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Abstract – The increased use of nonlinear devices in industry has 
resulted in direct increase of harmonic distortion in the 
industrial power system in recent years. The significant 
harmonics are almost always 5th, 7th, 11th and the 13th with the 
5th harmonic being the largest in most instances. Active filter 
systems have been proposed to mitigate harmonic currents of 
the industrial loads. The most important requirement for any 
active filter is the precise detection of the individual harmonic 
component’s amplitude and phase. Fourier transform based 
techniques provide an excellent method for individual harmonic 
isolation, but it requires a minimum of two cycles of data for the 
analysis, does not perform well in the presence of subharmonics 
which are not integral multiples of the fundamental frequency 
and most importantly introduces phase shifts. To overcome 
these difficulties, this paper proposes a Multilayer Perceptron 
Neural Network trained with back-propagation training 
algorithm to identify the harmonic characteristics of the 
nonlinear load. The operation principle of the synchronous-
reference-frame-based harmonic isolation is discussed.  This 
proposed method is applied to a thyristor controlled dc drive to 
obtain the accurate amplitude and phase of the dominant 
harmonics. This technique can be integrated with any active 
filter control algorithm for reference generation. 

 
 

I. INTRODUCTION 
 

The increased use of modern power electronics 
technologies by industries has resulted in direct increase of 
harmonic distortion in the industrial power system in recent 
years. The improved efficiency and productivity provided by 
adjustable-speed drives (ASD), uninterruptible power 
supplies (UPS), etc is offset by the fact that the utility grid is 
being disturbed by these equipments because of their rectifier 
front ends. The switching nature of these rectifiers results in 
a pulsed input current with high harmonic content. Classic 
utility-side symptoms of harmonics problems are distorted 
voltage waveforms, blown shunt capacitor fuses, and 
transformer overheating. Capacitor losses are sensitive to 
harmonic voltages. Transformer losses are sensitive to 
harmonic currents. 

With the increasing use of power factor correction 
capacitors installed in the grid for reactive power 
compensation and the inductance of the lines and 
transformers, severe L-C resonances may be triggered by the 
harmonic current generated by nonlinear loads. The 
harmonic current also causes higher losses in the lines and 
transformers of the utility grid. Harmonic standards, such as 
the IEEE 519, are strongly recommended by the utilities to 
alleviate such problems. 

Passive L-C filters have been the traditionally preferred 
harmonic filtering solution mainly for their high efficiency, 
low-cost and simplicity. However, L-C filters are susceptible 
to source-sink resonances [1]. L-C filters also attract 
harmonic current from ambient harmonic-producing loads 
and background distortion of grid voltages [2]. Filter loading 
due to background distortion is a key design issue [3]. Their 
filtering characteristics are affected by component tolerances, 
and the varying utility system impedances in case of system 
configuration changes and contingencies. Further, a stiff 
utility grid poses great difficulties for L-C filter design 
because sharp and precise tuning will be required to sink a 
significant percentage of the load harmonic current. With all 
these problems, L-C filters may not meet the IEEE 519 
standard [4]. 

Several active filter systems have been proposed to 
mitigate harmonic current of industrial loads [5]. Pure series 
and shunt active filters are suitable for small-rating nonlinear 
loads. Hybrid series and hybrid shunt active filters, which are 
characterized by a combination of passive L-C filters and 
active filters, are cost effective and practical for large-rated 
nonlinear loads. Active filtering implemented with pulse 
width modulated inverters provides good harmonic 
mitigation. However, a key issue for active filters is to find a 
control method, which quickly obtains the compensation 
reference current without errors. The control has two main 
blocks: the first one generates the control reference signals 
and the second one carries out the control method. It is, 
therefore, crucial to be able to recognize the harmonic 
components in waveform and to reduce them to an acceptable 
level. 

The research literature has identified two groups of 
spectrum estimation techniques from a data set. The simplest 
group of approaches uses Fourier based algorithms (FFT and 
DFT). These algorithms have certain limitations as listed in 
[6]. The second group of approaches employs more 
sophisticated techniques like wavelet transforms to track 
harmonics accurately, but involves complex computational 
processes [7]. A third trend has emerged over the past couple 
of years regarding the use of neural network techniques for 
the control of active filters [8]. The authors of [9] have 
proposed a system that achieves harmonic isolation at the 
dominant harmonic frequencies, i.e., at the fifth and seventh 
harmonics (for six-pulse rectifier front ends), using square-
wave inverters. 

This paper focuses on the generation of the control 
reference signal using Multilayer Perceptron Neural Network 
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(MLPN) trained with backpropagation training algorithm. 
The synchronous reference frame based harmonic isolation is 
integrated within the neural network to extract the dominant 
harmonics. The proposed method is demonstrated on a three 
phase thyristor controlled DC drive. 
 

