
127Tecnura Vol. 18 No. 40 pp. 127 - 142 abril - junio, 2014

Key words: Development, Domain-Specific Languages, Languages, Meta-Metamodel,
Metamodel, Model-Driven Development, Model-Driven Engineering, Model, Models,
Software

A brief introduction to model-driven
engineering
Introducción breve a la ingeniería dirigida por modelos

vicente García díaz

Engineer Informatic and Doctor in Computer Science. Researcher in University
of Oviedo, Spain.
Contact: garciavicente@uniovi.es
edward rolando núñez valdez

Engineer Informatic and Doctor in Computer Science. Researcher in University
of Oviedo, Spain.
Contact: nunezedward@uniovi.es
Jordán Pascual esPada

Engineer Informatic and Doctor in Computer Science. Researcher in University
of Oviedo, Spain.
Contact: pascualjordan@uniovi.es
B. cristina Pelayo García Bustelo

Engineer Informatic and Doctor in Computer Science. Researcher in University
of Oviedo, Spain.
Contact: crispelayo@uniovi.es
Juan manuel cueva lovelle

Engineer Informatic and Doctor in Computer Science. Researcher in University
of Oviedo, Spain.
Contact: cueva@uniovi.es
carlos enrique monteneGro marín
 Engineer Informatic and Doctor in Computer Science. Researcher in Universi-
dad Distrital “Francisco José de Caldas”, Colombia.
Contact: cemontenegrom@udistrital.edu.co

Fecha de recepción: 18 de mayo de 2013 Clasificación del artículo: revisión

Fecha de aceptación: 27 de agosto de 2013 Financiamiento: Universidad de Oviedo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Distrital de la ciudad de Bogotá: Open Journal Systems

https://core.ac.uk/display/229168725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

revisión

128128 Tecnura Vol. 18 No. 40 abril - junio, 2014

ABSTRACT

The software crisis is a concept that has started
to be used in 1968, at the first conference orga-
nized by the North Atlantic Treaty Organiza-
tion (NATO) on software development. There,
Edsger Dijkstra criticized that projects were not
completed in compliance with the classic triple
constraint of project management (scope, time
and cost), since most of them do not reach the
expected requirements, are delivered out of time
or exceeds the expected cost. Unfortunately, the
current reality is that while there have been pro-
posed new methodologies aimed at solving the
usual problems related to software development,
there is still no reliable method to estimate the
development of computer systems. This work in-
troduces the Model-Driven Engineering approach
that, according to the experts, will help to solve
many of the problems that thousands of software
development teams have daily worldwide.

RESUMEN

La crisis del software es un concepto que comen-
zó a utilizarse en 1968, en la primera conferencia
organizada por la Organización del Tratado del
Atlántico Norte (OTAN) en el desarrollo de soft-
ware. Allí, Edsger Dijkstra criticó que los proyec-
tos no se completaban debido a la clásica triple
restricción de la gestión de proyectos —alcance,
tiempo y costo—, ya que la mayoría de ellos no
alcanzaban los requisitos previstos, se entregaban
fuera de plazo o superaban el costo esperado. Por
desgracia, la realidad actual es que; si bien se han
propuesto nuevas metodologías destinadas a la
solución de los problemas habituales relacionados
con el desarrollo de software, todavía no existe un
método fiable para estimar el desarrollo de los sis-
temas informáticos. En este artículo se presenta el
enfoque de Ingeniería Dirigida por Modelos que,
según los expertos, ayudará a resolver muchos de
los problemas que miles de equipos de desarrollo
de software tienen a diario en todo el mundo.

Palabras clave: desarrollo, desarrollo dirigido por modelos, ingeniería dirigida por
modelos, lenguajes de dominio especifico, meta-metamodelo, metamodelo, modelo,
modelos, software

* * *

INTRODUCTION

The increasing complexity of software develop-
ment (Royce, 1970) is becoming a more impor-
tant problem. It is mainly because customers and/
or end users demand progressively more sophis-
ticated software, with fewer errors, with more ca-
pacities and shorter development cycles (Groth,
2004) —last generation video games (Aguaded-
Gómez, 2011) or systems capable of maintaining
or managing multinational companies with thou-
sands of employees (Roche, 1992)—.

Additionally, due to its rapid expansion, comput-
er systems have become necessary and customary
in almost all domains or professional areas that

currently exist (Butler, 2006). This fact, although
it is very positive from the economic point of
view, can create certain problems such as devel-
opment teams become experts in a particular field
and later have to make another project in another
different area, with the consequent adjustment
period needed. In addition, there are many tech-
nological platforms, which mean that companies
have to find experts on a specific platform o even
people who can be adapted to develop software
for different platforms, requiring time to learn
and manage properly. All this, suggests that the
development could be much more optimized if
we can reuse not only part of the code that is gen-
erated daily for the different platforms, but also
reuse the expertise in a concrete domain, and not

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

129

only the personal experience, it would be interest-
ing to incorporate the expertise that others have
being acquired in the domain during the past of
time (Caldiera and Victor, 1991).

