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Abstract 
Traditionally, fed-batch biochemical process optimization 
and control uses complicated theoretical off-line 
optimuers, with no on-line model adaptation or re- 
optimization. This study demonstrates the applicability, 
effectiveness, and economic potential of a simple 
phenomenological model for modeling, and an Adaptive 
Critic Design, Generalized Dual Heuristic Programming, 
for on-line re-optimization and control of an aerobic fed- 
batch fermentor. m e  results are compared with those 
obtained using a Heuristic Random Optimizer. 

Introduction 
Biochemical processes provide a good opportunity for 
optimization and control because they produce high value 
end products like vitamins, baker’s yeast, and antibiotics 
[l], [2]. In addition, fermentation processes are often non- 
stationary and, therefore, need continually adapting recipes 
for optimal performance. Fed-batch fermentations have 
been widely investigated for both optimization and control. 
The most important aspects to be considered are the 
changes in process parameters andor dynamics during the 
operation of the batch. This requires dynamically adjusting 
the process model, and re-optimization using the improved 
model. Previous research demonstrated this [3], [4], using 
a Heuristic Random Optimizer [5] for both off-line and on- 
line optimization. 

This study explores a variety of control schemes including 
off-line optimization, on-line model re-parametrization, 
and on-line re-optimization of a fed-batch fermentor, using 
an Adaptive Critic Design, Generalized Dual Heuristic 
Programming [6]. Specifically, a rigorous 
phenomenological model was used to represent the 
fermentation process, with an intentionally different model 
for the optimizer (to account for the process-model 
mismatch that exists in an industrial setting). Off-line 
optimization was performed using the HRO. The one-step 
IMPOL technique [7] was used for dynamic model 
parameter adjustment. Generalized Dual Heuristic 
Programming (GDHP) was utilized for on-line re- 
optimization, and the process performance obtained using 
the same was compared with that obtained using the HRO 
for both off-line and on-line optimization. Although the 
study was conducted for a specific case of cultivation of 
mammalian hybridoma cells (animal cells) to produce 
monoclonal antibodies [8]-[ lo], the overall development is 
perfectly general, and is easily applicable to any batch 
process that can be modeled. Details of the biochemical 
growth system, investigated in this study, can be found 
elsewhere [3]. 
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Model development, assumptions and sources 
of process-model mismatch 

The detailed phenomenological model can be found 
elsewhere [3]. Basically, the model comprised the overall 
mass balance, as well as balances on individual 
constituents like viable and dead cells, the substrates, viz., 
glucose and amino acid (chiefly glutamine), dissolved 
oxygen, lactate (the inhibitor) and monoclonal antibodies 
(product). The process simulator (henceforth referred to as 
the process) had almost the same form as the model, except 
for the Process-Model mismatch that was introduced. The 
Process-model mismatch was introduced in the form of 
functional mismatch, differences in values of parameters, 
and measurement errors. 

Two case studies were formulated to investigate process- 
model mismatch due to errors in estimating parameters. 
The first study featured an erroneously low estimate of 
& (specific death rate of cells) while the second study 
featured an erroneously low estimate of kl - (specific rate 
of inhibitor formation). The values assumed by both the 
parameters, in the model and the process, are presented in 
Table I. The values assumed by all other parameters can 
be found elsewhere [3]. The model and process were 
formulated in such a way that the degree of process-model 
mismatch would be realistic by engineering standards. 

The Heuristic Random Optimizer (HRO) 
The HRO is a powerful optimization routine that has been 
demonstrated [5] to be superior or equivalent to a variety 
of optimization algorithms including Broyden-Fletcher- 
Shanno, Fletcher-Reeves, Cauchy, gradient descent, etc. It 
has the advantages of constraint handling and scale 
independent stopping criteria. Hence the HRO was chosen 
as both the off-line optimization algorithm, and a 
comparative non-neural network based optimization 
scheme to benchmark the performance of GDHP. 