II. NEURAL NETWORK IDENTIFIER 
 

Artificial Neural Networks have provided an alternative 
modelling approach for power system applications. The 
MLPN [10] is one of the most popular topologies in use 
today. This network consists of a set of input neurons, output 
neurons and one or more hidden layers of intermediate 
neurons. Data flows into the network through the input layer, 
passes through the hidden layers and finally flows out of the 
network through the output layer. The network thus has a 
simple interpretation as a form of input-output model, with 
network weights as free parameters. The use and training of 
MLPNs is well understood. Figure 1 shows the block 
diagram of a three layer MLPN interconnected by weight 
matrices W and V. 

 

∑

∑

∑

∑
1ˆky +

11 1nW ....W

21 2nW ....W

1m mnW ....W

11V

12V

1mV

1a

2a

ma

1d

2d

md

InputLayer OutputLayer
HiddenLayer

k

k 1

k 2

k

k 1

k 2

1
x

x
x
y

y
y

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
 

Fig. 1. Structure of a MLPN  
 
The objective of the training is to modify W and V such 

that the ANN function approximates the plant function and 
the error e  between the desired function output y and the 
ANN output ŷ  is minimal. Continual online training (COT) 
is required whenever the ANN has to track a time varying 
plant waveform.  

The online training cycle has two distinct paths:  
• Forward propagation: It is the passing of inputs 

through the neural network structure to its output.  
• Error back-propagation: It is the passing of the output 

error to the input in order to estimate the individual 
contribution of each weight in the network to the final 
output error. The weights are then modified so as to 
reduce the output error.  

 
The generalized equations are shown below. 
 

A. Forward Propagation 
Every input in the input column vector x  is fed via the 

corresponding weight in the input weight matrix W to every 

node in the hidden layer. The activation vector a is 
determined as the sum of its weighted inputs. In vector 
notation, this is defined as:    

a W x=                                       (1) 
where the input column vector nx R∈ , the hidden layer 

activation column vector ma R∈ , the input weight matrix 
m nW R ×∈ , n is the number of inputs to the ANN including 

the bias and m is the number of neurons in the hidden-layer. 
Each of the hidden neuron activations in a  is then passed 

through a sigmoid function to determine the hidden-layer 
decision vector d . 

               ( )

1 ,
1 ii ad

e −=
+

{ }1,2,....,i m∈                  (2) 

where the decision column vector md R∈ . 
The decision vector d is then fed to the corresponding 

weight in the output weight matrix V. The ANN output ŷ  is 
computed as:  

ˆ ( )Ty V d=                          (3) 

For a single output system output weight matrix 
1 mV R ×∈ and ŷ is a scalar. 

 
B. Error backpropagation 

The output error e  is calculated as: 
ˆe y y= −            (4) 

The output error is back propagated through the RNN to 
determine the errors de and ae  in the decision vector d  and 
activation vector a . The decision error vector de  is obtained 
by back-propagating the output error e  through the output 
weight vector V : 

T
de V e=             (5) 

where the decision error vector m
de R∈ . 

The activation errors aie are given as a product of the 
decision errors die  and the derivative of the decisions id with 
respect to the activations ia : 

                             ai i di
i

de d e
da

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

                                  ( )

1( )
1 i dia

i

d e
da e −

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

              ( )1i i did d e= − ,  { }1,2,....,i m∈     (6) 

The derivative of a sigmoidal function can be expressed in 
terms of its inputs and outputs and computationally it results 
in multiplication and addition. The subscript i in (6) 
indicates element-wise multiplication of the vectors d , 
1 d− and de .  
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The change in input weights W∆ and output weights 
V∆ at the thk step are calculated as: 
   

( ) ( 1) T
m g aW k W k e xγ γ∆ = ∆ − +  

( ) ( 1) T
m gV k V k edγ γ∆ = ∆ − +            (7) 

where [ ], 0,1m gγ γ ∈ are the momentum and learning gain 
constants respectively. The last step in the training process is 
the actual updating of the weights: 

 
                         ( ) ( 1) ( )W k W k W k= − + ∆  

  ( ) ( 1) ( )V k V k V k= − + ∆            (8) 

 

III. SYNCHRONOUS REFERENCE FRAME (SRF) 
 

Application of synchronous reference frame (SRF) based 
harmonic extraction was introduced in [11].  Description of 
the method as used in this paper is described below. The 
three phase currents ai , bi and ci  are transformed from three 
phase abc  reference frame to two phase s sd q− stationary 
reference frame currents s

di and s
qi  using; 

                       

1 11
2 2 2
3 3 30

2 2

as
d

bs
q

c

i
i

i
i

i

⎡ ⎤ ⎡ ⎤−⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− ⎣ ⎦⎢ ⎥⎣ ⎦

               (9) 

