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A new type of nanocrystalline samarium-doped-ceria/yttrium-stabilized-zirconia
(SDC/YSZ) heterophase thin film electrolytes was synthesized on MgO and Si
substrates by spin coating and thermal treatment of SDC-nanoparticle-incorporated
polymeric precursors. In the heterophase films, SDC nanoparticles were uniformly
dispersed in a nanocrystalline YSZ matrix. The heterophase structure was stable when
fired in air at temperatures up to 850 °C. The nanocrystalline heterophase thin films
exhibited electrical conductivities significantly higher than that of the phase-pure YSZ
and SDC nanocrystalline thin films at reduced temperatures. The effects of SDC grain
size and volume fraction on the electrical conductivity of the heterophase films were
also studied.

I. INTRODUCTION

Solid oxide fuel cells (SOFCs) are considered to have
great potential for highly efficient stationary power gen-
eration. Yttria-stabilized zirconia (YSZ) is the common
electrolyte material for SOFCs because of its reasonable
electrical conductivity and high ionic transference num-
ber in both oxidizing and reducing atmospheres. How-
ever, for the traditional SOFC with YSZ electrolytes, the
fabrication temperature is usually in the range of 1300 to
1400 °C and the operating temperature is normally 800–
1000 °C. This results in an increased cost for expensive
thermal-resistant materials and causes problems such as
accelerated cell degradation and higher cathodic overpo-
tential. Doped ceria has recently been considered as an
alternative electrolyte material to YSZ for reduced-
temperature SOFC because of its high conductivity at
relatively low temperatures. However, ceria-based elec-
trolytes have low open circuit voltages (OCV) because
ceria has a relatively high electronic conductivity, espe-
cially in reducing atmospheres.

In the past decade, doped-ceria/YSZ heterophase or

composite electrolytes were used to enhance the electri-
cal conductivity while maintaining a high ionic transfer-
ence number for reducing the SOFC operating tempera-
ture and internal ohmic overpotential.1 The reported het-
erophase electrolytes were made by either embedding
doped-ceria particles in a continuous YSZ matrix2 or
constructing YSZ/doped-ceria multilayer structures.3,4 In
both cases, the highly conductive doped-ceria reduced
the effective thickness of the relatively low-conductivity
YSZ layer; while the continuous YSZ layer served as a
barrier to electronic conduction through the ceria phase.
A samarium-doped-ceria (SDC) interlayer between the
YSZ electrolyte and cathode can also prevent harmful
electrolyte/cathode reactions.5,6 The YSZ/SDC hetero-
phase electrolytes improved the open circuit voltage
(OCV) compared to the pure SDC electrolyte and pro-
vided flatter V-I curves, i.e., less ohmic loss, compared to
monophasic YSZ electrolytes.7 However, the V-I curve
lowered significantly when the YSZ and SDC formed
solid solutions at high temperatures because ZrO2–CeO2

solid solutions are mixed conductors2,7 and the YSZ-
SDC solid solutions are less conductive than either YSZ
or SDC.8 The grain sizes of SDC and YSZ in the reported
heterophase electrolytes were of micron scale to avoid
formation of YSZ/SDC solid solution during high tem-
perature fabrication processes.
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Another promising way to lower the SOFC operating
temperature is to use nanocrystalline thin-film electro-
lytes.9 Dramatically increased electrical and ionic con-
ductivities have been reported at reduced temperatures in
YSZ, CeO2, and SrCe0.95Yb0.05O3 nanocrystalline thin
films with grain sizes less than 30 nm.10,11 Enhancement
of conductivity in nanostructured materials was attrib-
uted to the size-dependent defect properties12,13 and in-
creased interface area that facilitated the fast boundary
conduction and inhibited formation of segregated impu-
rity layers, commonly SiO2, at grain boundaries.14

