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Occupation dynamics of trap states in an a-Si:H thin-film transistor 
J. N. Bullock and C. H. Wu 
Department of Electrical Engineering, University of Missouri-Rolla, Rolla, Missouri 65401 

(Received 23 July 1990; accepted for publication 8 October 1990) 

We calculate the dynamical behavior of a-Si:H thin-film transistors with an emphasis on the 
occupation dynamics of trap states. The appropriate rate equation for the occupation function 
of trap states is included. We show the relations of filling the trap states with the switch-on 
time and of emptying the trap charges with the switch-off time. The occupation functions in 
both cases are non-Fermi distribution. The quasi-equilibrium approximation underestimates 
those two time constants. Thus, transit time theory cannot describe the speeds of transistors 
made from disordered materials. 

1. INTRODUCTION 

In recent years, the hydrogenated amorphous silicon 
thin-film transistor (a-Si:H TFT) has emerged as the lead- 
ing device for driving large-area active-matrix liquid-crystal 
displays.’ In such a flat-panel display, each pixel has one a- 
Si:H TFT that serves as a switch the same way as a crystal- 
line silicon field-effect transistor (FET) is used in a dynamic 
random-access-memory device in connecting to a storage 
capacitor. In a crystalline FET, the switch-on speed is direct- 
ly related to the transit time from the source to the drain 
because the transit time is the figure of merit for establishing 
the conducting channel and hence the steady state of the 
device. However, in a-Si:H TITS, there exists a large amount 
of continuous distributed trap states in the energy gap’ and 
at equilibrium the Fermi level is about 0.5 eV or more below 
the conduction-band edge. Therefore, for every free carrier 
at a given position along the channel, there are at least ten 
more trapped charges at the same position. Within a transit 
time, the number of free carriers accumulated is so insuffi- 
cient that the channel is only weakly formed. As we shall 
show, it takes much more time to firmly establish the con- 
ducting channel. This intuitively explains why a transit time 
is not the order-of-magnitude estimate for the time to reach 
steady state in a-Si:H TFTs. 

In the case of switching off, time reversal holds for the 
crystalline FETs. However, in a-Si:H TFTs, the filling and 
emptying of trap states involve different physical param- 
eters. Thus, the switch-on time depends on the filling rate of 
the trap states and the switch-off time depends on the empty- 
ing rate of the deepest trap states near the equilibrium Fermi 
level or the initial quasi-Fermi level. The emptying and fill- 
ing of the trap states at all locations of the conducting chan- 
nel are the central processes that determine the time to reach 
a steady state, and those occupation dynamics are the em- 
phasis of our investigation. 

The a-Si:H TFT has been studied by many investigators. 
Earlier efforts have been centered around the static charac- 
teristics of the device due to the effects of large bulk band-tail 
states and the importance of the semiconductor-insulator 
interface-state effect.“-14. Dynamic characteristics have 
been analyzed by Matsumura et aZ.‘5v’6 for the “switch-off’ 
case. However, their calculation is based on an inaccurate 

quasi-thermal equilibrium approximation for the occupa- 
tion of trap states, which can also be written as 

f=Cl +exp[(E-qqV+q~n)/kT]}-‘, (1) 
where Vis the electric potential, 4, the electron quasi-Fermi 
level, and E is the energy of the trap state. This approxima- 
tion assumes that occupation function f depends on time 
only implicitly through free-electron density (or quasi-Fer- 
mi level c$, ). As soon as the free-electron density changes, 
the corresponding Fermi distribution is reached immediate- 
ly. As we will show in Sec. III, this underestimates the time 
required to build up or remove the trapped charge and hence 
their calculations reflect a much shortened time required to 
reach steady state. 

The correct time evolution of the occupation function is 
determined by a Boltzmann equation or rate equation, 
where the “collision term” is replaced by the rates of moving 
“in” and “out” of a trap state, as shown by the general theory 
of Simmons and Taylor.” This is discussed in Sec. II, where 
we present the model and the relevant equations. In Sec. III, 
we discuss our results by showing how the switch-on time 
relates to the filling of trap states and the switch-off time 
relates to the emptying of trap states. The occupation dy- 
namics are the central part of such calculations and we pres- 
ent those correct results here for the first time. 