Thus, to perform the increasingly complex soft-
ware development challenges, we can consider
hiring more staff. However, much better than in-
creasing the number of developers, would be to
increase the production capacity through the in-
dustrialization of software, an idea that has been
around since 1968 (Mcilroy, 1968), exactly the
same way other sectors have done. For example,
the automotive sector, which has gone from pro-
ducing cars using traditional methods to making
cars in an automated way because of people like
Henry Ford and his famous Ford Model T, which
dates from 1908.

Nevertheless, the software engineering continual-
ly offers new tools that, used properly, can assist
in the difficult task of developing effective and ef-
ficient software. Thus, during the last few years, it
has appeared a new approach for software devel-
opment called Model-Driven Engineering (MDE)
(Kent, 2002), which raises the level of abstraction
of the traditional languages through the use of
models, allowing the use of concepts closer to the
domain of problems.

The evolution of MDE is, from the point of view
of the leading experts in the area, one of the keys
to guide the way forward for the software devel-
opment in the coming years. Thus, the remainder
of this document shows the most important and
basic aspects concerning MDE. This paper gives
an overview of model-driven engineering, stating
the origin through applications in business and the
main underlying concepts used to perform software
development projects following its principles.

THE TRADITIONAL PROBLEMATIC IN
SOFTWARE DEVELOPMENT

Enterprise applications have always been prone
to problems during their development (Dijkstra,

1972). Below is a list of common problems, list
that has not changed over the years, and that is the
main motivation of the emergence of MDE:

 ● Generally, there is a poor quality in the soft-
ware developed (Kan, 2002).

 ● Software does not meet the specifications
(Jones, 2006).

 ● Projects conform neither to the schedule nor
to the budget (Putnam and Ware, 1991).

 ● Maintenance becomes expensive when the
project grows in size (Banker et al., 1993).

Possible causes of the above problems could in-
clude isolated development, monolithic software,
low level abstraction languages, immature soft-
ware development processes and increasing de-
mand for software in society (Greenfield, 2004).

Need for automation in software
development

The way to avoid the above and other problems is
automating software development as much as pos-
sible. It can be said that the change has not been yet
done in the computer science field, but is gradu-
ally taking steps such as the appearance of design
patterns (Gamma et al., 1995), specifications, stan-
dards (Petrie, 1998), frameworks (Johnson, 1997)
and languages, allowing among other things:

 ● Partially automate the development process.

 ● Find the best ways to solve the problems usu-
ally faced by developers.

 ● Search for homogenous ways to perform tasks
in order to improve the maintenance and the
interoperability of applications.

At first glance it may seem simple: a software
project begins when someone has a problem and
it is necessary to solve it. It needs to capture what
the customer needs and implement it.

revisión

130130 Tecnura Vol. 18 No. 40 abril - junio, 2014

What happen most often? The customer indicates
his wishes and the person in charge of collecting
the specifications to implement them does not use
a formal language, but even though the software
systems are implemented and carried out.

What would be the most convenient? It should be
interesting to use some formal language to proper-
ly collect the customer specifications as a potential
early stage in the development and the automation.
For this purpose software models are used.

 Levels of abstraction in software
development

The emergence of software models is inevita-
bly linked to the different generations that have
emerged over the years in terms of programming
languages, these generations are: first generation
languages —machine language—, second gen-
eration languages —assembly language—, third
generation languages —procedural languages—,
fourth generation languages —object-oriented
languages—, fifth generation languages —aspect
oriented languages— (Elrad et al., 2001).

At this point, we could talk about a sixth gen-
eration of programming languages, programming
languages based on software models. However,
this idea can be understood more easily from an-
other classification, based on the level of abstrac-
tion of languages. For this purpose, some levels
have been classified:

 ● Languages of low level abstraction

They include machine and assembly language.
They are very close to the way computers work
because they work directly with the hardware,
hence their low level of abstraction.

 ● Languages of middle level abstraction

They are halfway between the low level and the
high level of abstraction languages. For example,

the C language can perform low level operations
like working with the system registers but it can
also carry on other tasks of higher level by using
more complex constructors.

 ● Languages of high level abstraction

They are hardware independent languages and
thus can be migrated from one machine to an-
other easily by using translators and interpreters.
Through these languages, there is no need for
knowing the internals of the machine with which
we are working. The most popular languages
nowadays as C# or Java have a high level of ab-
straction design. The key is to use concepts closer
to the problems —e.g., a Car class for working
with cars— and avoid, as far as possible, using
terms related to computers which have a too low
level of abstraction.

The more level of abstraction there is, the more
productivity we have. That is so because, in addi-
tion to use terms much closer to the way humans
communicate among themselves, it is possible
to use more sophisticated instructions. The last
major leap that increases the productivity and the
quality of software development, thus raising the
level of abstraction, is the appearance of MDE,
also known as Model-Driven Development
(MDD) or Model-Driven Software Development
(MDSD). It is considered a new paradigm in the
field of software engineering. It is based on the
separation of the system functionality being de-
veloped and the implementation of such a system
for one specific platform, i.e., we seek to clearly
separate the analysis from the implementation de-
tails. To achieve that, different software models
are used.

