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Dynamic Reoptimization of a Fed-Batch Fermentor
Using Adaptive Critic Designs
Mahesh S. Iyer and Donald C. Wunsch, II, Senior Member, IEEE

Abstract—Traditionally, fed-batch biochemical process op-
timization and control uses complicated off-line optimizers,
with no on-line model adaptation or reoptimization. This study
demonstrates the applicability of a class of adaptive critic designs
for on-line reoptimization and control of an aerobic fed-batch
fermentor. Specifically, the performance of an entire class of adap-
tive critic designs, viz., heuristic dynamic programming (HDP),
dual heuristic programming (DHP) and generalized dual heuristic
programming (GDHP), was demonstrated to be superior to that
of a heuristic random optimizer (HRO), on optimization of a
fed-batch fermentor operation producing monoclonal antibodies.

Index Terms—Dual heuristic programming (DHP), fed-batch
fermentor, generalized dual heuristic programming (GDHP),
heuristic dynamic programming (HDP), heuristic random opti-
mizer (HRO), monoclonal antibodies.

NOMENCLATURE

Concentration of amino acid in the reactor
(mass/volume) at any time.
Concentration of amino acid in the feed to the re-
actor as well as the concentration of amino acid in
the initial charge (mass/volume).
Concentration of dissolved oxygen in the reactor
broth (mass/volume) at any time.
Concentration of dissolved oxygen in the reactor
broth (mass/volume) at time .
Equilibrium solubility of oxygen in the broth
(mass/volume).
Concentration of the lactate in the reactor
(mass/volume) at any time.
Concentration of amino acid at which the specific
product synthesis rate is half its maximum value
(mass/volume) (A Michaelis–Menten constant).
Concentration of inhibitor at which the specific
death rate of cells is half its maximum value
(mass/volume) (A Michaelis–Menten constant).
Concentration of glucose at which the specific rate
of inhibitor formation is half its maximum value
(mass/volume) (A Michaelis–Menten constant).
Concentration of dissolved oxygen at which the
specific growth rate of cells has a factor of half
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contributed by the presence of dissolved oxygen
(mass/volume) (A Michaelis–Menten constant).
Concentration of glucose at which the specific
growth rate of cells has a factor of half contributed
by the glucose(mass/volume) (A Michaelis–Menten
constant).
Maximum value of the specific death rate of cells
(mass of dead cells/mass of viable cells/time).
Maximum value of the specific rate of inhibitor for-
mation (mass of inhibitor/mass of viable cells/time).
Volumetric liquid side mass transfer coefficient for
oxygen (time ).
Factor that accounts for the growth yield factor not
being equal to its maximum value (mass of glu-
cose consumed per unit mass of viable cells per unit
time).
Concentration of the product in the reactor
(mass/volume) at any time.
Volumetric flow rate of the feed into the reactor
(volume/time).
Concentration of glucose in the reactor
(mass/volume) at any time.
Concentration of glucose in the feed to the reactor as
well as the concentration of the glucose in the initial
charge (mass/volume).
Batch time.
Time.
Volume of the contents in the reactor at any time.
Volume of the initial charge in the reactor.
Concentration of dead cells in the reactor
(mass/volume).
Concentration of viable cells in the reactor
(mass/volume) at any time.
Concentration of viable cells in the reactor
(mass/volume) at time .
Maximum value of the growth yield factor (mass of
viable cells/mass of glucose consumed).
Yield of cell mass per unit mass of amino acid up-
take (mass of cells formed/mass of amino acid con-
sumed).
Yield of cell mass per unit mass of oxygen uptake
(mass of cells formed/mass of oxygen consumed).
Yield of cell mass per unit mass of substrate intake
(mass of cells formed/mass of glucose consumed).
Maximum specific rate of growth of cells (time).
Maximum value of specific product synthesis rate
(mass of product/mass of viable cells/time).

