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Convergence Properties of the Waveform Relaxation Method as Applied to 
Electric Power Systems 
M. L. Crow, M. D. IIiC, J. K. White 

Massachusetts Institute of Technology 
Cambridge, MA 

Abstract 
In this paper several theoretical results pertaining to  the ap- 
plication of waveform relaxation t o  the simulation of power 
systems are presented. 

1 Introduction 
The interest in using power system simulation for real-time 
applications has sparked much research in techniques for fast 
and accurate simulation of the effects of faults in large power 
systems[l] [2]. T h e  simulation of power systems usually in- 
volves numerically solving large stiff systems of ordinary dif- 
ferential equations (ODES) subject to  algebraic constraiiits [l]. 
A recently developed algorithm for such problems, waveform 
relaxation(WR), shows promise as an  efficient technique for 
power system simulation. In this approach, the ODE and 
algebraic system is broken into subsystems which are solved 
independently, each subsystem using guesses about the behav- 
ior of the state variables in other subsystems. Waveforms are 
then exchanged between the subsystems, and the subsystems 
are resolved with, hopefully improved, information about the 
other subsystems. This process is continued until convergence 
is achieved. 

Although W R  has not proved to  be as  effective for circuit 
simulation, for which it was originally developed, as hoped, 
the algorithm may perform better on power system simula- 
tion problems that,  under certain assumptions only, can be 
modeled as ODE’s in normal form. Therefore, the commonly 
experienced difficulties in applying W R  to the VLSI circuitry, 
due in part t o  floating capacitance, are not anticipated. In this 
paper we investigate some of the theoretical issues, and exam- 
ine some simple examples, t o  try to  characterize the behavior 
of WR when applied to power systems simulation problems 
that can be cast into ODE’s in normal form. In the next 
section we start  by briefly describing WR, in Section 3 we 
present a generalization of some convergence results for diag- 
onally dominant systems, in Section 4 we examine a model for 
a slightly unstable power system, and in Section 5, we inves- 
tigate the numerical stability of multirate integration. Lastly, 
coiiclusions and acknowledgment are given in Section 6. 

2 The WR Algorithm 
The transient behavior of a large coupled system of generators 
and loads can be reasonably well described by a large coupled 
system of ordinary differential equations i. = f(z,t) z(0) = 
zo where z, E W” is the state corresponding to the power 
system dynamic model pair [6i w,] which are the rotor angle 
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and angular speed of the it* generator respectively. The power 
system dynamic model is 

bi = w, - w, (1) 

Lj, = -(Pm, -E?gii 
1 

Mi 
n 

-Ei  Ej(bijsin6;j + y;jcos6,j)) ( 2 )  
j#i 

for i = 1, .  . .,n, where 6;j = 6, - 6 j , w ,  = 377radians per 
second, M ,  is the inertia constant, P,“, is the mechanical in- 
put per unit (constant), EiL6i is the  constant voltage behind 
transient reactance, and b,j,g,, are the elements of the re- 
duced admittance matrix. T h e  loads are represented by pas- 
sive impedances. In particular, this “classical” model gives a 
good approximation for the behavior of the system during the 
“first swing”, which is of the order of one second following a 
fault in a typical power system. 

To solve the ODE system with the W R  algorithm, the sys- 
tem is usually first partitioned intosubsystems, where the sub- 
systems are are selected so tha t  tightly coupled state variables 
are in one subsystem. fn particular, decompose the system 
into m subsystems as 

i.1 = fl(zl,z~r...tzrn,t) z1(O)= l l0  (3)  

i.m = fm(z~,+?,...,zmrt) z,n(O) = zmo (4) 

where z, E R”., n, = n, and f, : Rn - R”.. To shorten 
the notation, let f , ( ~ ~ ) ~ , z ~ ~ ~ + ’ , t )  G ~,(.:,...,.1;-,,.~”,+f + 
l . . . ,& , t ) .  This notation is used below to  describe the the 
Gauss-Jacobi W R  algorithm applied to  solving (4). 