According to Selic (2008), they are two types of
complexities in the software development pro-
cess: essential complexity, innevitable and due to
the problem to be solved, and arbitrary complex-
ity, due to the tools and methods used during de-
velopment. MDE serves to alleviate the arbitrary

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

131

complexity, rising the level of abstraction and
avoiding lexical, syntactic and semantic prob-
lems with the different programming languages
that exist and will exist in the future. A key point
is that increasing the level of abstraction through
the use of models, we can collect the specifica-
tions of the customers using a formal language.

MODELS AND DIAGRAMS FOR
SOFTWARE CONSTRUCTION

The word model has several meanings, among
which can be highlighted the following:

 ● Set of extracts of a system under study (Se-
idewitz, 2003).

 ● Simplification of reality (Selic, 2003).

 ● Set of formal elements which describe some-
thing that is being developed for a specific
purpose and can be analyzed using various
methods (Mellor et al., 2003).

It could be said that models have historically been
used to represent and validate systems before the
superior effort involved in making the entire sys-
tem directly. Examples of models can be the plans
of a building or a car design prototype. As desir-
able features of models (Selic, 2003), the follow-
ing can be highlighted:

 ● Cheap. It seems logical to think that the main
feature that models should have is that they
are much cheaper than the systems they rep-
resent, both in economic terms and in the time
necessary to build them.

 ● Accurate. Models should represent correctly
and precisely the real systems, because other-
wise they would be worthless.

 ● Comprehensible. Obviously, a model is use-
less if it is expressed or represented in a con-
fusing or difficult to understand way for those
who should use it.

Regarding software, there is much confusion
about the difference between a model and a dia-
gram; therefore the two concepts are often used
interchangeably, when in fact they do not mean
the same. A model is a system abstraction of the
real world that captures a view (a system can have
multiple views). So, the model describes concep-
tually those aspects of the system that are rele-
vant from their point of view, with an appropriate
level of detail. A diagram, on the other hand, is a
graphical representation of a collection of model-
ing elements; very frequently depicted as a graph.
A very well-known example of diagram is the
class diagram of the Unified Modeling Language
(UML) (OMG, 2010), used to graphically repre-
sent the concepts of the class model —classes,
inheritance, attributes, etc.—, capturing the static
view of a software system. According the experi-
ence of others authors as (Seidewitz, 2003), one
can say that main goal of MDE is to develop soft-
ware based on models.

BASIC CONCEPTS ON MODEL-DRIVEN
DEVELOPMENT

A key concept to work with models is the
metamodel. Figure 1 shows an example. We can
create a model of a formula 1 through different
techniques —e.g., a prototype, a plan, etc.—.
Such a model will represent a real world element
—in this case a F1—. Typically these two ideas
would be enough but from the theoretical and
practical point of view of MDE, it is necessary to
discuss the concept of metamodel. How we can
build models? The answer is that we need other
items, with a higher level of abstraction that are
basic building blocks to create models. For ex-
ample, to create a wooden model we would need
trees, screws, power tools, etc. The peculiarity of
all these elements is that they would be placed at
the metamodel level and they serve to create not
only the model of a F1, but many other models
—that is, other prototype models in this case—.

revisión

132132 Tecnura Vol. 18 No. 40 abril - junio, 2014

Figure 1. Need for models and metamodels

Source: own work

The idea of the need of a metamodel is not re-
cent. In (Kotteman and Konsynski, 1984) it is
shown that at least there are necessary four levels
of instantiation to integrate the modeling into the
evolution of the computer science systems (figure
2). In fact, MDE is based on the four-layer archi-
tecture defined by the Object Management Group
(OMG) (OMG, 1989).

Figure 2. Four-layer architecture of MDE

Source: own work.

Figure 3, shows the four-layer architecture (or
levels) that are used as a reference in the MDE
context:

 ● M3 level (Meta-metamodel). The M3 level
defines the concepts, the attributes and the
relationships for the elements at level M2,
whereas the elements placed at level M2 are
the instances of the elements at level M3. In
this level, OMG has defined a language that is
used to describe all the elements at level M2,
called Meta-Object Facility (MOF) (OMG,
2011). It can be said that MOF is the standard
used as the root of all the model-driven devel-
opments.

 ● M2 level (Metamodel). In this level there are
defined the elements of the model at level
M1. In the case of a metamodel such as UML
(OMG, 2010), it is possible to cite examples of
concepts that are in this level as ‘Class’, ‘At-
tribute’ or ‘Association’. The level M2 defines
the valid elements in a specfic model at level
M1, whereas the elements placed at level M1
are the instances of the elements at level M2.