1045–9227/01$10.00 © 2001 IEEE
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I. INTRODUCTION

B IOCHEMICAL processes, producing high value end
products like vitamins, baker’s yeast, and antibiotics [1],

[2], are statistically nonstationary and, therefore, need con-
tinually adapting recipes for optimal performance. Fed-batch
fermentations have been widely investigated for both opti-
mization and control. Most of the optimization studies on
fermentations have reported the use of detailed theoretical
techniques [3]–[7], while very few [8], [9], have reported the
use of direct search techniques. Advanced control of biochem-
ical processes has also been simulated. These entail the use of
perfect models of the process. Of current interest is the use of
hybrid or single models involving neural networks, fuzzy logic,
expert systems, and first principles [3], [4], [6], [7]. In fed-batch
fermentations, the most important aspects to be considered are
the changes in process dynamics during the operation of the
batch and the consequent need to adjust the process model.
Once the model is altered, there is also a need to reoptimize
the process using the now available improved model. One
published approach used a heuristic random optimizer (HRO)
[9]–[12], for both off-line and on-line optimization.

We compare a variety of control schemes including off-line
optimization, on-line model reparameterization and on-line re-
optimization of a fed-batch fermentor using an entire class of
adaptive critic designs (ACDs) [13]. A rigorous phenomenolog-
ical model was used to represent the fermentation process, with
an intentionally different model for the optimizer (to account
for the process-model mismatch that exists in an industrial set-
ting). Off-line optimization was performed using the HRO. The
one-step IMPOL technique [14] was used for dynamic model
parameter adjustment. Model dependent designs of heuristic dy-
namic programming (HDP), dual heuristic programming (DHP)
and generalized dual heuristic programming (GDHP) [13] per-
formed on-line reoptimization. The process performance ob-
tained using each ACD was compared with that obtained using
the HRO for both just off-line optimization, as well as com-
bined off-line optimization and dynamic on-line reoptimization.
Although the study was conducted for a specific case of culti-
vation of mammalian hybridoma cells to produce monoclonal
antibodies [15]–[17], the development of all technologies used
here is perfectly general and is easily applicable to any batch
process that can be modeled.

II. THE BIOCHEMICAL GROWTH SYSTEM

The system studied for optimization and control was the in
vitro growth of hybridoma cells and the production of mon-
clonal antibodies by these cell lines. The cell culture medium
was complex, containing glucose as the main energy source. In
addition, about 15 amino acids were added to fulfil the cells’ re-
quirement for protein synthesis. Glucose was converted to lac-
tate through the glycolytic pathway and thence broken down to
carbon dioxide and water in the Krebs cycle [18]. High-energy
phosphates, in the form of ATP, were generated by the removal
of electrons and their tunneling through the electron transport
system. Amino acids could also be interconverted into fats and
carbohydrates and subsequently used to generate additional en-
ergy by entry into the Krebs cycle. The breakdown of amino

Fig. 1. Typical cell growth curve.

acids into two carbon fragments, which is required for intro-
duction into the Krebs cycle, resulted in the formation of ammo-
nium ions. Lactate and ammonium ions were the major cellular
waste products, whose accumulation caused feedback inhibition
of cellular metabolic processes.

Fig. 1 shows the typical profile of live cell concentration as a
function of fermentation batch time. The various phases of cell
growth that are depicted in Fig. 1 are the lag phase, the expo-
nential phase and the death phase. The lag phase is characterized
by an insignificant increase in cell population. The exponential
growth phase is characterized by a high rate of increase in cell
population. The maximum stationary phase is the stage where
the cell population has reached its maximum size and the death
phase is the stage where the rate of death of cells far exceeds
their rate of growth, resulting, thereby, in a significant reduc-
tion in cell population.

III. M ODEL DEVELOPMENT, ASSUMPTIONS, AND SOURCES OF

PROCESS-MODEL MISMATCH

Before delving into the details of model development, the
concepts of amodeland aprocess simulatormust be eluci-
dated. The process simulator refers to the simulation of an ac-
tual operating fermentor while the model refers to the math-
ematical description of the fermentor that a process engineer
would formulate. For this study, both the model and the simu-
lator were computer generated. However, for an actual operating
fermentor, only the model needs to be developed, while the op-
erating process would replace the simulator. In what follows, the
termprocesswill be used in lieu ofprocess simulator.