Algorithm 1 - Gauss-Jacobi W R  Algorithm. 
k b 0 .  
Guess some zp(f) on [0, T]  such that ~ “ ( 0 )  = z,(O). 
repeat { 

. k + - h + l .  
for each (i E (1, .., m}) solve on (0, T ]  
if+’ = f i ( . i ~ ~ , Z + + l ,  t )  ”t+1(0) = q ( 0 )  (5) 

) until (IIzk - zk-’ll 5 6 )  

3 Diagonally Dominant Systems 
It has been shown [3] tha t  the W R  algorithm applied to (4)  
will converge over any finite interval to the solution of the 

CH2692-2/89/0000-1863 $1.00 0 1989 IEEE 

(217) 333-4789 rurtiicr imvrrnarivn can ~e oDraineu rrom ut-. w.  hennern JenKins. 



differential system for any initial guess which is consistent with 
the initial conditions, and this convergence has been shown t o  
be superlinear[4]. These general convergence results are based 
on the same mechanism as the Picard iteration convergence, 
and predict a very nonuniform type of convergence. T h a t  is, 
each iteration of the relaxation process may only correct the 
solution in a short interval, where the size of the interval is 
inversely related to the Lipschitz constant of f ,  1. Clearly 
for stiff systems, where by definition the time interval is large 
compared t o  the inverse of I ,  this bodes ill for the efficiency of 
WR. 

If the system exhibits its stiffness on the diagonal, in a sense 
we will be specific about. zll,rtly, it can be shown that the WR 
algorithm is a contraction i t 1  the I ,  norm on the space of func- 
tions (0, T]  -+ 92". Several results of this type have appeared 
previously [7], but a stronger result is presented below which 
applies to  nonlinear block-partitioned problems, and is based 
on very simple proof given in the appendix. 

Theorem 1 If, for the i terat ion update equations in (5), the 
inner product 

((z; - y ~ ) , " ( ~ i ' o : z ' ' ' , t )  - f i (Y"O,Y'J,  t ) ) )  < 0 (6) 

when ll(z: - y f ) l l z  > (1 - c)llznQi - yn!,llz where z,,i z 
(11, ..., zi-1, zi+l, ..., x , ) ~  and c is  a positive number less than 
1, ihen ( 5 )  represenis a contraction tn  a uniform norm.  Thai  
zs, for any y o ( t )  and ~ ' ( 1 )  which sat isfy  the initial condi t ions 
of (4) 

Tna+ic{,, . ,rn)maztIIzi' - ~ t l l z  

L (1  - r)ma+i€tl,...,rn)ma+tIIz: - Y:IIZ. 

((2; - y ; ) ,  ( f i ( Z ' J ) , Z i , l ,  1 )  - f l (Yi .0 ,  y'" 1 t ) ) )  

(7) 
In addi t ion,  t f  (6 )  holds for c 1 0, and in addi t ion if f o r  any 
x , y  there ezis ts  some  li such that 

< I{[II(z; - Y ; ) ,  (2; - Y ! ) I I ~  - IKzP - Y P ) ,  (27 - Y ! ) I I Z ' ]  (8) 

W R  is still  a contraction on a n y  finite interval [O,T], 

m a z i € { l ,  ,rn)mazt€[O,T]llzt - Y:llZ 

5 y(T)rnaz ic I l , .  ,rn)maztc[o,gIIzf - Y , ' I I z  (9) 
where y(T) < 1. 

It is easy to  see where the condition in (6) stems from by 
viewing one equation out of the partitioned system in (4), 

(10) 2 .  I - - f i ( 2 1 t z 2 , . . . , z r n , t )  Z i ( 0 )  = zi,,, 
as an  independent differential equation with m- 1 inputs. The  
condition i n  (6) says simply that with respect t o  zi ,  fi is so dis- 
sipative that maztllzi(1)ll2 can never come closer than 1 - c of 
c;=l , j# ,  ?nPzt112jllz. Or, loosely, the gain from the s u m o f t h e  
inputs, zj, 3 # t ,  to  the output,  zi, is less than 1 - e .  Finally, 
in the case where r = 0 the gain from C ~ = l , j # i m a z l l l z , l l z  
to llzill2 is still strictly less one on any finite interm1 if ( 8 )  
IS satisfied. Although odd-looking, the condition in (8) just 
insures that the upper bound is approached like a decaying 
exponential. 