More recently, Sata et al.15 reported an increase of two
to three orders of magnitude in ionic conductivity for a
heterophase film containing altering CaF2 and BaF2 lay-
ers of nanometer thickness compared to bulk CaF2 and
BaF2 crystals. The enhanced ion conduction was in the
direction parallel to the layered interface. The drastically
increased ion conduction resulted from a conductivity
behavior qualitatively different from the bulk phases of
the individual components in the overlapping space-
charge regions of the nanostructured two-phase sys-
tem.15–17

The work of Sata et al.15 revealed the possibility of
developing nanocrystalline heterophase electrolytes for
enhanced conductivity at reduced temperatures. How-
ever, synthesis of dense, nanocrystalline, heterophase
films is difficult by traditional co-firing processes be-
cause the nanoparticles of different phases react to form
a solid solution at temperatures well below the tempera-
ture required for densification.8 In this paper, we report a
new type of nanocrystalline SDC/YSZ heterophase thin
film electrolytes synthesized from SDC-nanoparticle-
incorporated polymeric precursors.

II. EXPERIMENTAL

Chemicals used in this study include zirconyl chloride
hydrate (ZrOCl2–8H2O, 99.99%, Aldrich, St. Louis,
MO), yttrium nitrate hexahydrate [Y(NO3)3–6H2O,
99+%, Aldrich], glycine (99+%, Aldrich), ethylene gly-
col (99+%, Aldrich), cerium nitrate hexahydrate
[Ce(NO3)3·6H2O, 99+%, Aldrich], and samarium nitrate
[Sm(NO3)3�6H2O, 99+%, Aldrich]. The SDC nano-
powders were obtained commercially from NexTech,
Lewiscenter, OH. The as-received nano-powders had a
composition of (Ce0.85Sm0.15)O1.925 and grain size of
5–10 nm. The SDC powders underwent pretreatments by
firing in air for 10 h at different temperatures. The aver-
age SDC crystallite sizes increased to 25, 35, and 45 nm
after firing at 800, 1000, and 1200 °C, respectively.

The SDC-nanoparticle-incorporated polymeric precur-
sor was synthesized by the following procedure: (i) The
YSZ polymeric precursor, (Zr4+, Y3+)-chelated poly
ethyl glycol, was synthesized by polymerization of an
aqueous solution containing ethylene glycol, zirconyl

chloride, yttrium nitrate, and glycine. The precursor had
a Y:Zr atomic ratio of 16:84. The detailed polymeric
precursor synthesis procedure can be found in the litera-
ture.6 (ii) A stable SDC colloidal suspension (1 wt%
solid content) prepared by ultrasonic dispersion under
controlled pH (� 3∼4, adjusted by 0.1 N HNO3) was
added to the YSZ polymeric precursor drop-wise under
stirring. (iii) The mixture was then heated at 80 °C under
stirring for 5 h to remove water and improve the viscosity
for film coating. The SDC-nanoparticle-incorporated
precursor was then cooled to room temperature under
stirring and used to deposit thin films on 〈100〉 magne-
sium oxide (MgO, 18 × 18 × 0.5 mm) and 〈001〉 silicon
wafers.

The typical spin-coating process included a 5-s spin-
ning at 600 rpm followed by a 20-s spinning at 2500 rpm
using a two-stage spin-coater (KW-4A, CheMat, North-
ridge, CA). After coating, the film was dried at 80 °C and
fired at 300 °C for 1 min on a hot plate. The film was
then fired at 650 °C in air for 4 h. After firing, the films
were further annealed at 750 °C for 5 h. The purpose of
the 750 °C annealing step was to prevent grain growth
during the conductivity measurements in a temperature
range of 400–750 °C. It was previously observed on YSZ
nanocrystalline films that a thermal treatment at a high
temperature could effectively inhibit further grain growth
during annealing at relatively lower temperatures.18 The
film coating process was repeated three more times and
resulted in a final oxide film thickness of ∼140 nm.
Thicker films were prepared by additional coatings under
identical conditions to obtain strong x-ray diffraction
(XRD) peak intensities for examining the crystal phase
and grain sizes in the films.

