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The Interaction of System Structure, Index, and Numerical Stability
in Classes of Differential/Algebraic Systems

Mariesa L. Crow
Department of Electrical Engineering
University of Missouri-Rolla
Rolla, MO 65401

Abstract

Systems which are difficult to solve numerically have always
been considered to be ill-conditioned and their analysis has
been somewhat neglected. Recent advances in DAE theory
have established that, although high-index DAE systems pose
some interesting challenges, they are not the anathema they
were once thought to be. This paper will present several ex-
amples of DAE systems which arise in power systems and non-
linear circuit analysis and will discuss both the analytical and
numerical challenges these systems pose.

1 Introduction

A differential/algebraic system may be modeled

0= F(i,y1) (1)
where g—’?‘ is singular and %;—1 may or may not be singular. Sys-
tems of differential/algebraic equations (DAEs) of this type
arise in connection with power systems, singular perturbation
theory, control theory, circuit simulations, robot dynamics, and
many other applications in the field of electrical engineering
[1]. Only recently has concerted effort been put forth to find
methods to numerically solve these systems [1]-[4]. Previous-
ly, systems of DAEs were frequently restated as ODEs, often
with considerable difficulty or by destroying the structure of
the problem (i.e., the resulting variables often no longer repre-
sent physical quantities, or the inherent sparsity of the system
is destroyed) [2], but as DAE systems arise more and more fre-
quently, it has become necessary to develop numerical methods
for solving these systems distinct from the traditional methods
for ODEs. If -g% is invertible, this is a sufficient, but not nec-

essary, condition for the system of (1) to be index one. If g—ﬁ'
is non-invertible, the system is said to be of higher index [3].
Difficulties in using ODE methods for solving DAE systems
occur when the systems have index greater than or equal to
two.

Within the power system community this area was recently
reaffirmed as an area of great interest. The application of Km-
iters to mathematical models of physical devices may in some
cases increase the index of the original system, which, in turn,
may introduce numerical instabilities. When an independently
varying state hits or exceeds a predefined limit, the system, in
essence, loses at least one degree of freedom. This may man-
ifest itself as an increase in the index of the system. Most
current circuit simulators are not well equipped to handle such
a change in system structure. The question of how to numeri-
cally simulate such a phenomena is still an open question. This
paper will first discuss the change in the system index due to
the inclusion of a parameter limiter, and will secondly discuss
a numerical instability which may arise when systems of DAEs
are simulated at points near dynamic bifurcation.

2 Limiters and System Index

The simulation of power systems usually involves numerically
solving large stiff systems of differential/algebraic equations of
the form:

F(z,y, 1) )
G(z,y,p) 3)

where z is the vector of states governing the dynamic behav-
ior of the generator, y represents the vector of algebraic vari-
ables describing the behavior of the interconnecting network,
and pu is a vector of time-varying inputs to the system. More
specifically, consider the system shown in Figure 1 where the
generating unit, modeled as a two axis model with an IEEE
type I AVR/exciter is connected to an infinite bus, modeled as
a constant voltage source. The dynamic model and network
equations are given by [5]

z(t) =
0

b = w—uws (4)
@ = (T [By - cbld) Lo - [Ba+ 240 L
-Dw~m0 )
. 1
E; = F— (—Efll - (.‘L‘d - :L‘:i) Iy + Efd) (6)
do
. 1
By = o~ (=Ef4+ (zq - z4) 1) (7
90
Efg = — ("'KEEfd + VR) (®)
Tg
. 1 Kp )
R = — |-R —F 9
;o= (R o ©
. 1 . KsKp
V; = — |-V, KasR¢ ~ E
R Ta ( R+ KRy Tr fd
+ K (Vees - %)) (10)
0 = (Rs+Re)lg—(2q+ wep) Iy + Vssin(6 = ys) (11)
0 = (Rs+Re)lg+ (zh+zep) Is— Ef
+V;5cos (8§ — Bus) (12)
0 = —Va+ Relg—zeply+ Vssin(§~ ys) (13)
0 = =Vyg+ Rely— zeply+ Vscos(6— 6ys) (14)
0 = V- VITVE (15)

Several problems in engineering and physics result in systems
which have an index greater than one. Under normal operat-
ing mode, power systems are generally considered to have an
index of one. The system as described has an index of one:
that is, %Cy—; (as described in (3) and as applied in (11) through
(15)) is nonsingular. In some situations, however, the index
of the system may be increased by the inclusion of a limiting
constraint. The following example is one such situation.

