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A CN-FDTD Scheme and its Application to VLSI Interconnects/Substrate Modeling 

Chen Wang and Jim Drewniak 
Department of Electrical and Computer Engineering 

University of Missouri-Rolla 
Rolla, MO 65409 

Rui Qiang, Dagang Wu, and Ji Chen 
Department of Electrical and Computer Engineering 

University of Houston 
Houston, TX 77204 

Ahfrnct- In this paper, a two-dimensional (2D) Crank- guideline for its practical VLSI applications. In addition, the 
Nicholason (CN) finite difference time domain (FDTD) method is performance among several iterative solvers for the CN-FDTD 
proposed for VLSI interconnecthubstrate characterization. scheme is investigated, our results show that the algebraic 
Through rigorous truncation and dispersion error analyses, a multi-grid (AMG) is the efficient iterative 

technique for our 2D CN-FDTD applications. It is observed guideline on using this technique is presented. Several iterative 
solvers are investigated to accelerate the solution of the CN- 
FDm are given demonstrate the that this algorithm can be 10 times to 100 times faster than the 
accuracy and the efficiency of the proposed algorithm. conventional FDTD method in terms of the CPU time. 

I. INTRODUCllON 

The fmite-difference time-domain (FDTD) method has been 
successfully applied to solve many electromagnetic problems 
111. However, this technique becomes very computationally 
inefficient when it is used to model electrically small objects. 
This is due to the fact that the time step sizes in FDTD 
simulations are constrained by the Courant-Friedrich-Levy 
(CFL) stability condition, which is limited by the minimum 
discretization cell size. As a consequence, the FDTD method 
may require over millions of iterations in analyzing some 
integrated circuit level interconnects structures. 

To improve the computational efficiency of the FDTD 
method, some efforts have been made towards developing 
time-step size constrain free FDTD schemes. For example, the 
alternating-direction-implicit (ADI) FDTD method [2-31, 
which is unconditional stable, has been proposed and applied 
to solve some practical problems. However, both dispersion 
and truncation errors of this algorithm are larger than those of 
the conventional FDTD method [4]. For near field 
applications, these errors become dominant and therefore, the 
algorithm cannot be applied to general electrically small 
structures. An alternative unconditional stable implicit scheme 
is the Crank-Nicholson (CN) scheme 151, in which the 
differential operator is not split into the x and J’ directions as 
that of the ADI-FDTD method. Using this scheme, both 
truncation and dispersion errors can be controlled. However, 
the CN-FDTD method needs to solve a block tridiagonal 
matrix during each time stepping and it is generally considered 
computationally expensive. Before the CN-FDTD method can 
be applied to solve practical problems, efficient solvers must 
be explored. 

The purpose of this paper is to analyze the truncation error and 
dispersion error of the CN-FDTD method and develop a 

11. CN-FDTD METHOD 

We first expressed the time-dependent Maxwell’s equations in 
the form of 

where E(/) and H(t) are time variant electric and magnetic 
fields, and the R is the curl operator. In Cartesian the 
coordinate system, the R can be decomposed into two 
operators that have only one differential operator in each row 
or column as: 

R = R l + R z = I ;  0 0 a,. :).I%, -a, -a’j o (2) 

Eq. (1) can be rewritten into the form of 

(3) 

In the CN-FDTD method proposed here, the time-stepping is 
given by 

which is equivalent to 

(4) 
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As we can see from the above equation, the left-hand-side of 
the above equation is a large sparse matrix associated with the 
finite difference operator. In order to update the field 
components from nth time step to (n+l)th time step, one needs 
to use either a sparse matrix solver or an iterative solver to 
seek for the field update. 

In the next sections, we will first perform the error analyses of 
this algorithm and then investigate efficient solvers for the 
CN-FDTD method 

In. TRUNCATION ERROR ANALYSIS 

Since FDTD method belongs to the class of differential 
equation techniques, the errors due to the spatial and time 
discretization need to be considered. In this section, we first 
consider the truncation error of this algorithm. For simplicity, 
we will perform the truncation error analysis for a 2D 
transverse magnetic (TM) case. 

