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A Proportional-Integrator Type Adaptive Critic
Design-Based Neurocontroller for a Static

Compensator in a Multimachine Power System
Salman Mohagheghi, Student Member, IEEE, Yamille del Valle, Student Member, IEEE,

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and Ronald G. Harley, Fellow, IEEE

Abstract—A novel nonlinear optimal controller for a static com-
pensator (STATCOM) connected to a power system, using artificial
neural networks, is presented in this paper. The action dependent
heuristic dynamic programming, a member of the adaptive critic
designs family is used for the design of the STATCOM neuro-
controller. This neurocontroller provides optimal control based
on reinforcement learning and approximate dynamic program-
ming. Using a proportional-integrator approach, the proposed
neurocontroller is capable of dealing with actual rather than
deviation signals. Simulation results are provided to show that the
proposed controller outperforms a conventional PI controller for
a STATCOM in a small and large multimachine power system
during large-scale faults, as well as small disturbances.

Index Terms—Adaptive critic designs (ACDs), multimachine
power system, neurocontroller, optimal control, static compen-
sator (STATCOM).

I. INTRODUCTION

STATIC compensators (STATCOMs) are power electronics-
based shunt flexible AC transmission system (FACTS) de-

vices which can control the line voltage at the point of connec-
tion to the electric power network. Regulating the reactive and
active power injected by this device into the network provides
control over the power flows in the line and the dc link voltage
inside the STATCOM, respectively [1]. A power system con-
taining generators and FACTS devices is a nonlinear system. It
is also a nonstationary system since the power network config-
uration changes continuously as lines and loads are switched on
and off.

In recent years, most of the papers have suggested methods
for designing STATCOM controllers using linear control tech-
niques, in which the system equations are linearized at a spe-
cific operating point. Based on the linearized model, the PI con-
trollers are then fine tuned in order to have the best possible
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performance [2]–[5]. The drawback of such PI controllers is
that their performance degrades as the system operating condi-
tions change. Moreover, linearizing the nonlinear system in the
vicinity of the operating condition cannot be a practical solution
because of the ever-changing nature of the power network, ei-
ther due to faults and disturbances or the normal changes in the
operating conditions. In addition, the process of fine tuning a PI
controller in such a highly nonlinear environment is a complex
and challenging task.

Traditional nonlinear adaptive controllers, on the other hand,
can give good control capability over a wide range of operating
conditions [6]–[9], but they have a more sophisticated struc-
ture and are more difficult to implement compared with linear
controllers. In addition, they need a mathematical model of the
system to be controlled, which in most of the cases cannot be
obtained easily.

Intelligent controllers, on the other hand, have the potential
to overcome the above mentioned problems. Fuzzy logic-based
controllers have, for example, been used for controlling a
STATCOM [10], [11]. The performance of such controllers can
further be improved by adaptively updating their parameters.
Mohagheghi et al. [13] applied the Controller Output Error
Method introduced by Anderson et al. [12] in order to imple-
ment an adaptive fuzzy controller for the STATCOM. Artificial
neural network-based indirect adaptive controllers have also
been used to provide adaptive control for the STATCOM [14].
However, even this indirect adaptive controller suffers from
the disadvantage of being “shortsighted.” The error at one step
ahead is used for updating the parameters of the adaptive con-
troller, without considering the fact that in a real-power system,
the actions which take the system as close to the set-point as
possible at time , may end up taking the system further
away from the set-point a few moments later. The basic fact is
that the controller is not even addressing the problem of how
to stay close to the desired trajectory for more than one time
period into the future [15], resulting in solutions that are by no
means optimal or suboptimal.

