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MILLIMETER WAVE SIGNALS DETECTION BY MEANS OF MONOCRYSTAL 
HEXAGONAL FERRITE ELLIPSOID 

Marina Yu. Koledintseva, Alexander A. Kitaytsev 

Moscow Power Engineering Institute [Technical University) 
Krasnokazannennaya, 14, MPEI, 11 1250, Moscow, Russia, 

Tel. (095)362-7958, Fax: (095)362-8938, e-mail: ko1edGJorc.m 

Frequency-selective ‘panorama’ devices on base of gyromagnetic converters (GC) for detection, 
visualization and measurement of power paraneters of middle and high-intense microwave signals in wide 
frequency band (several octaves) have found application [ 11. 

The principle of the GC operation is based on stable nonlinear resonance effects (SNLREs) at 
ferromagnetic resonance (FMR), taking place in ferrite resonators (FR) at power levels less than that of spin-wave 
instability. At interaction of microwave irradiation and FR with unmodulated resonance frequency (“resonance 
detection”) or modulated resonance frequency (“cross-multiplication”) nonlinear relations between transversal and 
longitudinal components of the FR magnetization vector are evident [ 11. Thus, the longitudinal component and 
envelope of microwave signal, reradiated by the FR, contain information of spectrum power density of microwave 
radiation at the resonance frequency. 

SNLREs have been already studied in crystallographically ‘isotropic’ ferrogarnet FR [2], employed in the 
frequency range of 300 MHz to 30 GHz. Application of prospective hexagonal monocrystal ferrites with large field 
of crystallographic magnetic anisotropy leads to the possibility of the GC design for mm waveband (from 30 to 
200 GHz) without massive external magnets. This paper deals with the analysis of a more general case with taking 
into account both crystallographic HA and form HF anisotropy of HFE as well as its arbitrary orientation of the 
main crystallographic axis B with respect to the constant field of external magnetization Ho. 

Let us consider the HFE to be a single-domain, magnetically uniaxial saturated small (compared to 
wavelength) ellipsoid, For an arbitrarily oriented HFE with arbitrary modulation frequencies the solution of the 
problem is intractable. So we make some simplifications, which correspond to real situation in GC design: (1) 
HA>Ho; and modulation frequency is essentially less than relaxation one (L?car). (2) We consider small angles of 
magnetization vector precession and small deviations of the HFR resonance frequency, CO, << a,,, . 

The HFE resonance frequency can be controlled (‘modulated’) in two ways. One way is the same as used in 
GC with ferrogarnets, that is, ‘field‘ control by altemating current in the microcoil surrounding the FR The second way 
is specific for the HFE, it is ‘angular’ control via deviation of the angle B of HA orientation. 

The resonance frequency of the uniaxially anisotropic HFE with arbitrary oriented crystallographic axis and 
ellipsoid axis in respect to the external magnetic field HO is determined by method of effective demagnetization factors 
(sum of demagnetization tensors of form and crystallography), 

I7 = + lvC 
and the solution of a static problem for the equillibrium magnetization moment MO [3]. 

the resonance frequency at small amplitudes of deviation as following: 
For both “field“ and “angular” resonance frequency control with modulation frequency C2 we can represent 

a, is proportional to the magnitude of bias magnetic field variation h, at “field” control and to the deviation of the 
HFE crystallographic anisotropy field orientation AB at “angular” control. 

The mm-wave magnetization vector components have slowly varying amplitude and phase [4], 

m, =G, cos(at + p a ) , a t  a = x , y  (2) 

where (3) 
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and h, , hy are components of mm-wave field (for instance, mode Hlo in rectangular waveguide), each component of 

the HFE susceptibility tensor xup written in Cartesian coordinates in 9-component form with Landau-Lifshits 

dissipation term 1.3, 51, contains real and imaginary parts, A, = x ,  Xq - X, x W .  
The amplitude G, can be expanded into Fourier series, 

, I, I! , 

Lo 

G, = gt I 2 + C < g z  cosnat + f,* sin nnt) (4) 
n=l 

Harmonics of the envelopes of mm-wave signals, coupled by the HFE into the waveguide (transfer and 
reflection coefficients), also carry information on the input power at the certain frequency. They are determined via the 
HFE representat on as an elementary magnetic dipole radiating into the waveguide, using the technique of eigenwaves 
and the solution of ‘self-matched field’ problem [3]. Then the nodulation coefficient of the transferred wave 
approximately is [4], 

Q 0.5(*)2(G,h2xm + G,h’ym), N ( 5 )  

where V,  is ferrite resonator volume, N is the main wave norm, hxm,>,, are amplitudes of the mm-wave magnetic field 
components. 