II. PHYSICAL MODEL OF a-Si:H TFT 

The device under investigation is an insulated-gate field- 
effect transistor (IGFET). The model is restricted to a sin- 
gle-gate device, although a similar model could be developed 
for a double-gate IGFET.6 The geometry of the device in our 
model is shown in Fig. 1. The semiconductor layer consists 
of a-Si:H which is assumed to be intrinsic or mildly n type 
with doping concentration ND and the source and drain con- 
sist of a heavily doped n-type a-Si:H. Experimentally it has 
been observed that contacts of nearly all metals with a-Si:H 
are low resistance or ohmic,” so the source and drain inter- 
faces with the semiconductor are assumed to be ohmic. 

The geometric parameters specified in the device model 
are the channel length L, the semiconductor layer thickness 
t,, and the insulator thickness tj. The material parameters 
are the semiconductor doping concentration ND of the chan- 
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FIG. 1. Device geometry of a-Si:H thin-film transistor under consideration. 

nel between the source and the drain, the insulator and semi- 
conductor dielectric permittivity E, and E,, and the semicon- 
ductor’s diffusivity D,. The source contact (at x = 0) is 
taken to be at ground potential. When no voltage is applied 
to the gate, the energy bands are assumed to be flat. When a 
positive-gate voltage is applied, negative charges are pulled 
from the source and the drain and accumulated near the 
insulator-semiconductor interface when a conducting chan- 
nel is formed. In our computational model, current is as- 
sumed to flow between the source and drain contacts (i.e., x 
direction) via majority carriers in the conduction channel. 
Thus the quasi-Fermi level in they direction is assumed to be 
constant. In this approximation, only one-dimensional anal- 
ysis of the current continuity equation is required. 

The two-dimensional Poisson equation can be written as 

a’$ 1 a**- -p, 
ax* ay2 Es 

(2) 

where the space chargep is the sum of free electron n, ionized 
dopant N 2, and trap charges from donorlike states ND (E) 
and acceptorlike states N, (E), so that 

p=q --n+N,t + N,(d[l --f(dId~ 
s 

- s N,(E)f(E)dc , > (3) 

wheref(E,X,t) is the occupation function which is a function 
of gap state energy E, position x, and time t and will be dis- 
cussed later. The donorlike states can be approximated from 
experimental results as 

No(e) = (N,/kT)e(“‘-“““, 
and similarly 

(4) 

NA (6) = (N,/kT)e(‘-“““̂ , (5) 
where E, = 43 meV and E, = 27 meV are used.” 

In the very thin semiconductor layer limit, we assume 
that electric field varies linearly in they direction so that 

$=;(g -$I,> 
=$ 

s s 
+pn ++o+, (6) 

I 
where ps, and ps2 are two interface charges, $G is the gate 
voltage, t, is the semiconductor thickness, and ti is the insu- 
lator thickness. 

This implies that the charge distribution in they direc- 
tion is constant except possibly at the interfaces. In our mod- 
el, there are no charges inside the insulator and the substrate 
layer is floating so that electric field inside is zero. Using the 
dimensionless unit of potential V= q$/kT, we reduce the 
Poisson equation to a one-dimensional ( 1D) equation, al- 
though it still retains the information from a two-dimension- 
al (2D) model. Thus 

a*v -= ---& 
a2 s 

Ncev-E-NDf - s [No(l -f) 

+N,f]dv+-& 
s s I 

where the free-electron density n = N,e’- “, E is the dimen- 
sionless quasi-Fermi level, and 77 = qdkTis the dimension- 
less energy. The interface charges ps, and ps2 are neglected. 

