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Two Separate Continually Online-Trained
Neurocontrollers for Excitation and
Turbine Control of a Turbogenerator

Ganesh Kumar Venayagamoorthy, Member, IEEE,and Ronald G. Harley, Fellow, IEEE

Abstract—This paper presents the design of two separate con-
tinually online trained (COT) neurocontrollers for excitation and
turbine control of a turbogenerator connected to the infinite bus
through a transmission line. These neurocontrollers augment/re-
place the conventional automatic voltage regulator and the turbine
governor of a generator. A third COT artificial neural network
is used to identify the complex nonlinear dynamics of the power
system. Results are presented to show that the two COT neurocon-
trollers can control turbogenerators under steady-state as well as
transient conditions and, thus, allow turbogenerators to operate
more closely to their steady-state stability limits.

Index Terms—Continual online training, excitation and turbine
control, neurocontrollers, turbogenerator control.

I. INTRODUCTION

T URBOGENERATORS supply most of the electrical
energy produced by mankind and, therefore, form major

components in electric power systems and their performance is
directly related to security and stability of power system opera-
tion. A turbogenerator is a nonlinear, fast-acting, multivariable
system, and is usually connected through a transmission system
to the rest of the power system. Turbogenerators operate over
a wide range of varying conditions. Their dynamic character-
istics vary as conditions change, but the outputs have to be
coordinated so as to satisfy the requirements of power system
operation. conventional automatic voltage regulators (AVRs)
and turbine governors are designed to control, in some optimal
fashion, the turbogenerator around one operating point; at any
other point the generator’s performance is degraded [1].

Various techniques have been developed to design generic
controllers for unknown turbogenerator systems [2]. Most
adaptive control algorithms use linear models, with certain
assumptions of types of noise and possible disturbances. Based
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on these models, traditional linear techniques of identification,
system analysis and synthesis can be applied to design con-
trollers. However, the turbogenerator system is nonlinear, with
complex dynamic and transient processes, hence, it cannot be
completely described by such linear models. Likewise, for the
design of adaptive controllers, it has to be assumed that the
number of system inputs equals the number of system outputs.
Where necessary, this is achieved by using a transformation to
reduce the dimensions of the output space, with the drawback
that this degrades the description of the system dynamics.
Consequently, the issues of unmodeled dynamics and robust-
ness arise in practical applications of these adaptive control
algorithms and, hence, supervisory control is required.

Artificial neural networks (ANNs) offer an alternative for
generic controllers. They are good at identifying and controlling
nonlinear systems [3]. They are suitable for multivariable appli-
cations, where they can easily identify the interactions between
the inputs and outputs. It has been shown that a multilayer feed-
forward neural network using deviation signals (for example,
deviation of terminal voltage from its steady value) as inputs can
identify [4] the complex and nonlinear dynamics of a single ma-
chine infinite bus configuration with sufficient accuracy to then
be used to design a generic controller which yields optimal dy-
namic system response irrespective of the load and system con-
figurations. Previous publications have reported on the different
aspects of neural-network-based control of generators. Some
have proposed the use of neural-network-based power system
stabilizers to generate supplementary control signals [5]–[7].
Others have considered a radial basis function (RBF) neural net-
work to replace the AVR alone with a single neurocontroller,
using actual values of signals [8], and not the deviation values
of those signals. Others [9]–[12] have reported on a single mul-
tilayer perceptron (MLP) neural network regulator replacing the
AVR and turbine governor.

However, using a single neurocontroller to control two
variables (excitation and steam power) makes it difficult to
achieve good dynamic response for both these variables. This
is a problem with the single continually online trained (COT)
neurocontroller that samples both the excitation and turbine
steam power control input and output variables at the same rate
[10]. This paper presents anewdesign and implementation of
two separate COT neurocontrollers on a single turbogenerator
infinite bus system; one ANN controls the excitation and the
other ANN controls the steam into the turbine with different
sampling rates. In particular, the paper makes the following
new contributions.

0093-9994/02$17.00 © 2002 IEEE
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Fig. 1. Single-machine infinite bus configuration.

1) It shows that the two smaller neurocontrollers achieve
slightly better performance than with the single combined
neurocontroller for a wide range of operating conditions
and system configurations.

2) As a consequence, it is possible to reduce the computa-
tional demand and learning time of the neurocontrollers
for real-time implementation in this manner.

The single machine power system is described next, followed
by the design of the neurocontrollers and then the simulation
results.