Off-line Optimization 
The generic approach used, for off-line optimization, was 
to determine the values of the following variables, so as to 
maximize the average production rate per batch. 
a) SO, the concentration of glucose in the continuous 

feed to the process as well as in the process at the 
start of fermentation, 

b) A,,, the concentration of amino acid in the 
continuous feed to the process as well as in the 
process at the start of fermentation, 
Vo, the volume of the reactor contents at the start 
of fmentation, 
qo(l), the feed rate to the reactor in the first 
reaction stage where there is a net increase in the 
population of cells with time, 

c) 

d) 

e) 40(2), the feed rate to the reactor in the second 
reaction stage where there is a net decrease in the 
population of cells with time, 

e) X,, the initial inoculum of viable cells, 
g) C,, the concentration of dissolved oxygen at the 

start of fermentation. 
The batch time was determined as the time when the 
process hit the volume constraint (5 liters in this case) or 
when the average production rate dropped, whichever 
came earlier. The latter concept is applicable here since it 
has been observed [3] that the average production rate is a 
unimodal function of the operating time of fermentation. 
The constraints, under which the optimization was 
performed [3], were based on solubility and process design 
considerations. The best off-line optimization results, 
obtained from multiple random starts, are given in Table 11. 

Development of Generalized Dual Heuristic 
Programming 

Training of Critic 
The critic was a 9- 10- 10 self-organizing feedforward 
network, trained to estimate the Bellman Cost Function 
[ l l ]  and its gradient with respect to the system state. 
There was no one-step penalty imposed on any state, since 
a reference state was unknown accurately. In other words, 
the critic was trained, using error backpropagation [12], to 
minimize the following error for all states. 

a r ( t+ l )  u(t) 
e = yJ(t + 1)- J ( f ) +  y- - - (1) a&) a ~ ( t )  

Here R(t) refers to the system state vector, that comprised 
the volume of reactor contents, concentrations of 7 state 
variables) and the remaining time of operation. These also 
constituted the inputs to the network. The discount factor, 
y, was assigned a value of 0.5. 

values of - were network outputs corresponding to 

the current system state as inputs, while the gradient 

-=[- aJ(f + 1) aJ(f + 1) 

a&) aR(t + 1) 

constituted the network output Here, the vector - ar(t + 1) 

aR(t + 1) 
&(f + 1) 

4) corresponding to the next system state, while - 
was obtained as 
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(3) 
-- dR(t + 1) aR(f + 1) aR(r + 1) aA(t) 
&(f) -aR(t)+aA(t)aR(t) 

Here, A(t) constitutes the vector of outputs from the action 
network. 

Training of Action 
The action network was a 9-5-1 feedforward network that 

. was trained, using the Node Decopled Extended Kalman 
Filter [13], to predict the feed rate to the reactor that would 
minimize the cost function predicted by the critic network. 
In other words, the error, which the action network was 
trained to minimize, was 

a(t + 1) 
“=dA(t) (4) 

Eight of the nine inputs to the action network were the 
volume of reactor contents and concentrations of 7 state 
variables, while the ninth input was the sign of the quantity, 

, i.e. sign of the rate of change of total viable cell 4%) 
dt 

mass with time. This was included to ensure that 
comparisons of performance with the HRO (which utilized 
the above information while arriving at the feed rate) were 
meaningful. 

The detailed methods of training are not being presented 
here. However, it should be noted that both the critic and 
action networks were trained as per the general techniques 
developed by Prokhorov and Wunsch [6]. 

Model Re-parametrization: IMPOL 
Technique 

During process operation, the true process parameters drift 
as per underlying relationships not exactly known to the 
engineer. Hence, dynamically, there is a need to adjust 
model parameters to ensure compliance of the model with 
the process behavior. The IMPOL technique [7] is a one- 
step application of Newton’s method, per control interval, 
to update a model parameter using the actual process- 
model mismatch (PMM) and the model sensitivity to the 
parameter. Details of implementation of the IMPOL 
technique are presented elsewhere 

For this particular study, the parameter, n-, denoting the 
maximum value of the specific product synthesis rate, was 
adjusted using Equation (7). This parameter was used since 
it was directly involved in the equation describing the rate 
of product formation. 