The powerful and well-established theory of optimal control
and dynamic programming can be used as an alternative. While
mathematically proven to provide an optimal control policy,
this technique has its own disadvantages. Solving the dynamic
programming algorithm analytically in most of the cases is
not feasible. Even a numerical solution requires overwhelming
computational effort, which increases exponentially as the size
of the problem increases. This issue, referred to as the curse

0278-0046/$25.00 © 2007 IEEE
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Fig. 1. STATCOM connected to a 10-bus multimachine power system.

of dimensionality, was first introduced by Bellman [34] and is
associated with the problem caused by the rapid increase in
volume by adding extra dimensions to a (mathematical) space.
These restrictive conditions lead the solution to a suboptimal
control scheme with limited look-ahead policies [17]. The com-
plexity level is even further exacerbated when moving from
finite horizon (optimization from the present time to a certain
time in the future) to infinite horizon problems (optimization
from the present time to infinity), while also considering the
stochastic effects, model imperfections, and the presence of the
external disturbances.

Adaptive critic designs (ACDs)-based neurocontrollers can
overcome the above mentioned problems. These are powerful
techniques designed to perform approximate dynamic program-
ming (ADP) in the presence of noise and uncertainties, even in
nonstationary cases and provide optimal control over the infi-
nite horizon of the problem [15]. Such controllers do not need
prior information of the plant to be controlled and can be trained
online without any large amount of offline data.

In an earlier work, the authors designed a ACD-based neuro-
controller for a STATCOM in a small power system [16]. This
controller was designed in order to deal with the deviation sig-
nals and could provide effective control during the large scale
disturbances. This paper extends the previous work in [16] by
using a proportional-integrator approach which enables the de-
signed neurocontroller to deal with actual signals and not devi-
ations, therefore making it an efficient solution for the condi-
tions in which the steady-state conditions of the system change,
such as during step changes in the reference values of the con-
trollers and/or changes in the topology of the power system.
The proposed controller uses the action dependent heuristic dy-
namic programming (ADHDP) method which is a member of
the ACD family, in order to provide nonlinear optimal control.
Two case studies are presented in this paper: A 10-bus and a
45-bus power system, both with a STATCOM. The latter power
system is a section of the Brazilian power network. Simulation
results are provided in order to compare the effectiveness of
this new STATCOM neurocontroller with that of the conven-
tional STATCOM PI controller during small- and large-scale
disturbances.

The rest of this paper is organized as follows. The structures
of the two multimachine power systems and the conven-
tional control schemes used as the basis of comparison with
the proposed neurocontrollers appear in Section II of this
paper. Section III summarizes some of the key concepts be-
hind ACD-based controllers. The structure of the proposed
STATCOM neurocontroller along with the training procedure
is explained in Section IV. The performance of the STATCOM
conventional PI controller is compared with that of the proposed
neurocontrollers in Section V. Finally, Section VI summarizes
the findings and concluding remarks.

II. STATCOM IN A MULTIMACHINE POWER SYSTEM

Fig. 1 shows a STATCOM connected to the first multimachine
power system. This is a 10 bus, 500 kV, 5000 MVA system [18]
and is simulated in the PSCAD/EMTDC® environment. The
generators are modeled together with their automatic voltage
regulator (AVR), exciter, governor, and turbine dynamics taken
into account. The STATCOM is connected to bus 5 of the net-
work in order to provide extra support for the load buses in the
load area.

The second multimachine power system is shown in Fig. 2.
It is a 45 bus, 10 generator system, and represents a section of
the Brazilian power network. The system has two voltage levels
of 525 and 230 kV, respectively, with 14 transmission lines at
525 kV and 41 lines at 230 kV, 24 load buses and 7 buses with
shunt compensation. The total installed capacity of the system is
8940 MVA. The dynamics of all the generators’ AVRs, exciters,
turbines, and governors are represented in details in the PSCAD/
EMTDC® environment.

