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Abstract – Programmable logic controllers (PLCs) have been 

used for many decades for standard control in industrial and 
factory environments.  Over the years, PLCs have become 
computational efficient and powerful, and a robust platform with 
applications beyond the standard control and factory automation.  
Due to the new advanced PLC’s features and computational 
power, they are ideal platforms for exploring advanced modeling 
and control methods, including computational intelligence based 
techniques such as neural networks, particle swarm optimization 
(PSO) and many others.  Some of these techniques require fast 
floating-point calculations that are now possible in real-time on 
the PLC. This paper focuses on the Allen-Bradley ControlLogix 
brand of PLCs, due to their high performance and extensive use 
in industry.  The design and implementation of a neurocontroller 
consisting of two neural networks, one for modeling and the other 
for control, and the training of these neural networks with 
particle swarm optimization is presented in this paper on a single 
PLC. The neurocontroller in this study is a power system 
stabilizer (PSS) that is used for power system oscillation damping. 
The PLC is interfaced to a power system simulated on the real 
time digital simulator. Real time results are presented showing 
that the PLC is a suitable hardware platform for implementing 
advanced modeling and control techniques for industrial 
applications. 
 

Index Terms – Computational intelligence, modeling, 
neurocontrol, particle swarm optimization, programmable logic 
controllers, power system stabilizer. 
 

I. INTRODUCTION 
 

Programmable logic controllers (PLCs) have been used 
extensively in industrial applications for control for decades 
due to their high reliability and robust architecture [1].  The 
newest PLCs have moved past just a robust platform into a 
new realm of high computational power and processor speed.  
These, along with the PLC’s highly expandable layout, makes 
it an ideal platform for far beyond the classical applications.  
These new applications include implementing computational 
intelligence based modeling, optimization and control 
techniques that require fast processing power to be executed in 
real-time.  With the ability to contain analog I/O, the PLC is 
also ideal for interface to real-time simulation hardware, such 
as the real-time digital simulator (RTDS) for power systems 
[2]. 

The RTDS is a custom parallel processing hardware 
platform that allows power systems to be simulated and its 
accessories (controllers, transformers, relays) to be tested in 
real-time [3].  Through the use of analog I/O, power control 
devices can be seamlessly tested as if they were part of the 

physical power system running on the simulator.  This allows 
for the testing of any such control device containing low 
voltage I/O and allows the gauging of this control scheme as a 
legitimate real-world application.  The ability of the RTDS for 
control and protection system testing has been further explored 
in [2].  This makes the PLC-RTDS platform, an ideal platform 
for testing the viability of the PLC as a real-world control 
platform for computational intelligence techniques. In this 
paper, a case study of implementing a controller based on 
neural networks for damping speed oscillations in generators is 
explored [4]. The PLC platform implements the neural 
networks required to realize the adaptive control and these 
neural networks are trained using particle swarm optimization 
(PSO) algorithm [5]. To the knowledge of the authors, 
computational intelligence techniques have not been 
implemented on PLCs which are known to be robust platforms 
for industrial controls. 

Power system stabilizers (PSSs) are used as an auxiliary 
control system to a generator’s excitation system. The purpose 
of the PSS is for power system oscillation damping during 
small and large system disturbances by providing 
supplementary control signals to the generator’s automatic 
voltage regulator (AVR) [6].  The speed oscillations can take 
the form of intra-area and inter-area modes in a multi-machine 
power system: intra area modes form where two or more 
synchronous machines swing together against a comparatively 
large power system or load center and inter-area modes 
involve combinations of many machines on one part of a 
power system swinging against machines on another part of 
the system [7]. 

Advanced power system modeling and control techniques 
have been explored on a wide variety of platforms, including 
digital signal processors (DSPs) and field programmable logic 
arrays (FPGAs), in great detail. However, research has 
neglected the staple of industrial control, the programmable 
logic controller.  The PLC platform is used extensively in 
industry due to its very high reliability and expandability.  This 
expandability includes a wide variety of digital and analog I/O 
modules along with many different communication modules.  
The PLC is also designed with a powerful processor with the 
ability to do real-time control of a wide variety of control 
application [1]. 

This paper demonstrates the potential of PLCs for 
implementing computational intelligence paradigms including 
neural networks and particle swarm optimization in real time 
for modeling and control of synchronous generators in a 
multimachine power system environment. 