The detailed phenomenological model, used in this study, is
presented in Appendix A. Other results using a similar model
are presented in [9]. The process had almost the same form as
the model. However, differences were incorporated between the
model and the process to account for the fact that a process engi-
neer would never be able to perfectly model the process. The dif-
ferences incorporated can be broadly classified into three cate-
gories: functional mismatch, differences in values of parameters
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TABLE I
VALUES OF PARAMETERS USED IN THE MODEL AND PROCESS

TABLE II
DELINEATION OF CASES(1) AND (2)

and measurement errors like noise and bias. Table I lists values
of parameters that were used in the process and the model [16].
The value of was set to be the solubility of pure oxygen
in water at 35C [10], which is the typical culture condition
[11]. It should be noted, that different values of have been
quoted in literature.

Two case studies were formulated to investigate
process-model mismatch due to errors in estimating pa-
rameters. Case 1 featured an erroneously low estimate of

(specific death rate of cells), while Case 2 featured an
erroneously low estimate of (specific rate of inhibitor
formation). The values assumed by both the parameters in the
model and the process are presented in Table II.

IV. THE HRO

The HRO [12] uses three procedures in computing the op-
timum value of an objective function. The first procedure in-
volves the search for a feasible starting point for the optimiza-
tion to commence. This procedure is invoked only if the starting
point provided to the optimizer is infeasible and continues until
a feasible starting point has been found. The second procedure
is a gross search, where the optimizer yields a local vicinity of
the global optimum. The final procedure is a fine search, which
hones in on the global optimum. The HRO has the advantages
of constraint handling and scale independent stopping criteria.

The HRO has the following parameters that need to be se-
lected.

A. Mean and Standard Deviation for the Search

The mean for all variables was selected to be zero.
To start with, the standard deviation was selected for each

variable as a hundredth of the feasible range for the variable.
This was further modified by offline simulation so as to attain
the best optimizer performance.

B. Factor to Increase or Decrease the Mean Depending on
the Outcome of a Search

These factors were determined by trial and error so as to attain
the best optimizer performance during offline simulation.

C. Factor to Increase or Decrease the Standard Deviation
Depending on the Outcome of a Search

These factors were determined again by trial and error so as to
ensure best performance of the optimizer for offline simulation.

The HRO has been compared with a lot of different deter-
ministic optimization routines like Broyden–Fletcher–Shanno
(BFS), Fletcher–Reeves (FR), Davidson–Fletcher–Powell
(DFP), Cauchy, and other basic random search techniques [11]
on the Eason and Fenton function. The HRO has been found
to be superior to the above mentioned techniques in terms of
number of iterations taken to find the same optimum point.

Besides, the HRO was also found to be superior to the
deterministic Levenberg–Marquardt method, the BFS method,
the error backpropagation method, and the Nelder–Mead
method for neural network training [11], both in terms of iter-
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ation count as well as training error. Since the HRO has been
demonstrated to be competitive with deterministic optimization
schemes, there was no effort to compare it with sequential
quadratic programming (SQP), which is a standard algorithm
for nonlinear programming.

The comparison between ACD and HRO is, admittedly, not
an exhaustive study. However, given the superiority of the HRO
to several optimization schemes, it was chosen as a reasonable
tool to benchmark the performance of the ACDs.

V. OFF-LINE OPTIMIZATION

The generic approach, for off-line optimization, was to deter-
mine the values of the following variables, so as to maximize
the average production rate per batch:

concentration of glucose in the continuous feed to
the process, as well as in the process at the start of
fermentation;
concentration of amino acid in the continuous feed
to the process, as well as in the process at the start
of fermentation;
volume of the reactor contents at the start of fermen-
tation;
feed rate to the reactor in the first reaction stage
where there is a net increase in the population of
cells with time;
feed rate to the reactor in the second reaction stage
where there is a net decrease in the population of
cells with time;
initial inoculum of viable cells;
operating batch time;
concentration of dissolved oxygen at the start of fer-
mentation .