II. SINGLE-MACHINE INFINITE BUS SYSTEM

The COT neurocontrollers are designed for and evaluated by
simulation on a specially instrumented 3-kW microalternator
with per-unit parameters typical of those expected of 30–1000
MW generators [10], [13]. It is also equipped with a traditional
governor and excitation controls connected to an infinite bus

, through a transmission line, as shown in Fig. 1. The
microalternator is driven by a specially controlled dc motor
acting as a turbine simulator. The nonlinear time-invariant
system equations for the system in Fig. 1 are of the form

(1)

where contains the nonlinear terms.
Equation (1) is developed from the synchronous machine

equations with the following selected states:

(2)

where the first two states are the rotor angle and the speed de-
viation, the other states are the currents in the, field, and
damper coils. Details of the system equations are given in [11].

The conventional AVR and excitation system are modeled in
state space as a second-order device with limits on its output
voltage levels. The turbine simulator and governor system
are modeled in state space as a fourth-order device so that
reheating between the high-pressure and intermediate-pressure
stages may be included in the model. The output of the turbine
simulator is limited between 0%–120%.

The mathematical implementations of these state-space equa-
tions are carried out in the MATLAB/SIMULINK environment
[11].

Fig. 2. Single-machine infinite bus configuration with two separate
neurocontrollers.

Fig. 3. Two separate neurocontroller architecture.

III. N EUROCONTROLLERS

The ability of neural networks to model nonlinear dynam-
ical systems has led to the development of numerous neural-
network-based control strategies. Most of these strategies are
simply nonlinear extensions of existing linear techniques, such
as direct inverse control [3], model reference adaptive control
[14], predictive control [3], and internal model control [12].
There are a number of successful applications of such ANN-
based controllers (also called neurocontrollers). However, there
are still many unresolved issues relating to their use. Stability
and robustness cannot be guaranteed in general for most ANN-
based controllers, especially if the ANN appears directly in the
control/feedback loop. This is because the mathematical frame-
work for dealing with nonlinear control techniques has not yet
been developed.

The single-machine infinite bus system with the ANN iden-
tifier and the two neurocontrollers is shown in Fig. 2.

This paper presents results with two separate neurocontrollers
that are trained using different sampling frequencies as shown
in Fig. 3.

The ANN identifier is pretrained before the neurocontrollers’
training starts. The details of the ANN identifier training is given
in [4].
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The two neurocontrollers are trained simultaneously. The op-
eration of the architecture shown in Fig. 3 is summarized as fol-
lows.

1) The terminal voltage deviation and speed deviation sig-
nals from their set points for the turbogenerator are sam-
pled at and time delayed.

2) The sampled signals from step 1) are input atto the
excitation neurocontroller, and turbine neurocontroller
and these controllers calculate the damping signals for
the turbogenerator.

3) The damping signals from step 2) are input atto the
turbogenerator and the same damping signals plus the
signals from step 1) are input to the ANN identifier at

.
4) The output of the turbogenerator atand ANN identi-

fier at are subtracted to produce a first error signal
which, via backpropagation at, is used to update the
weights in the ANN identifier.

5) Steps 2) and 3) are now repeated using the same signal
values obtained in step 1), with the ANN identifier
weights fixed, and the output of the ANN identifier
at , and the desired output at , are subtracted to
produce a second error signal at.

6) The error signal from step 5) is backpropagated at
through the ANN identifier and obtained atand with
the fixed weights in the ANN identifier.

7) The backpropagated signals,and from step 6) are
subtracted from the output signals of the excitation and
turbine neurocontrollers, respectively, to produce error
signals and .

8) The error signals at and from step 7) are used to up-
date the weights in the neurocontrollers, using the back-
propagation algorithm.

9) New control signals are calculated using the updated
weights in step 8) and are applied to the turbogenerator
at again, to provide the required damping.

10) Steps 1)–9) are repeated for all subsequent time periods.

The ANN identifier in Fig. 2 is required to produce the error
signals and , which are used to update the weights in the
neurocontrollers. With the use of this ANN identifier, the need
to know the turbogenerator Jacobian is avoided. Also, with the
use of the ANN identifier, the neurocontrollers become adaptive
and, thus, accurately control the turbogenerator under all oper-
ating conditions.

A. ANN Identifier Architecture

The ANN identifier structure is fixed as a three-layer feedfor-
ward neural network with 12 inputs, a single hidden layer with
14 neurons, and two outputs. The inputs are theactual devia-
tion in the input to the exciter, theactualdeviation in the input
to the turbine, theactual terminal voltage deviation and theac-
tual speed deviation of the generator. These four inputs are time
delayed and together with the eight previously delayed values
form the 12 inputs for the model. The ANN model outputs are
theestimatedterminal voltage deviation andestimatedspeed de-
viation of the turbogenerator. The details on the training of the
ANN identifier have been previously published [4].