Dynamic Model Re-parametrization and On- 
line Re-optimization using HRO and GDHP 

The sequential strategy, used for on-line re-optimization, is 
as follows 

The product concentration in the process was 
measured (Noise was incorporated in the 
measurement). 
The extent of process-model mismatch, PMM, was 
estimated using (5). 
The process-model mismatch was eliminated using the 
IMPOL technique. 
Once model adjustment was performed, both HRO and 
GDHP were utilized for on-line re-optimization. Both 
were utilized to determine only the feed rate to the 
reactor. The remaining time of operation was 
determined as described previously, i.e., to ensure that 
the system doesn’t hit the volume constraint while 
maintaining the highest possible average rate of 
production of the desired product. While using GDHP 
for on-line re-optimization, there was no on-line 
retraining of either the action and critic networks. Any 
changes in the model were reflected solely in the 
system state, that acted as an input vector to the 
networks. 

Comparison of Results using HRO and GDHP 
The comparison of measured product concentration 
profiles along off-line optimal (using HRO) and on-line 
optimal (using both HRO and GDHP) trajectories is 
depicted in Fig. 1 for Case (1). Fig. 2 depicts the annual 
product yields for Case (1). It is clearly seen that GDHP 
outperformed both off-line and on-line HRO insofar as 
average production rate was concerned. Specifically, for 
Case (l), the average off-line optimal production rate was 
64.5 g/annum per batch. On-line re-optimization, using the 
HRO, resulted in an average production rate of 67.8 
g/annum per batch. The use of GDHP, for on-line 
optimization, resulted in an average production rate of 
82.9 g/annum per batch. For Case (2), the corresponding 
figures were 68.47 g/annum per batch and 78.4 g/annum 
per batch respectively, along off-line and on-line optimal 
operations using the HRO, and 86.08 g/annum per batch 
along on-line optimal operation using GDHP. 

If the market demand for monoclonal antibodies is 
considered to be 5 kg/annum of recovered product, as is 
often the case [14]-[16], a detailed economic analysis for 
Case (1) indicated that the use of GDHP resulted in an 
increase in the annual net profit by $6.42 million and $5.03 
million respectively, over off-line and on-line optimal 
operations using the HRO. For Case (2), the 
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corresponding figures were $8.46 million and $4.46 
million respectively. 

In addition to improved productivity and better economics, 
the use of Adaptive Critic Designs offers significant 
advantages over traditional direct search optimization 
routines like the HRO. These are 

Adaptive Critic Designs facilitate easy constraint 
handling via penalty functions and bounded activation 
functions in Neural Networks. 
Neural networks compute rapidly, thereby facilitating 
a much reduced control interval relative to optimizers 
like HRO. This advantage of reduction in control 
interval would be highly significant in massive systems 
like refineries, where optimization involves 
determination of several decision variables, and 
computational time is an important aspect of process 
economics. 
With traditional optimization routines, improvements 
in the model are translated into improved optimal 
operation only by dynamic re-optimization. However, 
with Adaptive Critic Designs, even no on-line 
retraining results in significant improvements as 
opposed to both off-line and on-line optimal operation 
using conventional optimizers like HRO. This is due 
partly to the fact that the system state (that reflects 
changes in the model) is explicitly used while 
computing the control action, and also due to the fact 
that Adaptive Critic Designs do not, in general, require 
a perfect model for true optimal process p e r f o m c e  
~ 7 1 .  

Conclusions 
This study demonstrates the applicability and economic 
potential of a simple scheme for off-line optimization and 
on-line model parameter adjustment and re-optimization 
using Generalized Dual Heuristic Programming. In 
general, Generalized Dual Heuristic Programming is robust 
towards model uncertainties, and tracks the global 
optimum closely. Besides, the significant economic 
benefits and increased computational power, obtained by 
the use of GDHP, is a pointer to possible avenues in 
exhaustive application of Adaptive Critic Designs in the 
field of bioreactor control. 
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