The phase-pure YSZ and SDC nanocrystalline thin
films were synthesized using similar procedures as de-
scribed in the literatures.6,18 The atomic ratios of Y:Zr
and Sm:Ce in their polymeric precursors were 16:84 and
15:85, respectively. Thus the chemical composition of
the phase-pure YSZ and SDC films were (Zr0.84Y0.16)O1.92

and (Ce0.85Sm0.15)O1.925, respectively. The YSZ and
SDC nanocrystalline films were obtained by the same
thermal treatments as those used in the preparation of the
heterophase films, namely firing at 650 °C for 4 h fol-
lowed by annealing at 750 °C for 5 h. Both the pure YSZ
and SDC films had a film thickness of ∼100 nm using a
total of four coating steps. After annealing at 750 °C,
the grain sizes of the YSZ and SDC thin films were both
∼15 nm. The total electrical conductivities of the thin
films were then measured by a four-probe conductivity
meter described in a previous paper.8

III. RESULTS

The SDC/YSZ heterophase films were first synthesized
using SDC nanocrystals fired at different temperatures
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with a fixed SDC:YSZ molar ratio of 1:1, which gave a
SDC volume fraction of 0.587 (SDC:YSZ volume ratio
of 1:0.704), in the final oxide films. The pretreated SDC
nano-powders and the as-received powders were used to
prepare the SDC nanoparticle-incorporated polymeric
precursors. For all these powders, including the untreated
one, the SDC crystal structure was not changed in the
precursor films after being dried at 80 °C and further
heated at 300 °C according to the x-ray diffraction
(XRD) tests.

The precursor films containing SDC particles without
pretreatment and particles pretreated at 700 °C were
found to form YSZ-SDC solid solutions after firing at
temperatures as low as 450 °C. Lines d and e in
Fig. 1 are XRD patterns of the precursor film containing
untreated SDC powders after being fired at 300 °C and
the solid solution film after further firing at 450 °C. The
precursor film containing SDC powders pretreated at 800
and 1200 °C formed a SDC/YSZ heterophase structure

after firing at 650 °C. The heterophase structure of these
films was stable during further heat treatment at 850 °C.
Lines f, g, and h are XRD patterns of the precursor film
containing SDC powders pretreated at 1200 °C after
being fired at 300 °C (for 1 min), 650 °C (for 4 h), and
850 °C (for 100 h), respectively.

In the heterophase thin films, the YSZ grain size was
∼15 nm after annealing at 750 °C for 5 h. The SDC grain
sizes remained unchanged from their values after firing
(pretreatment) at 800, 1000, and 1200 °C, which were 25,
35, and 45 nm, respectively. The grain sizes in the films
were estimated by XRD.18 In the following text,
SDC800/YSZ, SDC1000/YSZ, and SDC1200/YSZ were
used to denote the heterophase films containing SDC
particles pretreated at 800, 1000, and 1200 °C, respec-
tively. No intercrystal pores or pinholes were found in
the heterophase films by surface examinations using
atomic force microscopy as shown in Fig. 2. The four-
coat films had a thickness of ∼140 nm according to the
observation by a field-emission scanning electron micro-
scope (SEM; Hitachi S-5200 Nano-SEM, Japan) for the

FIG. 2. AFM image of the surface of the YSZ800/SDC heterophase
film annealed at 750 °C for 5 h.

FIG. 3. SEM image of the cross-section of a SDC800/YSZ hetero-
phase film.

FIG. 1. XRD patterns. Lines a, b, and c are YSZ, SDC, and YSZ/SDC
solid solution pellets,8 respectively. Lines d and e are films synthe-
sized with untreated SDC; line d was dried at 300 °C and e was fired
at 450 °C (solid solution). Lines f, g, and h are films with SDC
pretreated at 1200 °C; f was dried at 80 °C, g was fired at 650 °C, and
h was fired at 850 °C.
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cross section of a Si-supported film as shown in Fig. 3. A
Si substrate was used here because it provided a better
cross section sample for clearer SEM observations com-
pared to the MgO.