In most applications Vies (see (10)) is an input into the
system, and the terminal voltage V; is allowed to change dy-
namically. In some applications, however, it might be desired
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Figure 1: Simple Power System Model

to limit or constrain the terminal voltage to some constant val-
ue or trajectory by dynamically altering the reference voltage
Vies. To numerically determine the shape of this desired func-
tion, the additional constraint equation is added to the system
and V,.y is allowed to change dynamically:

Vi = f(t) (=1.0 ps for example) (16)

This altered system has an index of two. By constraining V.,
this disallows one “degree of freedom” in the differential or
“state” variables, even though Vi.s is now allowed to change.
This subsequently would manifest itself by having only five
differential states in the canonical system, whereas the system
appears to have six differential states. Thus, in numerically
solving this system with V,.s as a variable instead of V;, the
“static® portion of this system is now singular. This does not
mean however, that the problem itself is ill-conditioned, only
that care in the numerical solution process is necessary. In fact,
this problem is numerically solvable if the following condition
is satisfied

I-\8E 2
det [ 06" al¥ | #0 for some A 17)
5z By

where ) is related to the integration stepsize h, at each stepsize
h of interest. Thus, just because %g is not invertible, does not
imply that the system is ill-conditioned, but may simply be
of higher index. The numerical ramification of this analysis
is that the set of differential and algebraic equations may no
longer be solved separately in an iterative approach, but must
be solved simultaneously, with caution applied to the selection

of the integration stepsize.

A second example of the relationship between index and '

limiters is illustrated by the simple two-node example shown
in Figure 2, which is made up of two capacitors, two resistors,
and an independent voltage source. The DAE system which
describes this system is:

C1 -C1 0 ‘:/1
-Cy C14+C2 O Va
0 0 0 i

-n 4] 1 Vi 0
=[0 -92 0][V2}+[0]v(t) (18)
1 o O I -1

The algebraic equation

Vi = u(t) (19)

may be interpreted as a limiting constraint. Even though there
appears to be a dynamic equation which describes the behav-
jor of Vi, V4 is not an independent state - thus one degree of
freedom is lost and this system has an index of two. Numeri-
cal problems may be encountered if the limiting constraint is
placed dynamically, i.e., if a dynamic state hits a limit during
the simulation process, and the integration procedure is not
flexible enough to account for the change in index. An excel-
lent discussion of the numerical solution of DAEs may be found
in [1].

*‘N

2
v(t) g1 | _l_Cz 92
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Figure 2: Index Two Floating Capacitor Circuit Example

3 Numerical Instability

In the previous section, the interaction of system structure
and index was discussed. In this discussion it was stressed
that an increase in system index does not necessarily result
in numerical instability if proper. precautions are taken. In
this section, a case of numerical instability due to a change in
system structure will be presented.

For the purposes of this discussion, consider the two ma-
chine, three bus system shown in Figure 3. The dynamic equa-
tions for each machine in the system are as given for the one
machine in (4)-(10), except that V; is now replaced by Vi for
=1, 2.

Vicosbi + Ry, (Ia, sinbi + Iy, cos §:) — oy, (Iq; sinéi — I, cos ;)
- [E:,., siné; + (.1:;‘ - 1::1'.) I, siné; + Ey, cos&.-] =0 (20)
Visin6; + R,; (Iq,- siné; — Iy, cos6.') + .'L'Q', (Id.- sind; + Iy, cos&.‘)

- [E"“ sing; — (-”":i.« - z;i) Iq; cosé; — E,’i‘, cos&g] =0 (21)
The algebraic constraints (11)-(15) are replaced by
Vi [1q, sin (8 — 6:) + Lo, cos (i = 6:)]
3
- Z ViVk (gix cosOix + bigsinfig) = 0 (22)
k=1
Vi [Id,« cos (8; — 8;) — Iy, sin (&; — 0.')]
3
- E ViVi (gik sin 6ix + bix cosfix) = 0 (23)
k=1
for i = 1,2. The network equations are given by
3
P - E VaVi (gak cos O3k + baxsinfsx) = 0 (24)
k=1
3
Qs - Zvav,c (g3 sin sk + bgxcosfax) = O  (25)

k=1

The machine and excitation systems are modeled identically.
The parameter data and steady state values for an initial load-
ing of P3 = 2.5,Q3 = 1.25 are summarized in Tables 1 and 2
respectively.

For the case in question, the loading on the system is shown
in Figure 4. The reactive loading is such that a constant pow-
er factor (i.e. P/Q = constant) is maintained. The system
response to this change in loading was simulated using the
trapezoidal method with a constant stepsize. The simulation
results for a stepsize of & = 0.005s, h = 0.015s, and h = 0.03s
are shown above in Figures 5, 6, and 7, respectively. Note that
Figures 5 and 7 are identical, whereas the results in Figure 6
depict a deviation from the normal course of simulation. Figure
6 is superimposed on a “correct” simulation using a stepsize of
h = 0.015s in Figure 8 (how this “correct” waveform was ob-
tained will be discussed in length shortly). The region between
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Table 1: Machine and excitation system data

parameter | value

H (sec) 10.0
D (pu) 1.00
z4 (pu) 0.90
zy (pu) 0.10
zq (pu) 0.85
z, (pu) 0.10
T;, (sec) | 8.00
Ty (sec) | 0.25
K4 (pu) 25.0
Ta (sec) 0.20
Kg (pu) | 1.00
Tz (pu) 0.35
Kp (pu) | 0.05
Tr (pu) | 0.35