After completing a load flow analysis on the power system in
Fig. 2, bus 378 (Joinvile) shows up as having the lowest voltage
in the network at 0.95 p.u. This bus has several transmission
lines and shunt loads connected to it. A STATCOM is, therefore,
connected to this bus in order to improve the voltage stability
and to control the voltage during the dynamic disturbances [19].
The system is first initialized without the STATCOM. After
100 s of steady-state operation, the STATCOM is activated
with its voltage reference set so that it increases the steady-state
voltage at bus 378 to 0.97 p.u. For a detailed explanation on the
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Fig. 2. One line diagram of the 45-bus 10-generator section of the Brazilian power network.

system, the optimal allocation of the STATCOM and its impact
on the steady-state and dynamic performance of the system, the
reader is referred to the authors’ previous work in [35].

A decoupled conventional control scheme is suggested for the
STATCOM which is shown in Fig. 3. It consists of two PI con-
trollers, namely, and , for regulating the line voltage
at the point of common coupling (PCC) and the dc link voltage
inside the device. The deviations in the line voltage and
the dc link voltage are passed through these two decou-
pled PI controllers in order to determine the inverter modula-
tion index and the phase shift , respectively. This effective-
ness of the proposed decoupled scheme in Fig. 3 was compared
with the controller presented in [2], and the former was found
to be more effective in responding to small scale as well as
large scale disturbances in the power system. In both systems
(Figs. 1 and 2), the STATCOM is first controlled using the con-
ventional controller in Fig. 3. Parameters of the STATCOM’s
two PI controllers in Fig. 3 are derived (at a specific operating
point) so that the controller provides a satisfactory and stable
performance when the system is exposed to small changes in
reference values, as well as large disturbances such as a three
phase short circuit on the power network. The neurocontrollers
proposed in this paper will replace the line voltage controller,
i.e., , but the dc link voltage PI controller has a satisfactory
performance over a wide range of the operating conditions and
is not replaced.

Fig. 3. STATCOM decoupled conventional control scheme.

III. ADAPTIVE CRITIC DESIGNS (ACDS)

ACDs were first introduced by Werbos in [20], and later
in [21], and by Widrow in the early 1970s [22]. Werbos later
on proposed a family of ADP designs [23]. These are neural
network-based techniques capable of optimizing a measure
of utility or goal satisfaction, over multiple time periods into
the future, in a nonlinear environment under conditions of
noise and uncertainty; in other words, they perform maximiza-
tion/minimization of a predefined utility function over time
[24], [25].
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A utility function along with an appropriate choice of a
discount factor should be defined for the ACD neurocontroller.
At each time step , plant outputs (a set of measured variables)

are fed into the controller, which in turn generates a policy
(control signal ) in a way that it optimizes the expected
value function over the horizon time of the problem, which is
known as the cost-to-go function given by the Bellman’s equa-
tion of dynamic programming [24] and is as follows:

(1)

where is the utility function and is a discount factor for
finite horizon problems . A discount factor of zero
uses the present value of the utility function as the optimization
objective (similar to the minimization of one step ahead error),
while a discount factor of unity considers all the future values
of the utility function equally important and is most suitable for
the infinite horizon problems.

The critic neural network accomplishes the task of dynamic
programming by approximating the true cost-to-go function
with no prior knowledge of the system. Moreover, it avoids the
curse of dimensionality that occurs in some cases of classical
dynamic programming-based optimal control [24].

Essentially, ACD controllers are based on three different
mathematical theories: adaptive control, optimal control, and
reinforcement learning. Two major categories of the ACD
family include the model-based ACD design, where a model of
the plant to be controlled in required in order to train the neuro-
controller, and the action dependent ACD designs (ADACD),
which is a model free approach.

In an action dependent HDP-based (ADHDP) ACD neuro-
controller two different neural networks are used.

• Critic network—a neural network trained to approximate
the cost-to-go function required for optimization.

• Action network—which functions as a controller and is
trained to send the optimum control signals to the plant,
resulting in minimization/maximization of the function
over the time horizon of the problem.