The grain size and density of the heterophase thin films
were further confirmed by transmission electron micros-
copy (TEM) as shown in Fig. 4(a) for a film containing
SDC nanocrystals pretreated at 800 °C. Figure 4(b) is the
image of scanning transmission electron microscopy
(TEM) Z-contrast mapping (JEOL 2010 FEG TEM
STEM, Oxford EDS, Gatan Imaging Filter, Japan) for the
cross section of a SDC800/YSZ heterophase film. The

Z-contrast mapping shows that the SDC particles are
uniformly dispersed in a matrix of YSZ nanocrystallites.

The total electrical conductivities of the MgO-
supported nanocrystalline thin films were measured in
air. The results are presented in Fig. 5. The conductivity
of the solid solution thin film was not measured because
the potentiostat was unable to maintain a stable current
under its maximum output voltage (10 V) for the highly
resistive thin film. The total conductivity of the
nanocrystalline YSZ thin film obtained in this study
agreed well with the literature value for a YSZ film syn-
thesized under similar conditions with comparable grain
size.10 With comparable grain sizes, the total electrical
conductivity of the SDC800/YSZ heterophase thin film
was 3–20 times that of the nanocrystalline SDC film in a
temperature range of 450–700 °C and was 2–12 times
that of the YSZ nanocrystalline film in a temperature
range of 500–700 °C. The extraordinarily high conduc-
tivity of the heterophase film at reduced temperatures
may be attributed to the fast conduction in both the grain
boundaries of homophase regions10,13 and the meso-
scopic heterojunctions in the nanostructure.15 Increasing
the SDC particle size from 25 to 45 nm caused a mod-
erate decrease in the conductivity because the density of
YSZ/SDC heterojunctions is reduced in films with larger
SDC nanoparticles.

Because the SDC/YSZ interface density (m2/m3) in the
heterophase film depends on the SDC:YSZ volume ratio
(or SDC volume fraction) and their particle sizes, addi-
tional experiments were conducted to study the effect of
the SDC volume fraction on the conductivity of the het-
erophase film. The SDC volume fraction was varied in a
range from 0.136 to 0.587 by adjusting the amount of

FIG. 5. Electrical conductivities as a function of temperature. (�)
SDC800/YSZ heterophase film, (×) SDC1000/YSZ, (●) SDC1200/
YSZ heterophase film, (�) YSZ nanofilm (this work), (�) YSZ nano-
film (grain size 20 nm),10 (�) SDC nanofilm, (�) SDC pellet,8 (+)
YSZ pellet.8

FIG. 4. TEM observations of the SDC800/YSZ heterophase film cross
section: (a) TEM image and (b) STEM Z contrast mapping (contrast
inverted).
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SDC powders added to the polymeric precursors. The
SDC powders fired at 800 °C were used for all the films
with different SDC volume fractions. The electrical con-
ductivities of the films are presented as a function of
SDC volume fraction in Fig. 6, which also includes the
data of phase-pure YSZ and SDC films. The highest
conductivity was obtained on the film with a SDC vol-
ume fraction of 0.495, which possessed the highest in-
terface area among the samples studied. A SDC volume
fraction of 0.68 or greater resulted in a porous structure
as indicated by the reduced transparency of the film and
drastically decreased conductivity.

IV. CONCLUSIONS

Dense, nanocrystalline SDC/YSZ heterophase thin
films were successfully synthesized on MgO and silicon
wafers from SDC-nanoparticle-incorporated polymeric
precursors. At reduced temperatures, the nanostructured
YSZ/SDC heterophase film exhibited total electrical con-
ductivity significantly higher than that of the phase-pure
YSZ and SDC nanocrystalline thin films with compa-
rable grain sizes. The nanocrystalline SDC/YSZ hetero-
phase thin film may have potential applications in low
temperature SOFC, gas separation membranes, and high
performance gas sensors. It is also anticipated that the
high total conductivity of the heterophase film is due
mainly to the enhanced ionic conduction because the
SDC nanocrystals are embedded in the ion conducting
YSZ matrix.
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