 The currents s
di and s

qi  are now transformed to 

synchronously rotating e ed q−  reference frame by the unit 
vectors cos eω and sin eω  as shown below; 

 

                      
cos sin
sin cos

e s
e eq q

e s
e ed d

i i
i i

ω ω
ω ω

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

                 (10) 

 
The frequency eω is derived from the harmonic order that 

needs to be isolated. It is extremely important to note that the 
direction of the unit vector rotation has to comply with the 
sequence of the harmonic extracted. Figure 2 shows the 
transformation from abc to e ed q−  reference frame.  
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Fig. 2. Block diagram showing abc to e ed q−  transformation 

In the e ed q−  reference frame, components of eω appear 

as DC quantities and all other harmonics are transformed to 
non DC quantities. Using a low pass filter, the DC quantity 
can be accurately extracted. The DC component of the 
current is now retransformed back to the stationary reference 
frame using; 

                          
cos sin
sin cos

s e
e eq q

s e
e ed d

i i
i i

ω ω
ω ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

             (11) 

Finally the components from the stationary reference 
frame are transformed back to three phase reference frame; 

               

1 0

2 1 3
3 2 2

1 3
2 2

a s
q

b s
d

c

i
i

i
i

i

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤

⎡ ⎤⎢ ⎥⎢ ⎥ = − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− −⎢ ⎥⎣ ⎦

                          (12) 

Since the DC quantity in the e ed q− reference frame 
exactly corresponds to the harmonic frequency of interest, 
extraction of the DC quantity using the low pass filter 
ensures exact synthesis of the harmonic current in the 
abc reference frame. Figure 3 shows the filtering scheme. 
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Fig. 3. Block diagram showing  e ed q− to abc transformation 
 

IV. PROPOSED SCHEME 
 

A one-line diagram of a three-phase supply network 
having a sinusoidal voltage source sv , network 
impedance sL , sR  and several loads (one of which is 
nonlinear) connected to a PCC is shown in Fig. 4. 

 

âbci

abciabci

abcvsv SR SL

1z−

*
abc harmonici −

 
Fig. 4. Proposed scheme for harmonic extraction  

 
The nonlinear load injects distorted line current abci  into 
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the network. A MLPN is trained to identify the nonlinear 
characteristics of the load. This neural network is called the 
Identification neural network (ANN1).  

 
A. Identification Neural Network (ANN1) 

The proposed method measures the instantaneous values 
of the three voltages abcv at the PCC, as well as the three line 
currents abci at the thk moment in time.  The voltages 

abcv could be line-to-line or line-to-neutral measurements. 
The neural network is designed to predict one step ahead line 
current âbci as a function of the present and delayed voltage 
vector values ( )abcv k , ( 1)abcv k − and ( 2)abcv k − as well as 
present and delayed current vector values ( )abci k , 

( 1)abci k − and ( 2)abci k −  . When the ( 1)thk +  moment arrives 
(at the next sampling instant), the actual instantaneous values 
of  abci  are compared with the previously predicted values of 

âbci  , and the difference (or error e ) is used to train the 
ANN1 weights. Initially the weights have random values, but 
after several sampling steps, the training soon converges and 
the value of the error e  diminishes to an acceptably small 
value. Proof of this is illustrated by the fact that the 
waveforms for abci and âbci  should practically lie on top of 
each other.  At this point the ANN1 therefore represents the 
admittance of the nonlinear load. This process is called 
identifying the load admittance. Since continual online 
training is used, it will correctly represent the load 
admittance from moment to moment. 

Due to the nature of the sigmoidal transfer function, the 
outputs of the neurons in the hidden layer are limited to 
values between 0 and1 . The inputs to the neural networks 
are therefore scaled and limited to values between 1± . The 
scaling of the acquired data is done using software and hence 
that removes any limitations whatsoever on the data 
acquisition system and the transducers. 

 
B. SRF Harmonic Extractor 

The harmonic extractor is used to isolate the dominant 
harmonic components from the predicted current âbci . The 
three phase reference current *

abc harmonici − can now be used to 
generate the compensating current at the output of the PWM 
converter. Many advanced current controller techniques exist 
for generating the compensating currents, however if the 
precise harmonic amplitude and phase is not extracted, 
harmonic compensation may not be successful. 