As reported above, the feed rate to the reactor,, was not
considered to be a unique value. Instead, two stages of opti-
mization were considered for , where would be unchanged
within a stage but would change from one stage to the other. The
first stage corresponded to the phases of the growth-cycle that
resulted in a net increase in total cell population with time {a
positive value of }, while the second stage corre-
sponded to the phases of the growth-cycle that resulted in a net
decrease in total cell population with time {a negative value of

}.
The concentration of dissolved oxygen at the start of fermen-

tation was considered to be the decision variable, in lieu of the
mixer speed or air flow rate, since either of the last two would
effectively result in a certain dissolved concentration of oxygen.
For a more thorough analysis and to allow the possibility of
varying the mixer speed on-line, it is recommended that future
studies use the mixer speed or air flow rate as both an off-line
and on-line optimal decision variable.

Finally, instead of searching explicitly for the batch time,
the same was determined as the time when the process hit the
volume constraint (5 L in this case) or when the average produc-
tion rate dropped, whichever happens earlier. The latter concept
is applicable here since it has been observed [9] that the average
production rate of antibodies is a unimodal function of the op-
erating fermentation time.

TABLE III
VALUES OFDECISIONVARIABLES OBTAINED BY OFF-LINE OPTIMIZATION

Fig. 2. Comparison of product concentration profiles along the off-line
optimal recipe schedule for case (1).

The best off-line optimization results, obtained from multiple
random starts, are given in Table III.

The model and the process were both integrated along the
recipe schedule(the sequence of staged changes in the feed rate)
specified by the off-line optimizer. Fig. 2 shows a comparison
of trajectories for the product concentration, as predicted by the
model and as measured in the process, under off-line optimal
operating conditions (case 1 only). It is seen that the model pre-
dicted a much higher value of the final product concentration as
compared to what would be attainable in the process. This was
true for case (2) also (simulation not shown). This difference is
a result of process-model mismatch.

VI. DEVELOPMENT OFACDS

The application of the entire class of ACD [12], [22] was
based on the block diagram in Fig. 3. The action network had,
as inputs, the system state at any time. Output from the action
network, which constituted the feed rate of nutrients to the re-
actor, at the current system state, served as inputs to the process
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Fig. 3. Implementation details of action network.

and the model. The model predicted state at the next sampling
was the next input to the action network and progressively this
procedure was continued till the end of the batch. The end of the
batch operation was determined by either a decrease in average
production rate, or a measurement of process volume greater
than 5 L, whichever occurred earlier.

It is important to note that the critic network is not depicted
in Fig. 3, thus implying its absence in the implementation of
ACD. However, the critic network was a very essential element
involved in the training of the action network, as will be evi-
dent later. Outlined below is the procedure used to obtain the
trained action and critic networks for each of the model depen-
dent adaptive critic designs that was investigated.

VII. HDP

A. Training of Critic

The critic was a 9-10-1 self-organizing feedforward network,
trained to estimate the Bellman cost function [19], , asso-
ciated with each system state. There was no one-step penalty
imposed on any state since a reference state was not known ac-
curately. In other words, the critic was trained, using error back-
propagation [20], to minimize the following error for all states.

(1)

Here refers to the Bellman cost function associated
with the system state at the next sampling. The inputs to the
network were the system state (eight inputs that comprised the
volume of reactor contents and concentrations of seven state
variables) and the remaining time of operation (ninth input). The
remaining time of operation was used an input to the critic since
it is a variable factor that directly influences the Bellman cost of
operating along a particular trajectory. To cite an example, if
a particular trajectory of optimal decision variables is adapted
for a bioreactor operation, the time for which that particular tra-
jectory is used decides the cost of operating along that certain
trajectory. The discount factor,, was determined by trial and
error to have a value of 0.5.