The dynamics of the occupation function for trap states 
f can be appropriately described by a rate equation based on 
Simmons and Taylor’s theory for continuous distributions of 
trap states. ” The occupation of a particular trap level is 
controlled by two opposing processes ofcapture into the trap 
and emission into the conduction band. Thus 

$=02m(l -f, -e& 

where CT is the capture cross section, u is the thermal velocity, 
and e, is the emission rate that is determined by the equilibri- 
um condition so that 

e, = ovN,e”. 

Thus, Eq. (8) is simplified to 
(9) 

df -mNcev-E[l -f(l +e’r-V+E)I, z- 
We note that in the quasi-equilibrium approximation, the 
left-hand side of Eq. (10) is zero and f is then identical to 
Fermi distribution as given in Eq. ( 1). 

If we consider a-Si:H TFT as a unipolar device so that 
generation and recombination effects can be neglected, then 
the time-dependent continuity equation can be written as 

(11) 

where the first term of Eq. ( 11) contains the displacement 
current through the Poisson equation and the total conduc- 
tion current and the electron current, J,,, are identical and 
are given by 

J, = -qD”ng. (12) 

The time derivative of space charge p in Eq. ( 11) can be 
obtained from Eq. (3) to yield the current continuity equa- 
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tion that is expressed in terms of variable E, the quasi-Fermi 
level, and can be written as 

EE+E(?p?E) 

[l -f(l +e”-“+E)]d77 
> 

. (13) 

The simultaneous solutions of three coupled equations of 
Eqs. ( 7 ) , ( lo), and ( 13 ) for variables V, E, andfas function 
of position x and time r are evaluated numerically using im- 
plicit finite-difference equations for the second-order differ- 
ential equations (7) and (13) and a single-step backward 
Euler method for the first-order differential equation (10) 
because the emission rate varies more than 20 orders of mag- 
nitude from top of the energy gap to the bottom. The occupa- 
tion function is further transformed into an exponential vari- 
able and has a uniform mesh in energy while an adaptive 
nonuniform mesh in position is used for Vand E. 

III. RESULTS AND DISCUSSIONS 

Equations (7), ( IO), and ( 13) are solved for VJ and E 
at every point along the source-drain channel for a given 
time t using the following input parameters: 

D, = 0.33 cm’/s, T= 300 K, ND = 10” cme3, 

t, = lo-’ cm, Ti = 10W5 cm, L=2X10e4 cm, 

E, = 11.0, and ei = 3.9. 

In the first example, we show a case when both gate and 
drain-source voltage are turned on simultaneously from 
equilibrium condition. At turn-on voltages of tctDs = 0.25 V 
and $G = 0.5 V, the free-electron concentration is shown in 
Fig. 2 for successive intervals of time. At t = lo- I4 s the 
concentration is almost uniform as in the case of equilibri- 
um. In that interval, the Poisson equation resembles the La- 

0 02 0.4 06 OQ * 

NORMALIZED CHANNEL POSITION 

FIG. 2. Free-electron concentration vs distance for $, = 0.25 V and 
J*, = 0.50 V. Each curve is for a different time: (a) 10 I4 s (b) 10 K’S, 
(c) lo-“s, (d) IO-‘s, (e) IO-‘s,(f) 10.‘s, (g) 10-4stl)steadystate. 

0 02 0.4 06 0.8 I 
NORMALIZED CHANNEL POSITION 

FIG. 3. Charged acceptorlike state concentration vs distance for 
$D,, = 0.25 V and $G = 0.50 V. Each curve is for a different time: (a) 10 - I4 
s,(b) lo-“‘s, (c) 10-‘,(d) lo-‘s, (e) IO-“s, (f) lo-‘s, (g) 10e4sto 
steady state. 