B. Neurocontroller Architecture

The inputs to the excitation neurocontroller are time delayed
by 20 ms and those to the turbine neurocontroller are time de-
layed by 100 ms. The reason for the choice of a slower sampling
period for the turbine neurocontroller is because of slower re-
sponse of the mechanical system due to its inertia.

C. Desired Response Predictor

The desired response predictor is designed to have the fol-
lowing characteristics.

1) It must be flexible enough to modify the performance of
the turbogenerator.

2) The desired response signal at must ensure that the
turbogenerator is inherently stable at all times. In other
words, the predictor must be stable.

3) The desired response signal must incorporate the effects
of a power system stabilizer.

The optimal predictor is designed on the basis of guiding the
disturbed output variables at, in this case, the terminal voltage
and speed, of the turbogenerator to a desired steady operating
point or set point, in a step-by-step fashion. In other words, a
desired trace of outputs at from to can be predicted,
based on the present and previous values of the outputs at.
Optimal here refers to predictions of the desired response for
the turbogenerator and ensuring its stability over a wide range
of operating conditions. The prediction equation of the optimal
predictor is given in

(3)

are chosen so that any disturbed output
variable always transfers toward the desired steady operating
point, that is, the optimal predictor is always globally asymp-
totically stable. is the value predicted for the next immediate
time step and can be either the terminal voltage deviation

or speed deviation .
In (3), it is assumed that each output variable of the optimal

predictor is a linear combination of the independently predicted
output variables of the dynamic system. The magnitude of the
coefficients, , determines the magnitude of the error signal
between the identifier output and the desired response signal (or
predictor) and, therefore, the magnitude of the error backprop-
agated to the controller to adapt its weights.

If the output is bounded for and

(4)

then a predictor can be designed which forces the turbogener-
ator, by means of the neurocontroller, back to desired set points
[2]. The magnitude of the forcing signal depends on the coeffi-
cients .

The conditions defined by (4) are necessary because it is not
possible to damp the turbogenerator to take up the required set
points if its outputs are unbounded. If (3) does not hold, then the
outputs of the turbogenerator will not return to their set points
after a disturbance. The fundamental assumption made in this
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Fig. 4. �5% step change in the desired terminal voltage (P = 1 pu andpf =
0.85 lagging).

Fig. 5. Rotor angle for�5% step change in the desired terminal voltage (P =

1 pu andpf = 0.85 lagging).

design is that it is possible for a controller to return a turbogen-
erator to its set points after a disturbance. More details on the
design of the desired response predictor are given in [15].

IV. RESULTS

A. Use of Two Separate Neurocontrollers

The dynamic and transient operation of the neurocontrollers
are compared with the operation of the conventional controller
(AVR and turbine governor) under two different conditions:

5% step changes in the terminal voltage set point and a
temporary three-phase short circuit on the infinite bus. The
performance of the two neurocontrollers in Fig. 2 (switches
S1andS2 in position “b”) is compared with that of the con-
ventional AVR and governor controllers (switchesS1 and S2
in position “a”) by evaluating how quickly they respond and
damp out oscillations in the terminal voltage and rotor angle.
Restoring terminal voltage and rotor angle to steady state after
any changes is important for the stability of the power system.

1) Step Changes in the Terminal Voltage Referenceor
(Fig. 2): Figs. 4 and 5 show the terminal voltage and the

Fig. 6. Terminal voltage for�5% step change in the desired terminal voltage
with twice the transmission line impedance as in Fig. 3 (P = 1 pu andpf =
0.85 lagging).

Fig. 7. Rotor angle for�5% step change in the desired terminal voltage with
twice the transmission line impedance as in Fig. 4 (P = 1 pu andpf = 0.85
lagging).

rotor angle of the turbogenerator for5% step changes in the
terminal voltage with the turbogenerator operating at 1 pu power
and 0.85 lagging power factor, and line impedance

pu. The neurocontrollers clearly outperform the conven-
tional controllers.

2) Step Changes in the Terminal Voltage Referenceor
(With Increased Line Impedance):In order to show that the

good conventional controller results of Figs. 4 and 5 depend on
operating conditions, the line impedance is increased to

pu and, thereafter, the previous 5% step change
test is repeated. Increasing the line impedance represents the
case of one of two parallel transmission lines, or part of a ring-
connected power system, being switched out.

The results in Figs. 6 and 7 clearly show that the conventional
controller performance has degraded significantly compared to
the neurocontrollers which give consistently good results even
when conditions change. In particular, the conventionally con-
trolled rotor angle excursions in Fig. 7 are considerably larger
with less damping than in Fig. 5, because these linear controllers
were designed to have good damping characteristic for a system
with different line impedance.
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Fig. 8. Terminal voltage for a 50-ms three-phase short circuit (P = 1 pu and
pf = 0.85 lagging).