This work is supported by the NSF CAREER Grant ECCS # 0348221 and 
US Dept. of Education GAANN funding awarded to Dr. Venayagamoorthy. 
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II. MULTI-MACHINE TWO-AREA POWER SYSTEM 
 

The multimachine power system studied to demonstrate the 
PLC implementation of a conventional PSS and a neural 
network based damping controller (intelligent PSS) is the 
standard two-area four machine power system in Fig. 1 [7].  
This power system consists of two fully symmetrical areas 
linked together by two transmission lines.  Each area is 
equipped with two synchronous generators rated at 20 kV/900 
MVA.  All the generators are equipped with identical speed 
governors and turbines, AVRs and exciters.  Generators G1 
and G3 are both also equipped with conventional PSSs (Fig. 
2). The loads for each area are represented as constant 
impedances and are split between the two areas such that Area 
1 transmits approximately 413 MW of power to Area 2.  Three 
electromechanical modes of oscillation are present in this 
system: two inter-plant/intra-area modes, one in each area, and 
one inter-area low-frequency mode [8].  The parameters of this 
system are given in [8]. Fig. 3 shows the individual controllers 
on generators G1 and G3.  
 

 
 

Fig. 1. Multi-Machine Two-area power system. 
Figure 1.  
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Fig. 2. Conventional power system stabilizer. 
 

 
Fig. 3. Generator G1/G3 control arrangement during the neurocontroller (NC) 

development and NC/CPSS operation. 
 

This power system is a test system commonly used to 
show the effectiveness of controllers in damping slow-mode 
oscillations [7, 8].  This system is implemented in RTDS such 
that the practical implementation of an intelligent PSS on the 

PLC platform can be demonstrated in real-time system.  
Although the system is interfaced to the RTDS simulator, the 
simulations are run in real-time and very closely approximate 
real-world implementations.  This allows the PLC platform 
and designed intelligent PSS to be evaluated as a practical, real 
world, control system as compared to a pure non-real time 
simulation study. 

The conventional power system stabilizer (CPSS) is widely 
used in power systems.  The CPSS is designed using the theory 
of phase compensation in the frequency domain and are 
introduced as a lead-lag compensator.  The parameters and 
time-constants of the CPSS are designed against a linearized 
model of the power system to be controlled.  To have the 
CPSS respond well and damp both intra-area mode and inter-
area mode oscillations, its parameters must be fine tuned for a 
given operating point.  Do to the non-linearity of the power 
systems and being designed against a linear model, the 
designed parameters cannot be guaranteed to work well in a 
practical system as operating conditions change [6].  

 
III. DESIGN OF A NEUROCONTROLLER 

 
The design of the neurocontroller (NC), the intelligent 

PSS, is based on the form used in implementing indirect 
adaptive control.  This layout consists of two separate neural 
networks: a neurocontroller (NC) and a neuroidentifier 
(model).  The diagram for development of the NC is shown in 
Fig. 4.  The training of these neural networks is carried out 
using the PSO algorithm, which is discussed later in this 
section.  The dashed lines in Fig. 4 represent this update to the 
respected neural network.   
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Fig. 4. Indirect adaptive control structure for implementing the NC. 

 
A. Neural Network System Model 

A neural network based model is used in the NC design to 
estimate the speed deviations of a generator in the next sample 
time step.  This model is developed using the series-parallel 
nonlinear auto regressive moving average model [9].  The 
model output at the time step k+1 depends on both past n 
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values of its output as well as past m values of its input.  The 
inputs and outputs of the model are speed deviation of the 
plant (generator G1 or G3) and the output of the 
neurocontroller, and the estimated speed deviations 
respectively.  Here, both n and m are chosen to be 2.  The main 
reason for choosing three time step values is because a third 
order system is sufficient for the modeling the generator 
dynamics for this study.  The model is a multi-layered 
feedforward neural network (Fig. 5) trained using the PSO 
algorithm. The input vector to the model network is X

−
 and 

the estimated speed deviation at instant (k+1) is '( 1)kωΔ + . 
 

 
Fig. 5. Neural network system model structure. 
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B. Neurocontroller 
The neurocontroller is also a multi-layer feedforward 

network trained with PSO algorithm.  The inputs to this system 
are the actual speed deviation and the two previous values of a 
generator and the output of the neurocontroller is the 
supplementary control signal to the AVR, VPSS as shown in 
Fig. 3. The training of the neurocontroller is similar to that 
described in [4]; however PSO is used in lieu of 
backpropagation algorithm. 