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

133

 ● M1 level (Model). In this level there are
defined, for instance, concepts as ‘Client’,
‘Purchase’ and ‘Book’ and their attributes
‘Direction’, ‘Name’, ‘Number’, ‘Title’, etc.
The M1 level defines the classifications of
the elements at level M0, whereas elements
placed at level M0 are the instances of ele-
ments at level M1. An example in this level
would be a class or a use case model.

 ● M0 level (Reality). There are two different
approaches to describe this level. The most
common is that in this level there are instances
of models of M1, as for example ‘Car’ objects
instantiated using a programming language.
The other approach, the newest, states that
‘Car’ objects are not instances, but elements,
cars in this case, of the real world (Atkinson
and Kühnes, 2003).

Figure 3. Modeling spaces

Source: own work.

Modeling spaces

Any element can be taken as a model if it is an
abstraction of the real world. For example, a hotel
prototype represents a hotel; therefore the proto-
type is a model. Considering the layered archi-
tecture defined by OMG, the elements used to
create the prototype such as wood or glue would
be the metamodel and the elements used to cre-
ate the wood or the glue would form the meta-
metamodel. In this case, the meta-metamodel is
also called the super-metamodel (Gasevic et al.,
2006) because it is the highest layer of the archi-
tecture. However, other architecture may have a
greater number of levels.

In fact, UML was initially a super-metamodel
but to create other metamodels compatible with
each other, it was necessary to place MOF above
UML. We have also to take into account that the
prototype model may be an element of the real
world because it can be touched, but still its role
in the four-layer architecture of this example is to
be the model of a hotel (its role depends on the
context).

It can be said that a model represents real world
things because it acts on their behalf and a model
conforms to a metamodel because the metamodel
defines how a model can be. A modeling space
(MS) is any modeling architecture based on a
super-metamodel. Figure 3 shows only two ex-

revisión

134134 Tecnura Vol. 18 No. 40 abril - junio, 2014

amples, but there would be so many examples as
one can imagine.

The most typical example is the MOF MS, in
which MOF is used as the super-metamodel. Be-
low MOF would be, among others, UML and the
Ontology Definition Metamodel (ODM) (OMG,
2009), and below them would be respectively
UML models and ODM models. MOF is the
standard meta-metamodel of the software indus-
try with respect to the model-driven engineering.
Note that there are so many tools to create cre-
ate metamodels under the MOF guidelines. Such

metamodels are the basis for working under the
MDE approach.

Another example, different from the standard,
could be to use the Extended Backus Naur Form
(EBNF) (Essalmi and Ayed, 2006) as a super-
metamodel to define context-free grammars. Be-
low EBNF would be the different languages such
as Java, Visual Basic, C, C++, C# or XML, and
in the M1 layer there would be the software pro-
grams that are the models of the reality represent-
ed in that particular modeling space.

CONCEPTUAL SPACE
Figure 4 shows the most important and basic concepts with respect to MDE.

Figure 4. General concepts of MDE

Source: own work

Domain

To work with MDE it is necessary to always
fix a specific domain, which delimits a field of
knowledge. That is the reason why it could be
desirable to create an ontology of the domain
concepts. There are two types of domains: tech-

nological domains, concerning the development
of software technology (e.g., ASP.NET, Java,
PHP) and professional domains, concerning the
concepts that the application will handle (e.g., a
management application, an e-commerce Web-
site, etc.). The domains can be subdivided into
smaller domains.

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

135

Metamodel

The metamodel is used to describe, in a computer
environment and in a formal way, the most rele-
vant concepts that the domain have. Furthermore,
it is essential to automate the software develop-
ment (Frankel, 2003).

Meta-metamodel

For metamodels to be reusable, interoperable and
portable there must be another metamodel in a
higher level of abstraction, uniquely describing
the concepts used to represent any metamodel in
any domain. The meta-metamodel is the compo-
nent that performs this function. It has the pecu-
liarity that it defines itself.

Abstract and concrete syntaxes

The metamodels are composed of an abstract
syntax and a static semantics. The abstract syn-
tax focused on the conceptual elements whereas
the concrete syntax focuses on how to represent
the concepts. From that it can be deduced that a
metamodel would have one (or more) invariant
abstract syntaxes but there would be some con-
crete syntaxes to represent the same concepts.

The abstract syntax of a language specifies its
structure, i.e., the constructors, their properties
and the connectors that such a language may
have. Generally, there are also defined language
rules in the metamodel, avoiding the wrong prac-
tice of code generators having to validate the
models. This is because if anomalies are detected
first, it will be easy to perform the task of other
components.

The concrete syntax of a language is needed to
define the specific notation which will be used for
users of the language. Ideally, each domain and
language concept is mapped to a specific nota-

tion. For example, it could be possible to use a
graphical notation (like UML) or a textual nota-
tion (like Java).

Static semantics

The static semantics of metamodels are based on
the abstract syntax and its mission is to make se-
mantics checks on models to ensure they are well
constructed.