The Critic network is responsible for sending the appropriate
training signals to the Action network so that the latter can gen-
erate an optimal control policy. The ADHDP-based ACD neu-
rocontroller configuration with the Critic and Action neural net-
works [31] is shown in Fig. 4, where is the vector of
the plant outputs (i.e., the line voltage deviations), is the
vector of the plant reference signals (i.e., the STATCOM line
voltage reference), and is the vector of the controller out-
puts (i.e., the inverter modulation index ). The delayed values
are shown in Fig. 4 by tapped delay lines (TDLs). Both the
neural networks are three layer feedforward multilayer percep-
tron (MLP) type neural networks having a single hidden layer
with hyperbolic tangent activation functions; and the backprop-
agation algorithm is used for training these networks and up-
dating their synaptic weight matrices [26].

The simulation step size of 100 s is selected for the PSCAD
simulations, while the sampling time for both the neural net-
works is 2 ms.

Fig. 4. Schematic diagram of the ADHDP type ACD neurocontroller.

Fig. 5. Schematic diagram of the ADHDP Critic network.

IV. STATCOM NEUROCONTROLLER STRUCTURE

AND TRAINING

A. Critic Network

The Critic network learns to approximate a cost-to-go func-
tion using the plant input and outputs which are fed to the
Critic from the plant and the Action network. If, for a con-
trollable system, this neural network converges to the correct
cost-to-go function, the controller will stabilize that system; in
other words provided the Critic network converges correctly,
the neurocontroller will provide universal stable adaptive con-
trol [24].

The ADHDP Critic network structure is shown in Fig. 5. It
is a three layer MLP neural network [26] that predicts the value
of the corresponding cost-to-go function at time , given the
plant output at times and its two times delay, along with
the Action network output at time as the input vector [31]. The
number of neurons in the hidden layer of the Critic network is
heuristically chosen to be seven.

Bellman’s equation in (1) indicates

(2)

Therefore, the instantaneous error can be defined as a function
of two successive values of the cost-to-go function . This is
normally referred to as the temporal difference error

(3)
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Fig. 6. Critic network training.

The objective of training the Critic network is to minimize
the following mean-squared error:

(4)

A steepest descent method is used for updating the synaptic
weights matrices and of the Critic network (Fig. 5) in the
negative direction of the derivative of the error function defined
in (4)

(5)

where is the Critic network learning rate and the weight up-
date equation can be rewritten as in (6). The same procedure
can be applied for updating the weight matrix . For the de-
tailed explanation of the backpropagation training algorithm,
the reader is referred to [27]:

(6)

Fig. 6 illustrates the schematic diagram of training the Critic
network [31]. The two Critic networks shown are identical and
they undergo the same weight update. One network predicts the
real-time value of the cost-to-go function at time , whereas
the second one predicts its value at time .

is the utility function which defines the optimization ob-
jective of the optimal neurocontroller. Selection of the utility
function has a major impact on the performance and the con-
vergence of the ACD controller. Lendaris and Neidhoefer have
reviewed the common approaches for selecting the utility func-
tion [28]. In the case of dealing with the deviation signals, the
common practice is to define a unipolar utility function in
order to be able to penalize both the positive and negative ex-
cursions with respect to the reference signal [28]–[30]. Clearly,
a simpler utility function helps the Critic network to learn the
cost-to-go function faster. A unipolar function, as the ab-
solute value of the linear combination of the present and past
values of the plant output is selected in this work, which fits the
training procedure of the Critic and Action networks best. The
selected utility function for this study is given in (7)

(7)

In the utility function defined in (7), more weight has been
given to the line voltage deviations at time step . This
is intended to prevent the controller from responding quickly to

the immediate error signals at the present time, and help fur-
ther distinguish the proposed optimal neurocontroller from the
shortsighted adaptive control schemes.

Care should be taken that during the training of the Critic
and Action networks, all the natural modes of the system are
excited. This is ensured by adding a pseudorandom binary signal
(PRBS) disturbance to the plant input in Fig. 6. The PRBS
is a randomly generated external signal which in this study is
a combination of three different frequencies 0.5, 1, and 2 Hz.
The magnitude of the PRBS signal is selected in a way that it
provides up to deviations in the plant output.