place equation because no appreciable space charge has 
flowed into the channel. However, at t = 10 - 8 s [curve 
(c)l, which is the order of the transit time, the channel is 
only weakly formed, the two peaks in the curve show that 
electrons are pulled in from both the source and the drain 
contacts. This is still far from steady state. At t = 10 - ’ s, a 
uniform channel exists except near the two boundaries. 
However, the free-carrier density is still two orders of magni- 
tude below the steady-state value, which is reasonably 
reached at t) 10 - 5 s [curve (f) 1. From 10 - ’ s on, the elec- 
tron concentration is essentially unchanged. This is distinct- 
ly different from the time-dependent channel formation in 
crystaline FETs. In the switch-on of a-Si:H TFTs, the free- 
electron concentration will increase only in cooperation with 
filling of the trap states. This can be observed from the filling 
of the corresponding acceptorlike states as shown in Fig. 3. 
Note the similarity in the shape of each curve as compared to 
the corresponding free-electron curve in Fig. 2 except that 
the order of magnitude is one higher. The occupation func- 
tion, f( E,XJ), depends on gap state energy as well as position 
x in the channel. At x = 0.23, f(e,t) is shown in Fig. 4 at 
various time intervals. At time t = 10 - I4 s [curve (a) ] ,fis 
almost an equilibrium Fermi distribution. At steady state 
[curve (d) 1, the Fermi level, E,., is shifted about 0.2 eV 
towards the conduction band. However, at the intermediate 
stage, a non-Fermi distribution is obtained. It is evident that 
at t = 10 - 6 s [curve (b) 1, the quasi-equilibrium approxi- 
mation fails to obtain the correct result. If curve (b) is ap- 
proximated by a Fermi distribution with a time-dependent 
E’, the net effect is that higher-energy trap states are filled 
“completely” too quickly. Curve (b) clearly indicates “par- 
tially” filled higher-energy trap states. Thus, the quasi-equi- 
librium approximation grossly underestimates the time to 
reach steady state. In crystalline FETs, the time-dependent 
continuity equation (or dn/dt term) determines the switch- 
on time, which is the order of the transit time because of the 
drift-diffusion mechanism is described in the transport equa- 
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FIG. 4. Occupation function at x = 0.23 for $os = 0.25 V  and I&~ = 0.50 
V.Fachcurveisforadifferenttime:(a) 10-‘4~(b) IO-(‘s(c) 10-‘s(d) 
10 - 3 s to steady state. Energy of 1.72 eV is located at the mobility edge of 
the conduction band. 

tion. In the quasi-equilibrium approximation of Matsu- 
mura, I6 the switch-on time is again determined by the conti- 
nuity equation except that the dn/dt term is affected by the 
presence of a large amount of trapped charges included in 
the Poisson equation. Here, we show that the switch-on time 
is not determined by the dn/dt term, but rather by the df /dt 
term of Eq. ( lo), which is much larger than dn/dt term in 
the continuity equation [or equivalently, the last term on the 
right-hand side of Eq. ( 13 ), which is set to zero in the quasi- 
equilibrium approximation]. Thus, the switch-on time is the 
time of filling all the trap states from the equilibrium Ef up to 
the steady state E,.. A rough estimate can be made by using 
df/dtz:avn( 1 -j). Since ov~4X lo-’ cm-‘/s and n has 

’ -1 x 104 ,o,, I 
,6” I$1 ,,p J ,g ,6’ ,o” %,j’ rc* r6’ to’ lo‘ 100 

TIME ,sed 

FIG. 5. Drain current 1, per unit channel width vs time for tiD., = 0.25 V  
and +G = 0.50 V. 

NORM.4LlZED CHANNEL POSIT’ON 

FIG. 6. Free-electron concentration vs distance for @, = 2.5 V  and $c 
turning on to 5.0 V. Each curve is for a different time: (a) 10 I4 s, (b) 
lo-“‘s, (c) IO-‘s, (d) lo-‘s, (e) 10ehs, (f) IO-‘s, (g) 10-4s, (h) lo-’ 
s to steady state. 