 

C. PSO Algorithm 
PSO is a type of evolutionary computing technique.  The 

algorithm is based on the simulation of the social interaction of 
birds within a flock and school of fish.  Being a population 
based search algorithm, a swarm consists of particles which 
are potential solutions to the problem solved or optimized.  
The changes in the particles position in the search space is 
influenced by the past knowledge of the swarm as well as the 
particles own past knowledge of the search space.   

At initialization, each particle is randomly assigned to a 
point in the search space, as well as given a random starting 
velocity.  The particle is then flown through the search space 
with the initial velocity.  The particle is then evaluated as to 
how well it solves the problem at hand; this evaluation is 
called the particle’s fitness.  This is then compared to the 
particle’s memory of its best solution of the problem, the pbest 
position.  If the newest solution is better than the current pbest 
(the current fitness lower than the pbest fitness), the pbest 
position is updated to the current position.  Once all the 
particles have been evaluated the pbest with the lowest fitness 
is compared to the gbest position fitness.  If this pbest’s value 
is lower than the current gbest fitness then the gbest position is 
update to this pbest’s location.  This gbest represents the social 
aspect of the algorithm.  After these updates have been done 
the PSO equations are again evaluated, and take the form seen 
in (5) and (6).  Also, an example of a single particle update can 
be seen in Fig. 6 where: xid(k) is the ith particle’s dth dimension 
current position; x(k+1) is the ith particle’s dth dimension 
position after the PSO update, at the next time step; vid(k) is the 
ith particle’s dth dimension current velocity; vid (k+1) is the ith 
particle’s dth dimension velocity at the next time step; pid is the 
pbest position of ith particle’s; pgd is the groups best position or 
gbest for the dth dimension; w is the inertia weight constant; c1 
and c2 are the cognitive and social acceleration constants 
respectively [5]. 

 
1 1

2 2

( 1) ( ) ( ( ) ( ))
( ( ) ( ))

id id id id

gd id

v k w v k c rand p k x k
c rand p k x k

+ = ⋅ + ⋅ ⋅ −
+ ⋅ ⋅ −

  (5) 

 
( 1) ( ) ( 1)id id idx k x k v k+ = + +  (6) 

 

)(kvw id⋅

))()((11 kxkprandc idid −⋅⋅

))()((22 kxkprandc idgd −⋅⋅
)1( +kvid

 
Fig. 6. PSO particle update process for two dimensional case [5]. 
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IV. PROGRAMMABLE LOGIC CONTROLLER AND REAL-TIME 
DIGITAL SIMULATION PLATFORMS 

 
The PLC platform is a tried and true platform for control 

and automation.  Due to its design, it has many advantages 
over general purpose computer, DSP, and FPGA array based 
control systems.  The PLC is designed to be in an industrial 
environment and is built to withstand this environment which 
can contain electrical noise, electromechanical interference, 
mechanical vibrations, extreme temperatures above 140 
degrees Fahrenheit and non-condensing humidity of 95% [10].  
Other platforms mentioned above would require modification 
to withstand these kind of environmental conditions.  PLCs are 
also highly modular and only require a simple module change 
to add extra features while a complete system redesign would 
be needed with a computer, DSP or FPGA based design.  
Since the PLC executes a single program in a sequential 
fashion it can recover from power failure quickly since there is 
no boot-up procedure, and thus have a larger edge against the 
computer systems [10].   

The PLC platform used in this study is the Allen-Bradley 
ControlLogix 5561 processor along with component rack, 
power supply and analog IO cards.  This line of PLC 
processors and hardware provide the needed processing power 
to execute the control algorithms in question.   

As mentioned before, the PLC control system is interfaced 
to the RTDS.  This simulator allows for the simulation of 
power systems in real-time while connecting auxiliary control 
components to the simulation via analog I/O.  The RTDS and 
PLC hardware test setup for this study is shown in Fig. 7. 

   

RTDS

PLC

Control
signals

Monitoring
signals

RTDS

PLC

Control
signals

Monitoring
signals

 
 

Fig. 7. RTDS and PLC platform laboratory setup showing monitoring and 
control signals. 

