786.8 [597.0 kWh] [623.7
Satisfied: kWh] kWh] kWh]
Average 63.87% 63.87% 72.96% 74.35%
Battery [221 [22.1 kWh] [25.2 kWh] [25.7 kWh]
Charge: kWh]
Total 1.951 1.946 2.066 2.094
Score™:
*Computed using (2)

As can be seen from Fig. 7, the optimal controller keeps the
charge of the battery higher than the conventional PV-priority
controller. Additionally, it meets much more of the critical
load (dropping it only during the winter months, when the
battery is completely depleted), but a little less of the non-
critical load. It is also interesting to note that this controller
changed behavior as the battery charge increased; when it was
lower it would power less of the non-critical load and focus on
the critical load, and when it was more fully charged it would
attempt to power both loads. This is in sharp contrast to the
PV priority controller which always tried to power both loads,
leading to a much lower average state of charge for the battery
{and less met critical load demand). This behavior results
from the coefficients used in the utility function (2).

110
100
90
]
70}

B0

State of Charge (%)

S0F

a0

30F

I I I |
7500 8000 8500 9000

Time (hrs)

20 1 1
6000 6500 7000

Fig. 7 — State of battery charge using the PV -priority controller (black line)
and the optimal PV controller trained with Caribou data (red line) for late fall
and early winter.

Another interesting result was that the optimal controller
trained using the Phoenix, AZ data set usually did not perform
any better than the priority controller, and always not as well
as the other optimal controllers. This is most likely because
the region received so much more sunlight than the other
regions that it had less ‘opportunity” to learn a more optimal
technique, since there were more periods of excess sunlight
where all loads could be satisfied. This most likely lead to a
different operating characteristic that did not lend itself well to
other locations that received less sunlight. Further verifying
this point is the Caribou-trained controller, which received the
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least amount of sunlight of all 3 locations but seemed to
perform better than any of the controllers.

The average charge of the batteries for the entire year for
each of the three cities using the Caribou traned controller
and PV-priority controller follow in Figs. 8, 9, and 10. In
these figures it is evident that the optimal controller is far
more capable of sustaining a higher average battery charge
than the PV-priority controller.

10

100

a0
80
70
BOF
501
401

30

State of Charge (%)

I I I I I )
4000 5000 6000 7000 8000 9000

Time (hrs)

20 1 1 1
0 1000 2000 3000

Fig. 8 — State of charge of the battery using the PV-priority controller (black
line) and the optimal PV controller trained with Caribou data (red line) for the
entire year in Phoenix, AZ.

110~

100

/

State of Charge (%)

a0
40

20 I I L L I I L I ]
i} 1000 2000 3000 4000 5000 6000 7OOO 8000 8000
Time thrs)

Fig. 9 — State of charge of the battery using the PV-priority controller (black
line) and the optimal PV controller trained with Caribou data (red line) for the
entire year in Springfield, MO.

VI. CONCLUSION

An optimal energy control scheme based on adaptive critic
designs for the photovoltaic solar energy system has been
developed and compared with the conventional PV-priority
control scheme used today. The ACD method optimizes the
control policy over time to ensure that the critical load
demand is met primarily all the time and then the non-critical
load demand. The state of the battery charge is also
maintained as high as possible to ensure energy supply to the
critical loads during nights and the winter months. This in turn
provides the benefit of extended battery life. Results have
been presented for three different US cities with different
radiations and the optimal PV controller has exhibited better
control in almost all cases. The comparison between the two

control schemes shows that for the most part, the optimal PV
controller satisfies the critical load and some of the non-
critical loads demand better than the PV-priority control
scheme, while keeping a higher battery charge. The hardware
of implementation of such an ACD controller is feasible and
cheap compared to savings as a result of proper energy
management. This scheme is adaptive and therefore can fine
tune to different locations and weather profiles within a short
period of time. Thus, it is a promising and a potential
inexpensive technique for practical deployment on growing
solar energy systems.

Future work involves real-ime investigations to try to
further optimize the energy controller to follow more closely
the load profiles and provide even better performance. In
addition to improving performance, integration with other
energy sources and hybrid forms of storage, such as hydrogen
fuel cells with battery will be investigated.

100 +
a0
a0
70

B0

State of Charge (%)

a0 H

40 H

a0+

20 1 1 1 I | | r 1 |
0 1000 2000 3000 4000 5000 GO0O0 7000 @000 8000
Time (hrs)

Fig. 10 — State of charge of the battery using the PV-priority controller (black
line) and the optimal PV controller trained with Caribou data (red line) for the
entire year in Caribou, ME.
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