The system in Fig. 1 is run with the STATCOM PI controllers
in the circuit in order to reach the steady-state, at which point
the PI controller outputs in Fig. 3 are constant. The STATCOM

controller for the line voltage is now deactivated and its
constant output is applied to the plant in addition to the
PRBS signal generated from an external source. The reader is
referred to the authors’ previous work in [16] for more details.
The Critic network training error is formed as in (3) and the
weight update (5) is applied to the Critic network for updating
its synaptic weight matrices. The training process is started with
a low discount factor of 0.2, and after the Critic weights have
converged, the discount factor is increased to 0.5 and ultimately
to 0.8. It should be noted the Critic network generates output
values that are used to train itself (Figs. 5 and 6). As a result, at
the early stages of the training process, its output may be con-
sidered equivalent to noise, therefore this process of changing
the discount factor helps the Critic network learn the dynamics
of the cost-to-go function more accurately and faster [28].

A learning rate annealing process is applied for training the
Critic network in which a preliminary learning rate of 0.02 is
selected for the first stages of training the Critic, and this value
is gradually reduced to 0.005 as the training proceeds.

B. Action Network

The Action network optimizes the overall cost over the time
horizon of the problem (minimizing the function ) by pro-
viding an optimal control input to the plant. It consists of a MLP
neural network with seven neurons heuristically chosen in the
hidden layer [26]. The overall input vector consists of the values
of the plant output at times , and , and in
turn it generates the control signal for the plant (Fig. 7)
[29], [30]. In order for the Action network to be able to minimize
the cost-to-go function over the infinite horizon of the problem,
it should be trained with the following error signal:

(8)

where is the desired value for the cost-to-go function,
which in the case of dealing with deviation signals is zero. The
mean-squared error function in (9) is used as the objec-
tive function for executing the backpropagation algorithm

(9)

Therefore, the Action network input weights are updated ac-
cording to (10)

(10)
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Fig. 7. Schematic diagram of the ACD Action network.

where is the Action network learning rate. Using the chain
rule for the partial derivatives of the error function, the weight
update equation can be expanded to

(11)

The first term in the right-hand side of (11) is equal to
and the last term can be derived using the backpropagation al-
gorithm equations [27], while the second term is calculated by
backpropagating the constant 1.0 through the Critic network
(Fig. 4). A similar approach can be used for the output weight
matrix . This training scheme is widely used for training
ACD neurocontrollers in the literature [29]–[33].

It is also shown in Fig. 4 that the instantaneous output of
the Action network is added to the sum of the previous
outputs in order to generate the final control signal as in
(12). This ensures a “proportional-integrator” type structure for
the ACD neurocontroller and allows it to deal with the actual
signals and not the deviations

(12)

With the Critic network weights already converged, the Ac-
tion network is trained online, in other words, it is controlling
the plant while being trained. This raises the stability issue of
the controller. For an online training scheme, it is always bene-
ficial to have a priori information about the plant dynamics and
control scheme. With this information already used for initial-
izing the controller, it can be seen that the controller can pro-
vide stable control as it enhances its performance towards opti-
mality. However, providing this initialization information, and
interpreting it for a neural network, is difficult, if not imprac-
tical. Therefore, in order to ensure that the randomly initialized
controller does not move the plant towards instability, several
heuristic precautions can be taken as a rule of thumb [28]. The
Action network in this study begins the training process, as it
tries to control the system at steady-state, i.e., no disturbances.
Small scale disturbances, such as step changes to the voltage ref-
erence of the STATCOM are applied to the system and the Ac-
tion network now starts learning the new dynamics as a result of
these step change disturbances. Once satisfactory performance

Fig. 8. Voltage at bus 5 (Fig. 1) during the test A.1.

is achieved by the neurocontroller, it is now set for large-scale
disturbances like a three-phase short circuit. As a rule of thumb,
a ratio of 10:1 is considered for the Action network learning rate
compared with that of the Critic network [28]. The training pro-
cedure for the Critic and Action networks continues until both
networks converge.