Domain-specific language

A domain-specific language (DSLs) (van Deurs-
en et al., 2000) is meant to express adequately
the concepts of a domain. It consists of one or
several metamodels —usually one—, one o more
concrete syxtaxes —typically one—, and often a
tool that supports it to enhance usability. A DSL
is simply a defined language used specifically to
address a specific problem in a concrete domain,
being the key to any domain specific solution.
The DSLs are often called modeling languages.

Formal model

With all the infrastructure defined so far, we can
talk about formal models, which are the starting
point from which it is possible to automate trans-
formations to entities of lower level of abstrac-
tion —e.g., from a model we could automatically
generate an application developed in C#—. For-
mal models are instances of the metamodels and
are represented by a concrete syntax. Moreover,
they also have to respect the static semantics that
the metamodel has to perform coherent structures
within a domain of knowledge.

Semantics of the problem space

The semantics of a DSL refers to all the concepts
of a model, which have a meaning because ev-

revisión

136136 Tecnura Vol. 18 No. 40 abril - junio, 2014

ery time an item is included in a model, what we
are doing in reality is enriching it semantically.
Unlike what happens with general purpose lan-
guages, through the use of DSLs we can map the
concepts of a language directly to concepts of the
domain that is being modeling, without the pos-
sibility of misinterpretation. The semantics of a
DSL should be well documented or be intuitive
enough for creators of models to know what con-
cepts they are using in the problem space. That is,
it is important to associate the elements of a lan-
guage with the corresponding domain concepts.

DOMAIN-SPECIFIC MODELING

When there is some experience in software devel-
opment, it is easily observed that many problems
encountered during development arise repetitive-
ly. Furthermore, in many times, such problems
are related to a concrete domain of knowledge.
To give solution to those concrete problems, it
is commonly used a General Purpose Language
(GPL) such as Java or C, or it can be used a DSL.

Fundamentals of domain-specific modelling

From the concept of DSL (van Deursen, 1997),
we can also talk about Domain-Specific Mode-
ling (DSM), which has its origin in the existence
of many similar software developments for the
same domain of knowledge, that have a common
part and a variable part —sometimes the common
part does not exist—. The common part can be
developed using traditional development tech-
niques and the variable part could be created us-
ing a DSL designed for a specific domain, thereby
increasing the productivity. An example could be
food traceability applications, in which all could
share a commmon execution engine and a single
database, but should be adapted to the manufac-
turing process of different foods like cheeses or
meats. If the variable portion of the software is
based only on the different manufacturing pro-

cesses, it might be appropriate to create DSL to
define them.

Both the concepts of DSM and DSL are essential
to work with MDE. The basic idea is to create
languages especially designed to solve a prob-
lem in a very specific domain, allowing language
constructs to be very close to the concepts of the
domain. To unify the common and the variable
features of the software, there are two possible
approaches:

 ● Interpretative. The common part has an in-
terpreter to process the variable items. Thus,
flexibility is achieved but it has drawbacks
such as the obvious loss of performance and
the difficulty to debug applications.

 ● Generative. The common and the variable
parts are compiled together to build the solu-
tion as a whole. It is more complex to be done
but it avoids the disadvantages of the inter-
pretative approach.

Note that it is not always necessary to work with a
fixed and a non-fixed part. It is possible that some
tools can generate software ready to be used with-
out the need of any additional element.

Classification of the domain-specific
languages

There are some classifications to organize DSLs
regarding their properties, emphasizing the two
which are presented below:

From the point of view of managing the lan-
guage

According the management of the language, it is
possible to work with textual and graphical lan-
guages. Most computer languages are textual and
are composed of an ordered set of sentences. A
very well-known example is the Structured Query

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

137

Language (SQL) (Date and Hugh, 1987) to work
with databases. It could be possible to create tex-
tual DSLs in several ways. The first one would
consist on building a grammar, for example us-
ing the Backus-Naur Formalism (BNF) (Knuth,
1964) for the language and then creating or us-
ing a parser for the grammar -Yacc (Johnson,
1975), Bison (Donnelly and Stallman, 1992) or
Antlr (Parr, 2007) are tools that serve to gener-
ate a parser- with the difficulty that this implies.
Another simple way to create a DSL may be using
a XML, with the consequent syntactic limitation
but with the advantage of the existence of a large
number of tools for working with XML. What re-
ally matters if we want to work with MDE is that
the DSL should be based on a formal metamodel.

In recent years, graphical languages are gaining
wide acceptance. As an example we can cite UML.
Creating a graphical language can be considered
analogous to creating a textual language, with the
difference that instead of working directly with
text, it is necessary to create mappings from the
graphical notation. Almost all the graphical DSLs
have a notation consisting of several connectors
and simple shapes that are the basis for creating
more complex elements. A graphical DSL has a
metamodel composed of classes that represent
a concept of the domain —typically mapped as
figures in their diagrammatic representations—,
and relations among classes —typically mapped
as connectors—. There will also have constraints
used to check if the diagrams that represent the
models are valid. Another important concept is
serialization, which is necessary to keep all the
elements of the diagrams in a persistent way,
being advisable to do that in a format that pro-
motes interoperability as XML.We should add
that works like (Tolvanen, 2008) mention the ex-
istence of other types of DSLs, such as the mix
between graphical and textual notations, tables,
forms, trees, etc.