 
 
 

V. NEUROCONTROLLER AND PSO IMPLEMENTATION 
 
Neurocontroller development and implementation is 

accomplished in two steps: first the neural network model is 
trained for generator speed prediction and then the 
neurocontroller is trained using the neural network model of 
the system.  Both of these neural networks are trained using 
offline using the PSO algorithm. Offline training is only 
possible due to the computational complexity of the fitness 
function evaluations.  All of the control components, including 
the model, neurocontroller and PSO are implemented in 
structured text PLC programming language using Allen-
Bradley’s RSLogix 5000 programming software.   

In order to train the networks, the speed deviation of each 
generator is communicated to the PLC via the analog channels 
of the RTDS; these channels transmit a voltage from -10 volts 
to + 10 volts.  This speed deviation is also up scaled in the 
RTDS hardware to take full advantage of the 16 bits of 
resolution available in the analog channels and then later 
downscaled back to the original value when received by the 
PLC.  This is done in order to minimize the quantization error 
of the analog channels to maximize the resolution of the 
transmitted signal.  The pseudorandom binary signal (PRBS) 
forced training signal is also transmitted to the PLC in a 
similar fashion.  Both of these values are used to train the 
model and control neural networks. 

The training of the model neural network is accomplished 
by implementing the PSO algorithm in the PLC.  First the PLC 
would capture 25 seconds of speed deviation and PRBS signal 
at 40 Hz sampling frequency.  Then the PSO particles are 
initialized randomly between [-0.1, 0.1].  Next each of the PSO 
particles’ fitness is evaluated.  This is done by applying the 
testing data points captured earlier to the neural network and 
calculating the mean-squared-error (MSE) between the 
identifier output and the speed deviation at the next time step.  
The neural network model’s fitness equation takes the form 
given in (7) and (8).  This MSE is the fitness for each particle 
and is used to update the pbest and gbest values. Once a 
satisfactory solution is attained the controller is trained. 

 
)()(ˆ)( 11 kkkJ GGi ωω Δ−Δ=   (7) 
 

⎥
⎦

⎤
⎢
⎣

⎡= ∑
=

999

0

2)(
1000

1
k

ii kJfitness  (8) 

 
 At the point a suitable model is attained and the training of 
the neurocontroller is started.  Another set of 1000 data points 
are again captured.  For the controller to damp oscillations in 
the system the target speed deviation is set to zero.  The error 
from zero, which takes the form of (9), is then back-
propagated through the model network to obtain a ΔVpss signal 
for all data points.  In order to find the value of ΔVpss, the 
decision error vector of the model networ is found and takes 
the form given in (10).  Next the decision error vector is used 
to find the activation error vector and takes the form given in 
(11).  Finally this activation error is used to find the change inf 
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the inputs of the model network, which contains ΔVpss as given 
in (12) and (13).  This value is then used in the fitness 
evaluation of the neurocontroller.  The neurocontroller fitness 
equation takes the form given in (14).  This is used to evaluate 
each controller (particle) evolved by PSO and is used to update 
the pbest and gbest values.  Two neurocontrollers are 
independently trained for generators G1 and G3. 
 

)1()1(ˆ)( +Δ−+Δ= kkkJ dc ωω  (9) 
 

T
cd VkJke ⋅= )()(  (10) 
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VI. IMPLEMENTATION RESULTS 
 

Experiments have been carried out with the RTDS to 
demonstrate the PLC’s capability as a platform for 
implementing the conventional power system stabilizer (Fig. 
2), the neural network system models and the NCs.  These 
experiments where conducted with 5 different setups: no 
control, CPSS on generators G1 and G3 (parameters given in 
Table I), NC on generator G1 and CPSS on generator G3, 
CPSS on generator G1 and NC on generator G3 and finally, 
NCs on both generators G1 and G3. 