For a 2D TM case, the Maxwell equations for 2D Th4 case can 
be written as: 

(6) 

Following the standard truncation error analysis and omitting 
the higher order terms' [6], we can obtain the second-order 
truncation error in approximating the temporal derivative for 
the conventional FDTD, the ADI-FDTD and the CN-FDTD by 

, 

- I A ~ J ~  0 '  gu2a: 

As we can see from the analyses above, these second-order 
errors can come from either temporal or spatial. The CN- 
FDTD method and the conventional FDTD method have 
similar truncation error. However, the ADI-FDTD method has 
an additional error term ofdAr2aj, ,  . If the AI is on the 

4/lE 

same order of the time step sue  that is constrained by the CFL 
condition, the truncation errors of the conventional FDTD, the 
ADI-FDTD, and the CN-FDTD method should be on the same 

order. However, if a larger time step size is used, the error 
associated with the term, ~ 4 ~ 3 %  in the ADI-FDTD method 

will become the dominant factor. Therefore, for practical 
applications, the time step size of the ADI-FDTD method 
cannot be very large. It must be on the same order of the CFL 
time step sue in order to maintain the truncation error of the 
conventional FDTD method. In Figure 1, we show the 
comparison of the ADI-FDTD relative truncation error due to 
the cross-coupling term, L&$ and the term, 2 A r 2 a :  for 

a simple dipole excitation. As we can clearly see fiom the 
figure, the truncation error due to the alternating procedure is 
significantly larger than that from the conventional FDTD 

41" 

4/lc 

centnl rliffewnce innrnvimatinn 

Dlstancrhom Source Polnt(U 

Figure 1. Truncation error due to GAr2a: (term 1) and 

~ L Y 2 a &  (term 2) in the ADI-FDTD method. 4w 

In addition to perform the theoretical analysis, we also 
perform a numerical experiment. In this numerical experiment, 
we calculate the field distribution as a function of distance 
from a current source. In the simulations, the sampling rate is 
at 100 point per wavelength. Figure 2 show the normalized 
electric field fiom both the ADI-FDTD simulation and the 
CN-FDTD simulation and compared with the analytical 
solution. As we can clearly see from the figure, the CN-FDTD 
method agrees very well with the analytical even in the near 
field region where there is a large variation in the field values. 
However, the ADI-FDTD method cannot provide accurate 
solutions when the sampling point is close to the excitation 
source. This observation confirms the truncation error analysis 
as described in the Fig. 1. Therefore, the ADI-FDTD cannot 
directly be applied to general electromagnetic field near field 
simulations. 
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Figure 2. Comparison between the CN-FDTD method and 
ADI-FDTD for a near field electromagnetic simulation. 

IV. DISPERSION ERROR ANALYSIS 

The second kind of error that needs to be addressed in the 
general finite difference method is the dispersion error. The 
dispersion error of these implicit FDTD algorithms can be 
performed by the Neumatui analysis [6] . For the conventional 
FDTD method and the CN-FDTD method, the dispersion 
relations are given by 

3 (10) 
sin2(mi1/2)  - sin2(k,hx/2) sin2(k,A>~/2) - i 

(W2 Ax2 AY2 
and 

. (11) 
tan2(&/2) s i n 2 ( k , k / 2 )  s i n 2 ( k y % ~  12) + - - 

(W2 Ax2 AY * 
In Fig. 3, the dispersion error of the conventional FDTD 
method Wee method) and the CN-FDTD method are shown as 
a function of different propagation angle at a sampling rate of 
10 points per wavelength. As we can see 6om the figures, the 
conventional FDTD method has lower dispersion error than 
that of the CN-FDTD method. It is also noticed that as the 
time step increases, the dispersion error of the CN-FDTD 
method also increases. 

For practical simulations, in order to maintain the dispersion 
error for CN-FDTD method witbin a certain limit, the time 
step size one cannot be very large. In Fig. 3, we show the 
maximum allowable time step size one can use as a function 
of sampling rate for different dispersion error criterion. For 
example, for a system with a sampling rate of 200 point per 
wavelength, in order to keep the dispersion error within 0.5 % 
level (on the same order of that of the conventional FDTD 
method), the maximum allowable one can use should only be 
12 times larger than that of the conventional FDTD method. 

1 OM. 

Figure 3. Dispersion error comparison between the CN-FDTD 
method and the conventional FDTD method. 

Sampling mea 

Figure 4. Maximm time step size one as a function of 
sampling rate. 

V. ITERATIVE SOLVER3 

An attractive feature of the ADI-FDTD method is its low 
computational overhead since only simple tri-diagonal matrix 
needs to be solved in the time stepping. For the CN-FDTD 
method, the update equation can be written in the form 
ofAX"+' = BA'" + J ,  where A and B are matrices related the 
CN scheme and J is the external excitation. The matrix A has 
a broader bandwith and is often referred as 'tri-diagonal 
matrix with fringes' or 'block tri-diagonal matrix' [5] .  To 
solve this matrix equation, the Conjugate Gradient Method 
(including BICG, BICGStab and CGS), the Generalized 
Minimal Residual (GMRES) method, and the Quasi-Minimal 
Residual (QMR) method can be used [7]. To further reduce 
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the overall CPU time, some pre-conditioners have also been 
developed here to reduce the number of iterations. 