From the point of view of the domain problem

According to the point of view of the domain
problem, languages are classified into horizontal
and vertical types:

Horizontal DSLs are used when the customer that
will use the software does not belong to a specific
industrial sector. An example is a DSL to gener-
ate user interfaces in desktop applications such
as Windows Forms in the Visual Studio develop-
ment environment.

Unlike with horizontal DSLs, customers that
use vertical DSLs belong to the same industrial
sector. An example may be a hypothetical DSL
to build the variable part of the food traceability
software discussed above.

Requirements of a domain-specific language

There are several requirements that are necessary
(Kolovos et al., 2006) to build a DSL.

Interested parts

The people interested (stakeholders) in the devel-
opment of a DSL are the following:

 ● Engineers. They are the responsible for
choosing or developing a DSL, needing to be
people with a high capacity for abstraction.

 ● Customers. They are needed when the DSL
domain exceeds the computer science field, as
they provide information that they know bet-
ter than anyone else.

 ● Developers. They are those who typically use
the DSL during the development stage. In ad-
dition, they also perform other tasks includ-
ing configure or integrate the software.

revisión

138138 Tecnura Vol. 18 No. 40 abril - junio, 2014

Limits

It is very important to identify which part of the
system will be created with a DSL and what part
will not. That is, what part will be developed us-
ing a GPL and what part is more likely to be done
through the use of a DSL.

Features

There are many features that are very important in
the development of a DSL:

 ● The language elements must correspond to
the domain concepts which they intend to
represent.

 ● Each language element is used to exactly rep-
resent only a concept of the domain.

 ● There should be tools to work with the lan-
guage.

 ● The DSL and the tools which support it must
be able to interoperate with other languages
with minimal effort.

 ● The DSL and the tools which support it must
be able to be extended with additional ele-
ments.

 ● There should be a temporary justification for
creating a DSL so that it is profitable. It is
because it may not be appropriate to create a
DSL that is only valid for a very small period
of time.

 ● The language should be as simple as possible
to represent the domain concepts.

 ● There should be provided mechanisms to cre-
ate quality systems as, for example, pre and
post conditions.

 ● The scalability, although it is a desirable fea-
ture, it is not a strictly necessary requirement

because there can be DSLs intended only for
a very small system.

 ● For obvious reasons, the usability of the lan-
guage is also a very desirable feature.

Advantages and disadvantages of the use of
domain-specific languages

According to (Cook, 2007), there are many ben-
efits from the use of DSLs, among which are the
following:

 ● With a DSL is much less likely to make errors
in the representation of a problem domain
than using a general purpose language.

 ● Working with the terms of a specific domain
facilitates understanding of models that rep-
resent the software to people who are not
experts in the technologies of software devel-
opment.

 ● When working with models expressed us-
ing DSLs, such models can be validated at
the same level of abstraction as the problem
space, which means that errors can be detect-
ed in an earlier stage.

 ● Models could be used to simulate the outputs
of the solutions that will be created.

 ● When capturing knowledge in a specific do-
main of a model, it is much easier to perform
migrations between different technologies.

 ● Domain-specific languages usually provide
a domain-specific application programming
interface (API) to manipulate models and in-
crease their productivity.

However, if you think about creating a DSL from
scratch to solve a particular problem, we should
consider some factors that can affect the final
decision: time, cost, extra difficulties, additional
documentation or preparation of the development
team.

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

139

Therefore, it will be necessary to consider in each
case when it is worth creating and using a DSL,
or when it is not worth the cost and effort neces-
sary. Such a study is not trivial and is the subject
of multiple researches.

Full realizations of the MDE vision may not be
possible in the near to medium-term primarily be-
cause of the wicked problems involved. However,
the involvement of MDE in software engineering
will provide insights that can be used to signifi-
cantly reduce the gap between evolving software
complexity and the technologies used to manage
complexity (France and Rumpe, 2007).

Required items in the domain-specific
modelling

There are several essential elements to success-
fully create a domain-specific solution (Kelly and
Tolvanen, 2008). Basically, it is used a layered
architecture which can vary depending on each
case, even removing the base or domain frame-
work in certain cases.

The first step is to create a model that conforms
to a metamodel by using a DSL. After that, gen-
erators must obtain the information from models
and generate artifacts (e.g., Java or HTML source
code) from them. The domain framework serves
as an interface between the generated code and
the target platform or environment. In some cas-
es, the relationship is direct and it is not necessary
to add more code than the code generated auto-
matically. In other cases, however, it is necessary
to use a base platform to add code in a way that
all the solutions use a fixed common code previ-
ously created. Base platforms usually receive oth-
er names as architectural framework or domain
framework. Finally, the target environment is the
physical or virtual machine to which we pretend
to develop a system. For example, a target envi-
ronment may be a particular version of the Java
virtual machine.