For a system i = f (z ,  1 )  to satisfy the conditions of The- 
orem 1 depends both on the characteristics of f ,  and how it 
is partitioned. For example, if for all 2, the Jacobian of f ,  
J j ( z )  = v, is diagonally dominant with negative diagonal 

entries, and the system is partitioned into scalar equations, (G)  
and (8) will be satisfied. In addition, c > 0 if Jj(z) is strictly 
diagonally dominant uniformly in x. The  condition in ((I) will 
not necessarily be  satisfied if this same system is partitioned 
into blocks. In the diagonally dominant case just  described, 
this is an  a n  artifact of the conditions of the theorem. The re- 
sults of Theorem 1 are still true regardless of the partitioning 
in this diagonally dominant case, but the authors could only 
find a very specific and slovenly proof which we omitted so as 
not to  try the reader's patience. 

4 Investigation of Unstable Systems 
T h a t  WR is a contraction in a uniform norm for problems 
tha t  are diagonally dominant suggests that  slight perturba- 
tions from this case might still converge reasonably uniformly. 
This is not necessarily true as can be demonstrated by exam- 
ple. Consider the following 2x2 example that is intended to be 
a rough approximation to  the structure of an unstable power 

Note that this problem is nearly diagonally dominant with 
negative diagonal elements. When c = 0, system (11) can be 
thought of as representing equivalent power system dynamics 
in its stable mode, provided a < 1. Parameter c # 0 is in- 
tended to reflect dynamic instabilities which could be caused 
by either low voltages or short circuits. 

The  WR algorithm was used to  compute the solution to  (1 1) 
on [O,T] with initial condition z(0) = [l O]*,c = 0.03, and 
initial guess zy( t )  = zi(O),i = 1 , 2 , t  E [0,100). This initial 
guess for the solution contains errors in the fast mode of the 
system, and as can be seen from the graphs of the WR iterates 
for z1 in Figure 1, the iterates converge very nonuniformly to 
the unstable solution. In Figure 2, the initial condition is 
z(0) = [l 1IT and the iterates converge in a more uniform 
manner because the errors in the fast mode have been "killed 
off" initially. This is a key aspect of WR, that  in a practical 
sense the interval over which there is some uniformity in the 
convergence is partly a function of the errors in the initial 
guess, and can not be entirely predicted by examining system 
properties. 

Given a linear time-varying system of the form 

n 

ii = - d i i ( t ) z i ( t )  + nij(t)zj(t)  + ui(t) (12) 
j # i  

where i = 1 , .  . . , n  and d i i ( t )  > 0 Vt E [0, q, it is possible to 
find an  estimate a t ' ,  the size of the interval over which the 
WR algorithm will be a contraction in the I ,  norm. 

Theorem 2 I f  di,(t) < 0, f h e n  (12) ts a contraction tn a 
uniform norm on the f in i t e  interval  (0, t ' ]  where 1' I mini{t:] 
and 

where d,i = m i n [ o , ~ ~ d , , ( t )  and y is the contraction factor. 

Our example indicates that the t' estimate in Theorem 2 
is accurate in predicting the performance in the first situa- 
tion, predicting a small window during which time the effect 
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of tlie stilliiess would die out,  and the remainder of the simu- 
lation could choose larger windows over which the WR would 
converge in a more uniform manner. In the second case, how- 
ever, the t’ estimate would be overly conservative. Thus,  this 
t’ estimate is a lower bound on the window size for uniform 
convergence. 