B. Training of Action

The action network was a 9-5-1 feedforward network that was
trained, using the node decoupled extended Kalman filter [21],
to predict the feed rate to the reactor that would minimize the
cost function predicted by the critic network. In other words, the

error, which the action network was trained to minimize, was the
gradient of the cost function relative to the control action given
by the action network, i.e., . Here, is the
vector of manipulated variable moves predicted by the action
network. The gradient, was obtained using (2) below.

(2)

Here was obtained using the architecture
of the critic network, corresponding to the predicted system state
at the next sampling as the inputs, while was
obtained using the architecture of the action network.

Eight of the nine inputs to the action network were the
system state, while the ninth input was the sign of the quantity,

, i.e., sign of the rate of change of total viable cell
mass with time. This was included to ensure that comparisons
of performance with the HRO (which utilized the above
information while arriving at the feed rate) were meaningful.

VIII. DHP

A. Training of Critic

The critic was a 9-10-9 self-organizing feedforward network,
trained to estimate the gradient of the Bellman cost function
with respect to the system state. Again, there was no one-step
penalty imposed on any state. The following error was mini-
mized for all states:

(3)

The value of was again 0.5. The gradient, ,
was evaluated as

(4)

Here was obtained as outputs from the
critic network, corresponding to the predicted system state at
the next sampling as the network inputs, and
was obtained using the dynamic model and the architecture of
the action network as per (5)

(5)

Values of were simply the outputs of the critic
network, corresponding to inputs comprising the current system
state.

B. Training of Action

The action network had exactly the same configuration and
function as for HDP. There was no difference in the training
procedurevis-a-visHDP. The error vector for training was ob-
tained using (2). The first factor on the right-hand side of (2)
was obtained as outputs from the critic network, when the pre-
dicted system state the next sampling was the network input.
The second factor on the right-hand side of (2) was obtained
using the model.
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IX. GDHP

A. Training of Critic

The critic was a 9-10-10 self-organizing feedforward net-
work, trained to estimate both the Bellman cost function, as well
its gradient with respect to the system state. Again, there was no
one-step penalty imposed on any state. The error minimized was
the sum of the errors minimized for HDP and DHP. The network
inputs were the same as those for either of HDP and DHP. The
various gradients were evaluated similar to DHP.

B. Training of Action

The action network had exactly the same configuration and
function as for either of HDP and DHP. The evaluation of var-
ious gradients was similar to DHP, as was the training procedure.

It is worth noting that the critic in each of the three cases, viz.
HDP, DHP, and GDHP had different configurations due to the
different functions. While the critic estimated only the Bellman
cost function in the case of the HDP, it estimated the gradient of
the cost function in case of DHP. The functionality of critic in
GDHP was, in effect, the summation of its functionality in HDP
and DHP.

X. MODEL REPARAMETERIZATION: THE IMPOL TECHNIQUE

The IMPOL technique [14] is a one-step application of
Newton’s method, per control interval, to update a model
parameter using the actual process-model mismatch (PMM)
and the model sensitivity to the parameter.

Consider a dynamic process at an operating point in time,
where the state variable(whose mismatch is to be eliminated)
assumes a measured value . Further, let represent the
value of the state variable predicted by a dynamic model used
to represent the process. Owing to unavoidable sources of PMM
described above, and are never equal. The PMM is
defined as

PMM (6)

If the mismatch is to be eliminated by adjusting the value of
a particular model parameter, then a one-step application of
Newton’s method would yield

PMM
PMM

(7)

where is the update time interval. Equation (7), being a
one-step algorithm, could overestimate changes in the param-
eter due to numerical instabilities. Further, noise on measure-
ments could contaminate . Hence a relaxation coefficient,
of the order of 0.1, is multiplied with the second term of (7), re-
sulting in (8) below

PMM
PMM

(8)

The use of (8) is deemed sufficient for model adjustment insofar
as control relevant issues are concerned. The adjustment of the
model, at every sampling, in a one-step mode should suffice in

Fig. 4. Comparison of product concentration profiles along the various
optimal operating schedules for case (1).

Fig. 5. Comparison of product concentration profiles along the various
optimal operating schedules for case (2).

keeping PMM to a desirably low value, obviating, thereby, the
need for a complete iterative Newton’s technique to eliminate
the mismatch.