The disturbance that is used to evaluate the performance 
of each of the control systems is a 3-phase fault on bus 7 (Fig. 
1) lasting 10 cycles.   The results of these tests can be seen in 
Figs. 8 to 13.  In Figs. 8 and 9, the blue curve is the system 
response to the 3-phase fault with no CPSS installed.  This 
shows the oscillatory nature of this system due to fault 
conditions.  The second, green curve, illustrate the generator 
speed deviation with the CPSS implemented on the PLC.  This 
shows the performance improvement by the CPSS as 
compared to the no CPSS case.  Figs.10 and 11 shows the 
performance differences between the NC on generator G1 and 
CPSS on generator G3, NC on generator G3 and CPSS 
generator G1, and CPSS on both generators G1 and G3.  In 
these two figures, the blue curve illustrates the speed deviation 
response of the system with CPSS controllers installed on both 
generators G1 and G3.  The green curve illustrates the 
generator speed deviation with an NC on generator G1 and 
CPSS on generator G3.  Finally, the red curve illustrates the 
generator speed deviation with the NC controller on generator 
3 and CPSS on generator 1.  Improved system responses as a 

result having NC over the CPSS is observed.  In the final two 
figures, Figs. 12 and 13, the response the system speed 
deviation response is illustrated between NC configurations.  
The blue curve illustrates the generator speed deviation with 
an NC on generator G1 and CPSS on generator G3.  The green 
curve illustrates the generator speed deviation with the NC 
controller on generator G3 and CPSS on generator G1.  
Finally, the red curve illustrates the system speed deviation 
response with NCs on both generators G1 and G3.  This shows 
the improved system response with neurocontrollers over the 
CPSS.  This yields the best system response for this 
disturbance.  The maximum overshoot and settling time 
calculations are given in Table II.   

 
TABLE I.  

STANDARD CPSS PARAMETERS [11]. 

K Tw 
s 

T1 
s 

T2 
s 

T3 
s 

T4 
s 

VPSSMAX 
PU 

VPSSMIN 
PU 

20 10 0.05 0.02 3.0 5.4 1.2 0.2 
 

 
Fig. 8. Generator G1 speed oscillations after a 3-phase fault without (no 

control) and with CPSS on both generators G1 and G3. 
 

Fig. 9. Generator G3 speed oscillations after a 3-phase fault without (no 
control) and with CPSS on both generators G1 and G3. 
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Fig. 10. Generator G1 speed oscillations after a 3-phase fault with a CPSS on 
both generators G1 and G3, NC on generator G1 and CPSS on generator G3, 

and CPSS on generator G1 and NC on generator G3. 
 

  
Fig. 11. Generator G3 speed oscillations after a 3-phase fault with a CPSS on 
both generators G1 and G3, NC on generator G1 and CPSS on generator G3, 

and CPSS on generator G1 and NC on generator G3. 

 
Fig. 12. Generator G1 speed oscillations after a 3-phase fault with an NC on 
generator G1 and CPSS on generator G3, CPSS on generator G1 and NC on 

generator G3 and NC on both generators G1 and G3. 
 

 
Fig. 13. Generator G3 speed oscillations after a 3-phase fault with an NC on 
generator G1 and CPSS on generator G3, CPSS on generator G1 and NC on 

generator G3 and NC on both generators G1 and G3. 
 

TABLE II.  
MAX OVERSHOOT AND SETTLING TIME CALCULATIONS 

Max 
Overshoot

Settling 
Time (s)

Max 
Overshoot

Settling 
Time (s)

No Control 0.6812% 31.3991 0.6782% 37.9489
CPSS G1 & G3 0.6872% 13.4979 0.6071% 18.8663
IDNC G1 & CPSS G3 0.6883% 12.2537 0.6036% 14.6109
CPSS G1 & IDNC G3 0.6903% 11.1544 0.5841% 11.6800

Generator 1 Generator 3

 
 

VII. CONCLUSION 
 
The programmable logic controller is proposed as a 

research and industrial platform for implementing advanced 
modeling, control and optimization algorithms in real-time. 
The PLC platform is a better and more robust architecture for 
implementing advanced modeling and control techniques, with 
the ability to run on an existing hardware infrastructure in 
industry.  In this paper, the development and implementation 
of an intelligent model and controller on a PLC for damping 
power system oscillations experienced by synchronous 
generator in a power system is illustrated. Computational 
intelligence paradigms - neural networks and particle swarm 
optimization, have been successfully implemented on a PLC in 
a real-time. The PSS case study presented in this paper 
demonstrates the PLC’s ability to perform complex modeling, 
control and optimization. The PLC platform can be extended 
to implementations of intelligent techniques for many more 
applications including control of induction motors, permanent 
magnet synchronous motors, and their fault diagnosis and 
prognostics, and wide area power system monitoring and 
control.  
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