Spectra of G,, determine the spectra of modulation coefficient Q. The form of the modulation coefficient 
harmonic amplitudes versus the relative detuning a=(w-w)/6coincides with the form of correspondent harmonics of the 
susceptibility tessor components and with the forms of analogous dependencies for the ‘isotropic’ case [2]. The 
harmonic amplitudes almost linearly increase with the normalized amplitude of modulation q=w , /R growth at low 
modulation fieqaency R Amplitudes of the harmonics in the envelope of the transferred signal are proportional to the 
intensity of the input signal. They also depend on the HFE physical parameters: anisotropy field, relaxation frequency, 
orientation, value of the extemal field of magnetization, waveguide path parameters, point of the HFE placement in the 
waveguide, etc. Maximum amplitude of any harmonic is achieved at certain combination of Ho and angle of orientation 
0 for the ferrite with given HA. Computations for the spherical HF resonator (which has the only resonance response due 
to the only main magnetostatic type of precession) show that at the ‘field’ control maximum modulation depth on the 1- 
st harmonic of modulation frequency corresponds to the ‘zero’ orientation, 6=0. And at the ‘angular’ control with the 
fixed *angular deviation the optimum angle of Orientation this ang!e lies in the interval 30-70 degrees [6]. 

Now let us assume the HFE to be excited by the modulated mm-wave signal having the following 
components of the magnetic field 

h, = h,, (1 + Q )  C O S ( W ~  + 0) 
h, = hym (1 -t Q)  sin(ot + a) ’ 

where Q(t), @ ( t )  -modulated amplitude and phase, correspondingly. 
Since the variation of the M, follows from the geometry of the problem (see [5]): 

m,2 + m: 

2Mo 
AM, = COS8, , (7) 

then taking into account the relation between mm-wave components ma amd ha via susceptibility 
we get E induced in spiral microcoil with the constructive coefficient Z : 

where 
(ww,a)’ +(uMW1)2 +(WOM c O S e M ) ’  

gx = (UW,  - w2(1 + a ”)’ + (wa(u, +U2))‘ ’ 

tensor voltage, 

This output voltage has resonance character and reaches maximum at the FMR by choosing corresponding 
external field of magnetization and angle of orientation. The voltage increases with the reduction of the parameter 

~ 
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a, i.e. with the decrease of the HFE FMR width line. If the signal is non-modulated, the voltage is equal to 0. If the 
signal has amplitude modulation 

Q(t) = mcosnt ,  

then the voltage E contains the 1-st and the 2-nd harmonics of the modulation frequency, because 

Q’ (1 + Q) = -SZm sin SZt + (m2Q2/2) sinuZt, 

and with the increase of the modulation frequency the voltage rises linearly (in the limits of ‘quasistatic’ 
approximation at relatively low modulation frequencies). With the growth of the modulation depth m the amplitudes 
of the voltage harmonics also increase: the first one - linearly, the second one as a square. 

There is no dependence upon the phase of nun-wave signal, because of the square-law relation between the 
longitudinal and transversal components of the magnetization vector. Harmonics of the voltage contain information 
on the mm-wave power at the certain frequency. These results coincide with the solution of the same problem for 
‘isotropic’ ferrite at low frequency and depth of modulation [2]. 

The processes of modulation and demodulation considered above lay the principles of design of an 
automodulation measuring system on HFE with feedback on the intermediate fkequency and narrow-band amplifier in 
the feedback loop. This system operation and analysis (choosing the elements of the feedback loop, amplitude and phase 
relations in the circuit, threshold power level of signal detection, analysis of the generations zones width versus input 
microwave power) and experimental results on getting zones of generation are described in our paper [7]. 

The device has a number of advantages in comparison with the conventional GC and cascade junction of the 
GC with the crystal detector in mm-waveband high sensitivity (IO” W), high selectivity, due to the automodulation 
comparable to that realized in the GC on base of YIG resonators with narrow line width, about 5 MHz), larger linear 
dynamic range (about 50 dB), independence of the output voltage amplitude on the input power, leading to better 
measurement reliability. Tolerance control and power measurements become more reliable. The described system 
application reduces strictness of demands to the preselectors at the input of mm-wave measuring devices and thus 
eliminates difficulties connected with the technology of their production. 
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