the initial value about 10” cmm3 and the final value of lOI 
cm - 3. Thus the switch-on time is somewhere between 
2.5 x 10 - 3 to 2.5 X 10 - ’ s. Our calculation shows that the 
switch-on time is at least the order of 10 - ’ s as indicated by 
curve f in Fig. 2. A clearer picture of the switch-on time can 
be evaluated through the drain current, ID(t), which is 
shown in Fig. 5. Initially electrons are pulled from the drain 
contact into the channel, thus the current is negative. When 
finally electrons are flowing into the drain contact from the 
channel, the current is positive. Thus, at 10 - 3 s, 1, is more 
or less steady and this time can be considered as the switch- 
on time and we note that this is five orders of magnitude 
greater than the transit time. Wealso note that it is not neces- 
sary to calculate a case with a longer channel to prove this 
effect of occupation dynamics on switch-on time. When a 
longer channel is used, the flat region of the free-carrier con- 
centration curve in Fig. 3 is extended.14 

In the second example, we show a case where the gate 
voltage is turned on to 5.0 V after the drain-source voltage 
has been at 2.5 V for a long time. The voltage drop at any 
given position along the channel except near the boundaries 
is thus about 2.5 V from t = 0 + to the steady state. The free- 
electron concentration along the channel is shown in Fig. 6. 
At t = 10 - I4 s [curve (a) 1, the free-electron concentration 
is essentially at the equilibrium value where a dip at x z 0.98 
indicates the initial condition of tiDs = 2.5 V so that there is 
a very small constant flow of electrons to the drain side. At 
t = 10 - lo s the two peaks of curve (b) near the source and 
the drain indicate that extra electrons are being drawn into 
the channel from the two terminals. At t = lo-’ s [curve 
(c)l, the order of a transit time, the two peaks are now 
merged. Yet this is far from the steady state since we indicat- 
ed, as in the first example, that a large number of electrons is 
required to fill the trap states in order to fill the channel with 
enough free electrons. This is evident at t = 10 - 4 s [curve 
(g) 1, where near steady state is reached. The free-electron 
concentration at steady state is at a constant 5 X lO”/cm - 3 
except near the two terminals. Again, the filling of acceptor- 
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72 

FIG. 7. Occupation function at x  = 0.5 for $, = 2.5 V and $, turning on 
to 5.0 V. Each curve is for a different time: (a) 10 I4 s, (b) 10 ’ s, (c) 
10 ‘s, (d) 10 ‘s, (e) 10 4 s  to steady state. (f) Equilibrium occupation 
function. 

like trap states follows a similar trend as the buildup of free 
electrons except that the amount is one order of magnitude 
higher. The occupation functions at x = 0.5 and x = 0.81 
along the channel are shown in Figs. 7 and 8 for various time 
intervals. In Fig. 7, curves (b) and (c) show the change of 
occupation function from t = 10 - ’ s to t = 10 - 6 s. This 
clearly shows how acceptorlike states are filled “gradually” 
in a totally non-Fermi-distribution-like manner. From 

0.6 

ENERGY GAP W) 

FIG. 8. Occupation function at x  = 0.81 for $,,S = 2.5 V and 11, turning on 
to 5.0 V. Each curve is for a different time: (a) 10 I4 s, (b) 10 ’ s, (c) 
IO ‘s,(d) 10 4s, (e) 10 ’ s  to steady state. (f) Equilibrium occupation 
function. 

NORMALlZED CHANNEL POSrnON 

FIG. 9. Electrostatic potential vs distance for $D, F 0.25 V and ec turning 
offfrom0SOVtozero. (a) 10. “‘s,(b) 10 ‘s,(c) lo-‘s, (d) lo- OS, (e) 
10 - ’ s  to steady state. (f) Voltage before gate was turned off. 

t = 10 - ’ s on, the occupation function is then closer to a 
Fermi distribution. Figure 8 is similar to Fig. 7, except that 
the shift of initial Ef to final E, is larger. Again the gradual 
filling of trap states is the same as in Fig. 7. Note that, in the 
second example, we have considerably increased the applied 
voltages. The behavior of carrier concentrations and the oc- 
cupation dynamics are similar to when the applied voltages 
are smaller, as indicated by the first example. Thus, it is not 
necessary to use high applied voltages to illustrate the simu- 
lated results. 