XI. DYNAMIC MODEL REPARAMETERIZATION AND ON-LINE

REOPTIMIZATION USING HRO AND ACD

The sequential strategy used for on-line reoptimization is as
follows.

1) The product concentration in the process was measured.
(Noise was incorporated in the measurement to account
for random measurement errors.)

2) The extent of PMM was estimated using (6).
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Fig. 6. Comparison of annual recovered production of antibodies per batch along various optimal operating schedules for case (1).

3) The PMM was eliminated using the IMPOL technique.
The parameter , representing the maximum value of
the specific product synthesis rate in (A13) was selected
for adjustment since it is directly involved in the rate of
product formation. [This can be seen by combining (6)
and (A13) in Appendix A.] The realization of (8) that was
used for adjustment of was

PMM
(9)

4) Once model adjustment was performed, both HRO and
adaptive critic designs were utilized for on-line reopti-
mization. Both were utilized to determine only the feed
rate to the reactor. The remaining time of operation was
determined as described previously, i.e., to ensure that the
system does not hit the volume constraint, while main-
taining the highest possible average production rate of
the desired product. While using adaptive critic designs
for on-line reoptimization, there was no on-line retraining
of either the action and critic networks. Any changes in
the model (due to model adjustment to eliminate process-
model mismatch) were reflected solely in the system state
(that acted as an input vector to the networks). While

on-line retraining of the networks is certainly realizable, it
was found that the same was not warranted for this system
to produce true optimal process performance.

At this juncture, it should be clained again that at no time was
the biochemical system modeled using neural networks. The
system model was a dynamic model based on first principles,
with model adjustment performed using the IMPOL technique.
Only static neural networks were employed for ACDs since both
the critic and action networks need to just provide an estimate
of the cost of operation and manipulate the flows into the re-
actor to minimize the cost of operation, respectively. Neither of
the above functions requires information on process dynamics
explicitly. What is required, fundamentally, though is on-line
dynamic retraining of the critic and action networks. However,
one of the strong points of ACDs is their robustness in the face
of model uncertainties, since adaptive critic designs behave as
a low-pass filter. Hence, on-line retraining of critic and action
networks was eliminated from this study.

XII. COMPARISON OFRESULTSUSING HRO AND ACD

In order to maintain clarity, the dynamic product concentra-
tion profiles are shown for off-line optimal trajectory (using
HRO) and on-line optimal trajectories using the HRO and only
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Fig. 7. Comparison of annual recovered production of antibodies per batch along various optimal operating schedules for case (2).

DHP from the class of ACDs, in Figs. 4 and 5, for Cases (1) and
(2), respectively. Figs. 6 and 7 depict the annual product yields
obtained using all the optimization strategies, for Cases (1) and
(2) respectively. It is clearly seen that, in either case, the en-
tire class of adaptive critic designs outperformed both off-line
and on-line HRO insofar as average production rate was con-
cerned. Specifically, for Case (1), the average off-line optimal
production rate was 64.5 g/annum per batch. On-line reopti-
mization, using the HRO, resulted in an average production rate
of 67.8 g/annum per batch. The use of HDP resulted in an av-
erage production rate of 82.06 g/annum, per batch while the cor-
responding figures were 80.5 and 82.9, respectively, for DHP
and GDHP. A similar improvement in product yield was ob-
served for Case (2) also, as noted from Fig. 5.

Figs. 8 and 9 are representative plots that depict the varia-
tion of the decision variables, viz. the feed rate and operating
batch time, respectively, along various optimal trajectories ob-
tained using HRO and DHP for Case (1). It should be noted here
that the severe changes in feed rate shown in Fig. 8 were per-
mitted only to test the efficacy of DHP. As experts in the field
of biochemical engineering are aware, such severe changes are
typically avoided on a real fermentation process. They could be
included as part of a control study by limiting the rate of change
of feed rate that is set by the optimizer.