Table 2: Initial operating states

variable machine 1 | machine 2
V (pu) 1.00 1.05
6 (rad) 0.00 -0.0183
6 (rad) 0.934 0.3280
w (rad/sec) 377 377
E; (pu) 0.7108 1.1521
E; (pu) 0.7097 0.3144
E%q (pu) 1.6436 2.4676
Vr (pu) 1.6436 2.4676
Rrp (pu) 0.2348 0.3525
Vres (pu) 1.065 1.1487
Tnm (pu) 1.500 1.000
Pgen (pll) 1.500 1.000
Qgen (pu) -0.0682 1.4746

Ve = 1.00 VP =108

VP =0.96

R=0.0
all lines X=0.1
B=0.05

2.5+ 71.25
Load = 2.78 pu at a pf = 0.9 lagging

Figure 3: Example Test System

ame (seconds)

Figure 4: Loading at bus #3

Figure 5: Simulation results for h = 0.005s
ous voitages (pa)

Figure 6: Simulation resuits for A = 0.015s
bes voitages (pe)

Figure 7: Simulation results for A = 0.03s
bas voitages (pu)

G (seconds)

Figure 8: Superimposed simulation results for A = 0.015s

5.5 and 6.0 seconds is enlarged and shown in Figure 9. Note
that before the deviation occurs, there is only a difference of
0.002 pu between the two waveforms (which is less that a quar-
ter of a percent) In addition, note also that the two waveforms
settle to the same steady-state value once the load obtains its
final value.

It has been frequently documented that in steady state, there
exist multiple equilibrium points for a particular loading value.
In some instances, the steady state equilibrium exhibit both
saddle node and Hopf bifurcations which give rise to small am-
plitude limit cycles [6]. It has also been documented that the
equilibriums go through a period of instability as the load in-
creases, but may settle to a stable equilibrium at a higher value
of loading [7]. What appears to be occurring in the simulations
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Figure 9: Enlargement of Figure 8

shown in Figures 6 and 8 is that two trajectories for the same
loading reside very close in state space, and in the course of the
numerical integration the solution waveform essentially jump-
s from one trajectory to another. They settle to the same
steady state equilibrium, because for the final loading the mul-
tiple equilibria are sufficiently far apart that the trajectories
are within the same region of attraction. This phenomenon is
especially interesting if one is interested not only in the final
resting point but in the ¢ransition from one loading to another.
The simulation of Figure 6 would lead to erroneous conclusions
concerning maximum voltage magnitude swings, etc.

One obvious question which has not yet been addressed
is why this phenomenon appears only in the stepsize case
h = 0.015s and not in the other two (one smaller, one larg-
er). This may be explained thusly: in the numerical solution
of the discretized nonlinear equations, an iterative Newton-
Raphson (NR) method is uséd. A convergence criteria of
Ar < ¢ = 0.0025 was used, where Az is the update of all
states, dynamic and static, in the system. For the stepsize
h = 0.005s, the predictor step gave an initial guess suffi-
ciently close to the correct solution such that, combined with
the quadratic convergence properties of the NR method, one
iteration-update was well within the cited criterion. For the
stepsize h = 0.033, the predictor guess was less accurate and
thus, at least two iteration-updates were performed at each
time step. Once again, the quadratic convergence properties
of the NR method brought the mismatch well within the cited
convergence criterion. The case of the stepsize A = 0.015s falls
into the “gray region” where, at each iteration-update, the er-
ror was on the order of ¢ - thus only one iteration-update at
each time step was performed, allowing the solution to “drift”
within an envelope of 4:0.0025 of the “true solution.” When
this envelope overlapped the envelope of the alternate solution,
the jump occurred. There are several ways to protect one’s sim-
ulation against this errant behavior. Firstly, one may select a
smaller ¢, forcing more iteration-updates per time step, or sec-
ondly, a more robust predictor method may be utilized. The
first of these alternatives was employed to obtain the “correct”
solution waveform depicted in Figure 8.

One final oddity of this phenomenon is that only the static
states (bus voltages) deviate from the true solution waveform.
The dynamic states actually jump back to the true waveform.
Figure 10 illustrates the behavior of w;. This is not totally
unexpected since the quadratic nature of equations (22)-(25)
give rise to two voltage values for each dynamic state. At
the particular instant in time when the deviation occurs, these
voltage values are quite close.

4 Conclusions
This paper discussed two areas where the numerical stability

of the simulation process is affected by the system behavior.
In the first area, the inclusion of limiters was shown to in-

L (oncomis)
Figure 10: Superimposed angular frequencies

crease the index of the system, but it was noted that although
the Jacobian of the static portion of the DAE system becomes
singular, this does not necessarily indicate numerical instabil-
ities. It was shown that if the system is solvable there exists
at least one stepsize h, such that the simultaneous Jacobian is
invertible and thus no numerical instabilities exist.

In the second area, a stepsize dependent instability was an-
alyzed. It was showr how the dynamic behavior of the system
greatly affected this instability and a few suggestions to elimi-
nate the instability were presented.
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