 
V. RESULTS 

 
The proposed scheme is applied to a simulated DC motor  

represented by a simplified RL-E model is fed from  an 
inductive three-phase source through a six-pulse thyristor 
bridge. A pulse generator synchronized on the source 
voltages provides the trigger pulses for the six thyristors. The 
converter output current is controlled by a PI current 
regulator. The scheme is shown Fig. 5. 
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1z−
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Fig. 5.  Harmonic extraction scheme applied to a DC drive  
 
The simulation is run for 20 cycles and data is acquired at 

the rate of 512 samples per cycle. A 30% step signal is 
applied to the drive reference current during the 10th cycle to 
test the dynamic response of the drive’s current regulator and 
the ability of the neural network to identify such changes in 
current. The input voltage and current data of the load, 
acquired during these 20 cycles of simulation is used to train 
the neural network until the training error converges to near 
zero, and the output of neural network correctly tracks the 
actual current abci  as shown in Fig. 6. The neural network 
quickly adapts to the step change, within 1 cycle, and keeps 
tracking the new current. This is one of the advantages of 
continual online training. 
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Fig. 6. Training result for the three line currents  
 
The training of the network continues until a desired value 

of mean squared error (MSE) is reached. The value of the 
MSE shows the training convergence. Figure 7 shows the 
MSE in training for all the line currents. For each phase the 
value is lower than 510−  and that is a sufficiently low value 
to indicate that the identification neural network is trained 
and has learned the load characteristics.  

4407



 

10
0

10
1

10
2

10
3

10
4

10
-10

10-5

10
0

MSE vs Epochs
P

ha
se

 A

10
0

10
1

10
2

10
3

10
4

10-6

10-4

10
-2

P
ha

se
 B

10
0

10
1

10
2

10
3

10
4

10-6

10
-4

10
-2

Epochs

P
ha

se
 C

 
Fig. 7. MSE in current tracking 

 

 
Fig. 8. FFT spectrum of the load current  

 
Figure 8 shows the FFT spectrum of load current obtained 

using the powergui block of SIMULINK. At this point, the 
SRF control block in the neural network is activated and the 
data from the output layer of ANN1 is passed to the SRF 
block. The performance of the SRF based control method is 
demonstrated by extracting the 5th and the 7th harmonics and 
comparing it with the values obtained from Fig. 8.  
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Fig. 9. Fifth harmonic e

di and e
qi  after low pass filtering 

 

Figure 10 shows the 5th harmonic current retransformed 
back in the  abc  reference frame.  
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Fig. 10. Fifth harmonic current in the abc  reference frame 

 
Extending the method, all the dominant harmonics can be 

extracted. Figures 11 and 12 shows the result for the 7th 
harmonic current.  
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Fig. 11. Seventh harmonic e

di and e
qi  after low pass filtering 
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Fig. 12. Seventh harmonic current in the abc  reference frame 

 
The harmonic current amplitude and phase values can now 

be used to generate the reference for the active filter. 
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Table I provides the magnitude and phase values for the 
dominant harmonics, namely, 5th, 7th, 11th and 13th. The 
magnitude values are normalized. Comparison of these 
results with that from Fig. 8 reveal that the neural network is 
able to extract the dominant harmonics accurately. 
 

TABLE I 
DOMINANT HARMONICS AMPLITUDE AND PHASE EXTRACTION 

 
Harmonic Phase A Phase B Phase C 

5th - Mag 0.2596 A 0.2642 A 0.2230 A 

5th - Phase -132.2° -12.3° 107.8° 

7th - Mag 0.0557 A 0.0568 A 0.0477 A 

7th - Phase -110.5° -9.55° -129.0° 

11th - Mag 0.0843 A 0.0857 A 0.0725 A 

11th - Phase 36.26° 156.1° -83.8° 

13th - Mag 0.0404 A 0.0412 A 0.0345 A 

13th - Phase -86.09° 153.5° 33.86° 

 
Details about designing the neural network are available in 

[12]. Some of the experimental details of the neural network 
implementation are given below: 

 
• MLP network implemented in MATLAB. 
• FFT computation : powergui block of SIMULINK 
• Number of Neurons in the hidden layer: 25 
• Inputs : Voltage and current vector with 2 time delays 
• Learning gain: 0.25. Momentum gain not used. 
• Sampling frequency for data acquisition: 8 kHz. 

Power quality instrumentations require ~ 128 
samples/cycle. 

• Computation time for  the MATLAB code to compute 
the output weights (with 20 cycles of acquired data) 
run on a 1.8 GHz PC: 3.8 sec     

 
The accuracy of neural network computations can be 

further increased by increasing the sampling rate and number 
of neurons. However that puts additional computational 
demands on the processor and might make the actual 
hardware implementation more difficult. 

 
VI. CONCLUSION 

 
This paper has demonstrated the ability of MLP neural 

networks to learn the admittance of a nonlinear load and 
utilize the trained neural network for generating the 
compensating current reference for active filters. The 
proposed method has been successfully applied to a specific 
three phase load. The advantages of the proposed method are 
that it can be implemented online without disrupting the 
operation of any load, only voltages and currents need to be 
measured. It does not require any special instruments and it 
does not need to make any assumptions about any quantities, 
e.g. the impedance of the source.  
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