V. SIMULATION RESULTS

A. Case Study 1: 10-Bus Multimachine Power System

Several tests are now carried out in order to evaluate the ef-
ficiency of the proposed neurocontroller compared to the con-
ventional controller.

1) Test A.1. Step Changes in STATCOM Voltage Reference:
In the first test, a step change is applied to the line voltage
reference of the STATCOM and the performance of the two
controllers ( and the ACD neurocontroller) are shown in
Fig. 8. It can be seen that the proposed neurocontroller is faster
in responding to the step changes in the reference signal and
it achieves this with a considerably small overshoot. A PI con-
troller with a larger gain (smaller time constant) can perform
faster than the results shown in Fig. 8, however, such a controller
will cause very large overshoots during large-scale disturbances
such as three-phase short circuits and might even cause insta-
bility in the system.

2) Test A.2. Three-Phase Short Circuit at Generator 3 Ter-
minals: In a second test, a 100 ms three-phase short circuit is
applied to the terminals of generator 3 at bus 5 (Fig. 1). The
generator is disconnected after the fault is cleared and switched
back to the system 50 ms after the fault is cleared. Fig. 9 shows
the performance of the two controllers during the transient con-
dition. The simulation result obtained in Fig. 9 clearly indicates
that the neurocontroller is more efficient in damping out the low-
frequency oscillations compared to the finely tuned con-
troller and in restoring the line voltage to the desired steady-state
value faster. The two controllers can also be compared in terms
of the control effort provided by each one in order to deal with
the fault. Fig. 10 shows that the controller forces the in-
verter into overmodulation for a much longer time compared
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Fig. 9. Voltage at bus 5 (Fig. 1) during the test A.2.

Fig. 10. STATCOM inverter modulation index during the test A.2.

with the neurocontroller, and therefore creates higher harmonic
distortion. This is because the neurocontroller exerts control ef-
fort in a much smaller way than the .

3) Test A.3. Three-Phase Short Circuit Along the Transmis-
sion Line: In another test, the system is exposed to a 100 ms
three-phase short circuit at the middle of one of the parallel
transmission lines and the line is disconnected after the fault is
cleared. Fig. 11 shows some typical results. The reactive power
injected by the STATCOM into the network is another measure
for comparing the efficiency of the two controllers. It can be
seen in Fig. 12 that the neurocontroller damps out the oscilla-
tions with less reactive power injection, and therefore less cur-
rent through the inverter switches.

Fig. 11. Voltage at bus 5 (Fig. 1) during the test A.3.

Fig. 12. Reactive power injected by the STATCOM during the test A.3.

4) Test A.4. Three-Phase Short Circuit at the Load Area: In
the last test, a 100 ms three-phase short circuit occurs at the
shunt load (bus 8 in Fig. 1) and as a result of that the load and
the transmission line connecting buses 7 and 8 are disconnected.
Fig. 13 shows the voltage at the terminals of the synchronous
generator 3 and Fig. 14 illustrates the synchronous generator
speed deviations during this disturbance. These results confirm
the superior damping performance of the neurocontroller.

B. Case Study 2: 45-Bus Multimachine Power System

Several tests are now applied to the 45-bus power system
shown in Fig. 2.
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Fig. 13. Generator 3 terminal voltage during the test A.4.

Fig. 14. Generator 3 speed deviations during the test A.4.