5 Multi-rate Instability 
A major advantage of the W R  algorithm is that  as the dif- 
ferential equations are solved in a decomposed fashion. This 
implies tha t  if discretization methods are used to  solve the 
independent differential equations the time steps used by the 
subsystems can be selected fairly independently. Applying this 
philosophy leads naturally to  two questions: does the relax- 
ation still converge, and if i t  does converge, does the resulting 
mu1 tira te integration met hod inherit the stability proper ties 
of the integration method used for the decomposed systems. 
The convergence properties of discretized W R  algorithms have 
been discussed elsewhere [5], and in this section we will try t o  
connect W R  convergence and multirate stability 

Even a carefully iniplemented backward-Euler based multi- 
rate integration method does not necessarily inherit the A- 
stable properties of backward-Euler. As an example, consider 
the multirate backward-Euler algorithm with linear interpola- 
tion applied to  a 2x2 system i. = Az. T h e  discretized equa- 
tions are 

z,l:t + mh) = z l ( t )  + m h ( a l l t l ( t  + mh) + alzzz(t + mh))  

where 1 5 k 5 m, which reduces t o  the usual backward- 
Euler algorithm if m = 1. Note that this is precisely the 
inult i-rate integration algorithm tha t  would be produced by a 
convergent discretized WR process. To analyze the region of 
absolute stability for the multirate method, Gaussian elim- 
ination is used to  reduce the above equations to  the form 
x ( t  + mh) = M(m,  h ) x ( t ) .  

The region of absolute stability for the multirate integration 
metliod is then those values of m and h for which the eigen- 
values of M ( m ,  I t )  < 1 .  If in = 1 ,  which is regular backward- 
Euler, then if the eigenvalues of A have negative real parts, 
M( 1, h) < 1. However, tha t  is not true for all m. In particu- 
lar, if 

-1  1 
A = [ -0.54 0.5 ] 

The eigenvalues of A are -0.1, -0.4, and M(100 , l )  has eigen- 
values of -0.23 and 2.01, thus the multirate algorithm is un- 
stable. 

One justification for the multirate instability can be seen by 
considering solving the  2 x 2 system above with the A as in 
(15) using the W R  algorithm. In that case the iteration equa- 
tions become 3; = -2: + 2i-l and 3; = 0.52; - 0.542:-’. 
Note that the subsystem of 2 2  is unstable with its “eigenvalue” 
being greater than zero, even though the system as a whole 
is stable. The  eflect on the W R  iterates will be that unless 
the initial guess is almost tlie exact solution, the iterates will 
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never converge with any uniformity over long intervals. Con- 
trast this with the example in Section 4, which was unstable 
but in which the subsystems where stable, and in certain cir- 
cumstances, the W R  algorithm converged uniformly. Power 
systems often exhibit this latter characteristic. Typically, a 
group of generators, which act  as a unit going unstable with 
respect t o  the entire system, will remain stable with respect 
to  the other generators within the unit. In this scenario, one 
would expect the W R  algorithm to be  an  efficient method of 
simulation. 

We finish this section with theorem that makes a weak 
connection between the stability of a multirate integration 
scheme, and the convergence of WR. In particular it suggests 
that  when partitioning a system it is very important to insure 
the subsystems are stable. 

Theorem 3 I f  a stable linear system of the form of ( 4 )  IS such 
thai when the W R  algorithm t s  applied t o  solving the system, 
the aterates contmci an a uniform norm, and if the decom- 
posed subsystems are stable and are iniegrated with an A-stable 
method, and finally, i f  the dascrete sequences produced by nu- 
mencally iniegmiang the W R  iteration equations converge, the 
compuied solutaon is wiihan 4 tamesiep independeni constant 
iames &Ierr where -y as the coniraciton facior for the relaz- 
ation and Ierr as the mazimum local iruncataon error 

Theorem 3 follows directly from the fact that  when inte- 
grating a stable linear problem, the global error is a timestep 
independent constant times the maximum local truncation er- 
ror, and a little reorganization of the triangle inequality. 

6 Conclusions 
In this paper several theoretical results were presented, and 
simple examples examined in order to determine the suitabil- 
ity of W R  for transient power system simulation. This exam- 
ination has led to  two practical suggestions that can easily be 
satisfied for power systems. T h e  first is to break the simula- 
tion interval into sections, the first of which should be narrow 
and be used to kill off errors in the initial guess that activate 
the stiff modes. The  second is to  partition the system into 
subsystems that are stable, as this not only aids convergence 
but insures multirate numerical stability. 