In the third example, we show a case where initially both 
source-drain and gate voltages are on at tctDS = 0.25 V and 
qGG = 0.5 V, and then at t = 0 the gate is turned off. The 
electric potential at various time intervals is shown in Fig. 9. 
The gradients of the potential near the two terminals are of 
opposite sign, indicating the electric fields needed to remove 
free electrons out of both terminals. The free-electron con- 
centration is shown in Fig. 10. The concentration from the 

IO9 0 0 2 0 1 06 I 

NORMALIZED CHANNEL POSITION 

FIG. 10. Free-electron concentration vs distance for 11, = 0.25 V and $6 
turning off from 0.50 V to zero. Each curve is for a different time: (a) 10 - I4 
s, (b) 10 “IS, (c) IO- ‘s,(d) lo-‘s, (e) 10 -‘s,(f) lo-‘s, (g) 10 -“s, 
(h) 10 ’ s  to steady state. (i) Free-carrier density before gate was turned 
Off. 
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FIG. 11. Occupation function at x  = 0.5 for tiDs = 2.5 V and go turning on 
to 5.0 V. Each curve is for a different time: (a) lo- I4 s, (b) 10 ’ s, (c) 
10-%,(d) lo-‘s, (e) 10-4s, (f) lo-‘stosteadystate. (g) Equilibrium 
occupation function. 

initial state up to t = 10 - I4 s is shown in curve (a). At time 
t = 10 - ’ s [curve (c) 1, the free electrons have dispersed to 
reach both terminals through both drift and diffusion mech- 
anisms. From that time on, the channel is gradually empty- 
ing most of the free electrons as well as the trap charges. This 
is clear from the occupation function at x = 0.5 as shown in 
Fig. 11. Even in the case of emptying traps, the occupation 
function is not Fermi-distribution like as would be in the 
case of the quasi-equilibrium approximation. For example, 
curve (b) at t = 10 - ’ s is not curve (a) by the Fermi-level 
shift. Because trap states at the higher-energy tail are deplet- 
ed faster than the lower-energy states, the curve is “tilted 
up” a bit as compared to curve (a). The time required to 
empty the excess trapped charge is more than t = 10 - 4 s as 
shown in curve (e) . The “switch-off’ time is generally dif- 
ferent from the “switch-on” time in a-Si:H TFTs because the 
switch-on time depends on filling of the trap states while the 
switch-off time depends on emptying of the excess trap 
charges. This is evident by comparing the occupation func- 
tion curves of Figs. 7 and 11. Clearly there is no time-reversal 
behavior between switch-on and switch-off. The filling and 
emptying of those trap states are contained in separate terms 
on the right-hand side of Eq. (8) (first term is filling, second 
term is emptying) and hence will have separate time con- 
stants. The deepest trap state to be emptied in our example is 
at E, = 1.2 eV or about 0.5 V from the conduction-band 
edge. Thus we can estimate the switch-off time by using the 
relation 

df- 
z- - 

OVN, e - (EC- Et)‘y-= _ 1.6x 1()3$ 

Thus, the time constant is of the order of 10 - ’ s. The E,. shift 
is approximately from E, = 1.42 eV to E, = 1.20 eV. Thus 
the sum of two terminal currents, 1, and I,, will reflect the 
density of states at the energy which moves toward E, with 
time. The transient currents collected can thus be used to 
probe the density of states at that small energy range. 

IV. CONCLUSIONS 
We present the correct system of equations to evaluate 

the dynamical characteristics of a-Si:H TFTs. We show that 
the filling and emptying of trap states determine the switch- 
on and switch-off time constants associated with the oper- 
ation of the TITS. The occupation functions are non-Fermi- 
distribution like in both cases. Those occupation dynamics 
of trap states are presented for the first time. By comparing 
those results using the quasi-equilibrium approximation 
with our accurate ones, it is found that a much longer time is 
required to reach steady state if the device is to switch on or 
to reach equilibrium state if the device is to switch off. In our 
examples, those time constants are of the order of 10 - 3 s, 
which are to be verified experimentally. Our calculations 
also show that the transit-time theory with the inclusion of a 
large amount of the trap states is incorrect in evaluating the 
on-off speeds of a-Si:H TITS. 
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