For our 2D test problem, the zero-filled in incomplete LU 
factorization (ILUO) preconditioner in conjuncture with the bi- 
conjugate gradient stabilized (BICGStab) method has been 
applied to solve this matrix problem. It is found that the 
number of iterations to solve the matrix equation is very small 
for lossy media applications. However, the iterative number of 
this method grows rapidly if larger time step sizes are used. 

In addition to investigate traditional iterative solvers such as 
CG and BiCG methods, multigrid methods, which are 
generally accepted as the fastest numerical methods for the 
solution of elliptic partial differential equations, have also 
been applied to our problems 181. It is particularly successful 
when this technique is used for low-frequency applications. 
Since the matrix structure in the 2D CN-FDTD method is 
similar to the discretized version of Poisson's equation, 
multigrid methods has great potentials to work well for this 
application. Here, the algebraic multigrid method (AMG), one 
of the robust multigrid solution methods, is incorporated into 
the 2D CN-FDTD for low frequency simulation. In Figure 5, 
we show the number of iterations for several iterative 
techniques when they are applied to solve a low-loss 
electromagnetic problem. It is found that the AMG method has 
the least number of iterations. 

Figure 5. Iterative numhers comparison among different 
iterative solvers. 

VI. NUMERICAL EXAMPLES 

skin effects, a spatial resolution of a i  = Q = O.lum is used. 
The total simulation domain is 25untxlSunt and 
the 151mmx101tm metal strip (with conductivity of 
~.oxIo'[I /R])  resides at the bottom of the simulation region. 
The excitation source is 5um above the metal. For the 
conventional FDTD method, the maximum time step size can 
be used is z 9 4 8 ~ 1 0 - ' ~ s .  The skin depths at two frequencies, 
IGHz and 10GHq are investigated. Using the CN-FDTD 
method, the time step size can be much larger than the 
conventional FDTD method. In particular, for IOGHz 
simulation, the time step size used in the simulation is 2500 
times larger than that of the conventional FDTD method and 
for IGHz simulation, the time step size is 25000 times larger 
than that of the conventional FDTD method. In Table I ,  the 
results show the potential feature of the AMG method. As we 
can see from the table, CPU time is reduced by 91.97 % and 
99.08% for IO GHz and IGHz cases, respectively. The 
calculated skm depths at three different frequencies are 
compared with the analytical solution. As we can see from 
Table 2, these results agree well with each other. 

IOGHz IGHz 

Nsteps (CN FDTD) 2500 25000 
CPU Time (FDTD) 1148.70 11549.25 
CPU Time (CN FDTD) 92.28 106.52 ~ 

CPU Time ratio 
(CNFDTDIFDTD) 

Nsteps (FDTD) 1 1 

0.0803 0.0092 

dx=rhi=n I , , ~  

A 

25 urn 

? 

Mur ABC 

' \  

15 urn 

Figure 6. Simulation setup for skin depth calculation. 

To demonstrate the efficiency of AMG method in 2D CN- 
FDTD scheme, two numerical experiments are given. Table 2 Theoretical and Simulated skin depth (unit: m) 
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The second example considered here is the cross-talk between 
two traces on a substrate. The geomem of this simulation is 
shown in Fig. 7. Three traces, with a height of 1.9 um and a 
width of 5 urn, reside on a silicon substrate that has a relative 
permittivity of 11.8 and conductivity of 10 S/m. The spacing 
between traces is also 5 urn. 

Excitation Receiving fields 

4 b 

35 urn 

Figure 7. Geometry for the cross-talk simulation 

The excitation voltage between the two left conductors is one 
voltage and the source frequency is at IO GHz. From our 
truncation error and dispersion error analysis, a time step size 
that is 8733 times larger than that of the conventional FDTD 
method can be used. The calculated electric field distribution 
(in logarithm scale) by the CN-FDTD method is shown in Fig. 
8. This result agrees well with the result obtained form the 
conventional FDTD simulation. However, it should be noted 
that for such a simulation, the conventional FDTD method 
requires %Se4 seconds while the CN-FDTD method only 
requires 2.6e3 seconds. The CN-FDTD method has reduced 
the CPU time by a factor of 30. Our experience shows that if 
one simulates the same structure at lower kequency region, 
the CPU time for the CN-FDTD method will remain almost 
unchanged while the CPU time for the conventional FDTD 

Figure 8. Field distribution obtained using the CN-FDTD 
simulation. 

0-7803-8443-1/04/$20.00 0 EEE 

method will be increased proportionally to the inverse of the 
excitation frequency. 

VII. CONCLUSIONS 

A numerical technique is proposed for VLSI 
interconnects/substrate simulations. This technique is based on 
the application of the AMG technique to improve the 
computational efficiency of the unconditionally stable CN- 
FDTD method. Through rigorous mcat ion and dispersion 
error analysis, a guideline on using this technique is presented. 
Numerical simulations demonstrate the efficiency and the 
accuracy of this proposed algorithm. 
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