The  authors would like to  thank Resve Saleh, Peter Sauer, 
M. A. Pai, and John Wyatt  for several very valuable discus- 
sions. 
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7 Appendix - Proof of Theorems 
The lemma and its corollary below contain the key result for 
t he  proof. 

Leiriiiia 1 GiUeii 

i . ( t )  = f ( + ( t ) ,  Y(0, t )  4 0 )  = 09 (16) 

where z ( t )  E R", y ( t )  E R" and f : R" x 9"' x %  --. Rn is  uni- 
formly Lipschitz continuous with respect to I, y and piecewise 
coiitiiiuous with respect to  t .  Iff IS such that the inner  product 
tnozt(z,f(z,w,t)) < 0 whenever z E %", w E 8"' are such 
t h a t  l lz l l2 > (1 - e)llwllz for some positive 0 5 < c < 1 ,  then 
nlaztllz(t)llz 5 (1 - t)moztllY(t)llz. 

Proof of Lemma 1. 

z(t)*f(z(t), ~ ( t ) ,  t ) ,  or  
Mult.iplying both sides of (16) yields z(t)Ti.(t)  = 

d 
-$lz(t)ll: = z(tYf(z(t)9 Y(t)?t) (17) 

from which it lollows that Ilz(t)ilz is continuous and differen- 
tiable. Suppose 11z(t)115 = A4 > mazt( l  - ~)~11y(t)113. Let i = 
mznt{ l l z ( t ) [ l :  = M). By continuity ofllz\t)ll: there must exist 
a finite interval P-A, t ]  over which Ilz(t)llz is monotonically in- 
creasing. It f o ~ ~ o w s  tha t  i ( i )  = lima+,oJJ- > o 
which contradicts (17). 

Corollary 1 If the assumptions of L e m m a  1 hold, and for 
each z E SR", w E 8"' such that llzll2 5 llwllz, ihere is  ezrsis a 
positive constant  A' such that 

maz, (z ,  f(z, w ,  t ) )  < I~(IIWII; - 11~11:) (18) 

then lor any finate ititerval mazte[o,y111z(t)ilz ss less f h a n  or 
equal lo Y ( T ) , n ~ ~ t E [ o , T ] I I Y ( ~ ) l l ~  where -0) < 1. 

Proof of Corollary 1.  

froin (17) and the assumptions of the corollary 
Corollary 1 follows directly from Lemma 1 if c > 0. If c = 0, 

d 
$lz(t)ll; = &llY(t)ll: - Il~(t)113 (19) 

- .... 
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Figure 2: More Uniformly Converging WR Iterates. 

where fc is the maximum value Ii in (18), which exists as 
z(?*is bounded by Lemma 1. Therefore I lt(t)l l;  5 (1 - 
e- 
Proof of Theorem 1 

To prove Theorem 1, from (5), the difference between WR 
iterations applied to different initial guesses yields 

)rnaztEp,Tllly(r)ll: which proves the corollary. 

i.! - y; = f'(.'!O, &l , i) - fj(Y"0, y'" , t )  z'(0) - y'(0) = 0. 
(20) 

If f j  is such that the inner product ((2: - y:), f,(z'zo, z',', t )  - 
fj(yi*',t))  0 when Il(z: - y:)ll > ( 1  - ()l lznoi - ynoi((  
where z,,, = (21, .... zj-1, z,+l, .... z , ) ~  for any zo, z', yo, y' 
then (20) satisfies the assumptions of Lemma 1, and the result 
follows directly. 
Proof of Theorem 2 

< 

Introducing WR, (12) becomes 

n 

i . f+ ' ( t )  = -djj(t)zf+'(t) + Cnjj( t )z f ( t )  + uj(i)  (21) 
j#i 

By taking the difference between the iteration k+ 1 and k and 
reassembling into matrix form, 116z'++'(t)ll I Ilz'+'(t)-z'(t)ll 
is bounded by 

The equation (22) will be a contraction in a uniform norm i f  
the interval is less than the t' given in (13), thus proving the 
theorem. 
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