Some tools for working with MDE

MetaEdit+ (Tolvanen, 2004) is based on the dis-
continued MetaEdit tool (Smolander et al., 1991),
but improves architectural aspects which were
not resolved correctly and increases the scal-
ability and efficiency of the tool. It is possible to
create the metamodel and modeling in a single
environment.

The General Modeling Envitonment (GME)
(Ledeczi et al., 2001) is based on a doctoral thesis
that shows a meta-metamodel to create metamod-
els in the domain of electrical engineering, and a
generic modeling environment that is configured
using some files generated automatically from the
metamodel.

The first version of the Domain-Specific Lan-
guage Tools (DSL Tools) (Cook, 2007) was re-
leased in Visual Studio 2005 SDK 3.0 and serves
to provide new tools to carry out the vision of the
Software Factories by Microsoft. The DSL Tools
are a set of frameworks, languages, editors, gen-
erators and guidelines that facilitate the user to
create its own language and tools for it.

The Eclipse Modeling Project (EMP) (Gronback,
2009) is a project created for the Eclipse integrated
development environment that consist of several
subprojects. It has become the facto standard with
respect to the work under the MDE approach, as
it is used widely in business and universities. The
core of EMP is the Eclipse Modeling Framework
(EMF) (Steinberg et al., 2009), that provides the
basic infrastructure to create metamodels and
tools based on models.

CONCLUSSIONS

The model-driven engineering is the latest impor-
tant addition to software engineering concerning
the improvement on software development meth-
ods. It offers great advantages over the traditional

revisión

140140 Tecnura Vol. 18 No. 40 abril - junio, 2014

development, mainly when working with product
families. However, it also requires extra effort
and a great capacity for abstraction by those who
create the tools so others may benefit from them.
This work has shown some of the main concepts
regarding the model-driven engineering. The
evolution regarding the level of abstraction in
software development or generation of adapted
programming languages is the modelling. At this

moment the tools using MDE are not fully devel-
oped, is why this research area offers several top-
ics to work.

It is important clarify, that this article is result of
the experience of the authors in the topic, inves-
tigations as (Palacios-González et al., 2008) or
(Montenegro et al., 2012) are a samples of our
experience with MDE.

Aguaded-Gómez, J-I. (2011). Children and young
people: the new interactive generations. Re-
vista Comunicar, 18 (36), 7-8.

Atkinson, C. & Kühnes, T. (2003). Model-driven
development: A metamodeling foundation.
IEEE Software, 20 (5), 36-41.

Banker, R. D. et al. (1993). Software complexity
and maintenance costs. Communications of
the ACM, 36 (11), 81-94.

Butler, D. (2006). 2020 computing: Everything,
everywhere. Nature, 440 (7083), 402-405.

Caldiera, G. & Victor, R. (1991). Identifying and
Qualifying Reusable Software Compo-
nents. Computer, 24 (2), 61-70.

Cook, S. et al. (2007). Domain-Specific Develop-
ment with Visual Studio DSL Tools. Boston:
Addison-Wesley.

Date, C. & Hugh, D. (1987). A Guide to the SQL
Standard. Boston: Addison-Wesley.

Dijkstra, E. W. (1972). The Humble Programmer.
Communications of the ACM, 15 (10), 859-
866.

Donnelly, C. & Stallman, R.M. (1992). Bison
1.20: the YACC-compatible parser genera-
tor. Free Software Foundation.

Elrad, T. et al. (2001). Aspect-oriented program-
ming: Introduction. Communications of the
ACM, 44 (10), 29-32.

Essalmi, F. & Ayed, L. J. (2006). Graphical UML
View from Extended Backus-Naur Form
Grammars. Sixth IEEE International Con-
ference on Advanced Learning Technolo-
gies. Washington, USA.

France, R. & Rumpe, B. (2007). Model-driven
development of complex software: A re-
search roadmap. 2007 Future of Software
Engineering.Washington, USA.

Frankel, D. S. (2003). Model Driven Architectu-
re: Applying MDA to Enterprise Compu-
ting. Hoboken: Wiley.

Gamma, E. et al. (1995), Design patterns: ele-
ments of reusable object-oriented software.
Boston: Addison-Wesley.

Gasevic, D. et al. (2006). Model Driven Archi-
tecture and Ontology Development. New
York: Springer.

REFERENCIAS

A brief introduction to model-driven engineering
Vicente García-Díaz / eDwarD rolanDo núñez-ValDez / JorDán Pascual esPaDa /

B. cristina Pelayo García-Bustelo / Juan Manuel cueVa loVelle / carlos enrique MonteneGro Marín

revisión

141

Greenfield, J. (2004). Software Factories: Assem-
bling Applications with Patterns, Models,
Frameworks, and Tools. Hoboken: Wiley.