1) Test B.1. Double Phase to Ground Short Circuit: In the
first test, a 150 ms double phase to ground short circuit is ap-
plied to bus 385. Fig. 15 shows the line voltage at bus 378 where
the STATCOM is connected to the network and indicates that
the neurocontroller is again faster in restoring the system to
steady-state conditions. Fig. 16 illustrates the cost-to-go func-
tion estimated by the Critic network as a result of this experi-
ment. At every point in time, the Critic network estimates the
function which is a prediction of the weighted summa-
tion of the utility function from the present time to the infinite
horizon of the problem. Based on this estimate the Critic net-
work tries to send the appropriate training signal to the Action
network so as to minimize the overall cost-to-go function. It can

Fig. 15. Voltage at bus 378 (Fig. 2) during the test B.1.

Fig. 16. Neurocontroller cost-to-go and utility functions during the test B.1.

be seen in Fig. 16 that by generating the effective control signal,
the neurocontroller manages to quickly reduce the function
over the infinite horizon of the problem.

The positive effect of the neurocontroller’s damping can also
be viewed on the performance of the other generators of the
power system. For example, Fig. 17 shows the active power gen-
erated by the generator connected to bus 392 (J. Lacerda). The

controller clearly cannot damp out the oscillations as fast
as the neurocontroller.

2) Test B.2. Three-Phase Short Circuit Along Transmission
Line: In another test, a 150 ms three-phase short circuit occurs
at the line connecting the buses 377 and 378. Fig. 18 shows the
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Fig. 17. Active power generated by the generator J. Lacerda (bus 392 in Fig. 2)
during the test B.1.

Fig. 18. Voltage at bus 378 (Fig. 2) during the test B.2.

voltage at bus 378 during the fault and Fig. 19 illustrates the re-
active power generated by the STATCOM in order to return the
system back to stability. The neurocontroller restores the system
to steady-state conditions faster than the and it achieves this
with smaller values of power injected into the system. This again
means that the currents passing through the inverter switches are
smaller when the neurocontroller is controlling the plant.

3) Test B.3. Multiple Sequential Disturbances: As another
test, after the three-phase short circuit is cleared, one of the lines

Fig. 19. Reactive power generated by the STATCOM during the test B.2.

Fig. 20. Voltage at bus 378 (Fig. 2) during the test B.3.

connecting the buses 377 and 378 is disconnected and at the
same time a shunt load is connected to bus 378. Fig. 20 com-
pares the responses of the controller and the neurocon-
troller to this disturbance.

In the simulation results presented in this section, the power
system and the generators are all modeled in detail with all
their dynamics taken into account. However, the ideas set forth
in this paper can also be implemented in practice. Successful
hardware implementations of ACDs-based neurocontrollers for
power system components are reported in [30] and [36].
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VI. CONCLUSION

Dynamic programming provides truly optimal solutions to
nonlinear stochastic dynamic systems. However, for the ma-
jority of the real-life engineering problems, this technique is not
practical due to the curse of dimensionality. Even if practical, it
will be at the cost of tremendous computational effort. ACDs are
methods that combine the concepts of ADP with reinforcement
learning. These are techniques capable of providing near-op-
timal performance for the highly nonlinear nonstationary sys-
tems at the presence of noise and uncertainty, such as a power
system.

In this paper, an action dependent HDP-based neurocon-
troller, a member of the ACDs family, is designed for a
STATCOM connected to a multimachine power system. Two
case studies have been considered: a 10-bus 3-generator power
system and a 45-bus 10-generator system as a section of the
Brazilian power network and the results of several tests have
been presented. The proposed neurocontroller is capable of
controlling the highly nonlinear and nonstationary power sys-
tems in an optimal fashion. MLP neural networks are used for
implementing the neurocontroller, which is trained online and
does not require large amounts of offline data.

The effectiveness of the ACD controller is compared with that
of the tuned conventional PI controller for the STATCOM. The
many simulation results all indicate that the ACD controller is
more effective in responding to small-scale disturbances such as
step changes to the STATCOM voltage reference, as well as to
the large-scale faults such as three-phase short circuits and load
changes.

Explanations are provided for the training procedure of the
neurocontroller that could also be applied for other ACD neu-
rocontroller design problems in various applications.
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