Fig. 9. Rotor angle for a 50-ms three-phase short circuit (P = 1 pu andpf =
0.85 lagging).

3) Short-Circuit Test: In power systems, faults such as
three-phase short circuits occur from time to time, and because
they prevent energy from the generator reaching the infinite
bus, it means that most of the turbine shaft power goes into
accelerating the generator during the fault. This represents
a very severe transient test for the controller performance.
Figs. 8 and 9 show the terminal voltage and the rotor angle
of a turbogenerator operating under the same conditions as
in Figs. 4 and 5, and with the line impedance, but with a
temporary three-phase short circuit applied at the infinite bus
for 50 ms at 1 s. The system operating conditions prior
to the fault once again agree with those at which the linear
conventional controllers were designed. The rotor angle perfor-
mance by the neurocontrollers in Fig. 9 is similar to that of the
conventional controllers, but in Fig. 8 the neurocontrollers give
a significantly improved terminal voltage response.

B. Comparison of the Two Separate Neurocontrollers to the
One Combined Neurocontroller

The performance of the two separate neurocontrollers (Figs. 2
and 3) is now compared with that of a single combined neuro-

Fig. 10. Single-machine infinite bus configuration with a single combined
neurocontroller.

Fig. 11. Single combined neurocontroller architecture.

Fig. 12. Terminal voltage for a 50-ms-three phase short circuit followed by a
5% step decrease in the desired terminal voltage (P = 1 pu andpf = 0.85
lagging).

controller. Fig. 10 is similar to Fig. 2 but with only one com-
bined neurocontroller, and Fig. 11 illustrates the single neu-
rocontroller architecture. Details of the design and operation
of this combined neurocontroller are given in [10] and [11].
Figs. 12 and 13 show the terminal voltage and the rotor angle of
a turbogenerator experiencing a 50-ms temporary three-phase
short circuit first at 2 s and then followed by a 5% step
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Fig. 13. Rotor angle for a 50-ms three-phase short circuit followed by a 5%
step decrease in the desired terminal voltage (P = 1 pu andpf = 0.85 lagging).

decrease in the terminal voltage reference for a turbogenerator
operating at 1-pu real power and 0.85 lagging power factor, and
line impedance .

The damping of the system with two neurocontrollers is
slightly better than that of only one combined neurocontroller.
In addition, Fig. 13 shows that both sets of neurocontrollers
clearly outperform the conventional controllers. Although not
shown here, many other test comparisons were carried out at
different power levels, line configurations, short-circuit fault
durations, and disturbance type, and, in all cases, the neurocon-
trollers consistently outperform the conventional controllers.

Using two neurocontrollers instead of one single combined
neurocontroller has the following advantages and disadvantage.

1) The two separate neurocontrollers each use a smaller
neural network (six inputs, eight hidden neurons, one
output, 56 weights) than the single combined neural
network (six inputs, ten hidden neurons, two outputs, 80
weights). The two individual smaller neurocontrollers
compute independently from each other and can be
implemented on separate processors, and use different
sampling rates. In the combined neurocontroller, the
sampling rate is determined by the fastest variable, in this
case, the terminal voltage. Having two independent neu-
rocontrollers allows flexibility in the choice of processor
speeds and precisions.

2) Two separate neurocontrollers with one output each also
allow different learning rates and separate convergence
criteria for each neurocontroller. In a single combined
neurocontroller with two outputs, a common learning rate
applies to both outputs, and a common convergence crite-
rion for the neural network results in different accuracies
of convergence for the two outputs.

3) The only disadvantage of two smaller (low speed) proces-
sors could possibly be a slight increase in cost compared
to a single high-speed processor, but this is negligible in
terms of the overall cost of a power plant.

V. CONCLUSION

This paper has shown that, compared to one single combined
neurocontroller, the two separate COT neurocontrollers, one
to replace the AVR and the other to replace the governor,
perform slightly better, but more importantly allows flexibility
in choosing the neurocontroller architecture learning rates. In
practice, this will translate into reduced computational demand.
The neurocontrollers consistently outperform the conventional
linear AVR and governor, particularly when the operating
condition changes from that at which the linear controllers
were designed. This is to be expected since the power system
is nonlinear and nonstationary. The neurocontrollers allow
the turbogenerator to either transmit more power over longer
transmission lines, and to withstand severe faults for longer
durations than with the conventional controllers. This could
reduce the cost of upgrading existing lines or increase the
power per dollar invested. The successful performance of the
COT neurocontrollers, even when the system configuration
changes, come about because theonline training never stops,
anddeviation signalsare used.
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