Gronback, R. C. (2009). Eclipse Modeling Pro-
ject: A Domain-specific Language Toolkit:
A Domain-Specific Language (DSL) Tool-
kit. Boston: Addison-Wesley.

Groth, R. (2004). Is the software industry’s pro-
ductivity declining? IEEE Software, 21 (6),
92-94.

Johnson, R. E. (1997). Frameworks=(components+
patterns). Communications of the ACM,
4 (10), 39-42.

Johnson, S. C. (1975). Yacc: Yet another compi-
ler-compiler: Murray Hill, NJ Bell Labora-
tories.

Jones, C. et al. (2006). Verified software: A grand
challenge. Computer, 39 (4), 93-95.

Kan, S. H. (2002). Metrics and models in soft-
ware quality engineering. Boston: Addison-
Wesley.

Kent, S (2002). Mass-Produced Software Com-
ponents. Third International Conference on
Integrated Formal Methods. London, Uni-
ted Kingdom.

Kelly, S. & Tolvanen, J. P. (2008). Domain-Spe-
cific Modeling: Enabling full code genera-
tion. Hoboken: Wiley.

Knuth, D. E. (1964). Backus normal form vs.
Backus Naur form. Communications of the
ACM, 7 (12), 735-736.

Kolovos, D. S. et al. (2008). Requirements for
Domain-Specific Languages. First ECOOP
Workshop on Domain-Specific Program
Development, Nantes, France.

Kotteman, J. & Konsynski, B. (1984). Dynamic
metasystems for information systems deve-
lopment. 5th Intl. Conf. on Information Sys-
tems. Arizona, USA.

Ledeczi, A. et al. (2001). The Generic Modeling
Environment. Workshop on Intelligent Sig-
nal Processing, Budapest, Hungary.

Mcilroy, D. (1968). Mass-Produced Software
Components. 1st International Conference
on Software Engineering. Garmisch Patten-
kirchen, Germany.

Mellor, S. J. et al. (2003). Guest Editors’ Intro-
duction: Model-Driven Development. IEEE
Software, 20 (5), 14-18.

Montenegro, C. et al. (2012). Generation of meta-
model in Ecore with start point in an ontolo-
gy for learning management systems (LMS).
Journal of Web Engineering, 11 (1), 23-50.

Object Management Group (1989). Available
http://www.omg.org

Object Management Group (2009). ODM 1.0.
Available http://www.omg.org/spec/ODM/
1.0/PDF

Object Management Group. (2010). UML 2.3.
Available http://www.omg.org/spec/
UML/2.3/Infrastructure/PDF

Object Management Group. (2011). MOF 2.4.1.
Available http://www.omg.org/spec/
MOF/2.4.1

Palacios-González, E. et al. (2008). General pur-
pose MDE tools. International Journal of
Interactive Multimedia and Artificial Inte-
lligence, 1 (1), 72-75.

revisión

142142 Tecnura Vol. 18 No. 40 abril - junio, 2014

Parr, T. (2007). The definitive ANTLR reference:
Building domain-specific languages: Prag-
matic Bookshelf.

Petrie, C. (1998). Legislating software standards.
IEEE Internet Computing, 2 (1), 4-5

Putnam, L. & Ware, M. (1991). Measures for
excellence: reliable software on time,
withinbudget. New Jersey: Prentice Hall
Professional Technical Reference.

Roche, E. M. (1992). Managing information te-
chnology in multinational corporations:
Barraclough Ltd.

Royce, W. (1970). Managing the development
of large software systems. Proceedings of
IEEE WESCON, 26 (8).

Seidewitz, E. (2003). What Models Mean. IEEE
Software, 20 (5), 26-32.

Selic, B. (2003). The Pragmatics of Model-Dri-
ven Development. IEEE Software, 20 (5),
19-25.

Selic, B. (2008). MDA Manifestations. The Euro-
pean Journal for the Informatics Professio-
nal (UPGRADE), 44 (10), 29-32.

Smolander, K. et al. (1991). MetaEdit—A flexi-
ble graphical environment for methodology
modelling. Advanced Information Systems
Engineering. Heidelberg, Germany.

Steinberg, D. et al. (2009). EMF: Eclipse Mo-
deling Framework 2.0. Boston: Addison-
Wesley.

Tolvanen, J. P. (2004). MetaEdit+: domain-spe-
cific modeling for full code generation de-
monstrated. Companion to the 19th annual
ACM SIGPLAN conference on Object-
oriented programming systems, languages,
and applications. Vancouver, Canada.

Tolvanen, J. P. (2008). Domain-Specific Modeling
in Practice. MetaCase.

Van Deursen, A. (1997). Domain-Specific Lan-
guages versus Object-Oriented Fra-
meworks: A Financial Engineering Case
Study. Third International Conference on
Smalltalk and Java. Erfurt, Germany.

Van Deursen, A. et al. (2000). Domain-specific
languages: an annotated bibliograph. SIG-
PLAN Notices, 35 (6), 26-36.