The feed rate profiles depicted in Fig. 8 throw up an inter-
esting analysis. The feed rate profile obtained by DHP (Fig. 8)
shows a low feed flow rate at the start of the fermentation
process. During this time, the cells are typically in their
lag phase and hence, the DHP realizes that it would not be
economical to increase the feed rate. However, once the cells
enter their exponential growth phase, the feed rate is increased
highly. This results in a very high concentration of the substrate
(glucose), which consequently increases the cell growth rate
even further since the growth rate is directly proportional to the
substrate concentration [18]. This results in very high rate of
product formation during this phase. However, later, the feed
rate is cut back slightly so as to ensure that the production of
lactate does not cause the death rate of cells to be higher than
the growth rate, i.e., effectively to avoid the cell cultivation to
go the death phase.

On the other hand, both the offline and online HRO schemes
consistently maintain higher feed rate of nutrients during the
lag phase (where there is no cell growth that could result in
useful product) and less flow rate during the exponential growth
phase (during which the bulk of the product is formed). Hence,
the productivity using either offline or online HRO scheme is
expected to be lower even theoretically and it is validated by
experimental results.
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Fig. 8. Comparison of profile of feed rates along various optimal operating schedules.

Fig. 9. Comparison of operating batch times along various optimal operating schedules.

In addition to improved productivity, the use of ACDs offers
significant advantages over traditional direct search optimiza-
tion routines like the HRO.

1) ACDs facilitate easy constraint handling via penalty
functions and bounded activation functions in neural
networks.
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2) With traditional optimization routines, improvements in
the model are translated into improved optimal operation
only by dynamic reoptimization. However, with ACD,
even no on-line retraining results in significant improve-
ments as opposed to both off-line and on-line optimal op-
eration using conventional optimizers like HRO. This is
due partly to the fact that the system state (that reflects
changes in the model) is explicitly used while computing
the control action and also due to the fact that ACDs are, in
general, robust with respect to model uncertainties [22].

XIII. C ONCLUSION

This study demonstrates the applicability of a simple scheme
for off-line optimization and on-line model parameter adjust-
ment and reoptimization using ACDs. The significant benefits
in production, obtained by the use of ACD, is a pointer to pos-
sible avenues in exhaustive application of ACDs in the field of
bioreactor optimization.

APPENDIX

The phenomenological model of a fed-batch fermentor is as
follows.

A. The Overall Mass Balance on the Reactor Contents

(A1)

The term on the left refers to the net rate of change in the volume
of the reactor contents and the term on the right is the feed flow
rate into the reactor. Liquid density is assumed constant.

B. The Mass Balance on Viable Cells

(A2)

The term on the left refers to the net rate of change of the total
mass of viable cells in the reactor, the first term on the right
gives the rate of increase in cell population due to growth and
the second term on the right describes the rate of decline in cell
population due to death.

C. The Mass Balance on Dead Cells

(A3)

The term on the left refers to the net rate of change of dead cell
population in the reactor and the term on the right is the rate of
increase in dead cell population.

D. The Mass Balance on Dissolved Oxygen

(A4)

The term on the left refers to the net rate of change of dissolved
oxygen content in the fermentation broth, the first term on the
right describes the rate of transfer of oxygen from the gas phase
while the second term on the right describes the rate of con-
sumption of oxygen during cell growth.

E. The Mass Balance on Glucose

(A5)

The term on the left refers to the net rate of change of total
amount of glucose in the reactor, the first term on the right gives
the rate of inflow of glucose to the reactor and the second term
on the right gives the rate of consumption of glucose during cell
growth.

F. The Mass Balance on the Antibody

(A6)

The term on the left describes the net rate of change of the total
amount of antibody in the reactor and the term on the right de-
scribes the rate of antibody formation in the reactor.

G. The Mass Balance on the Lactate

(A7)

The term on the left describes the net rate of change in the in-
hibitor concentration in the reactor and the term on the right
describes the rate of increase of inhibitor concentration in the
reactor.

H. The Mass Balance on the Amino Acid

(A8)

The term on the left refers to the net rate of change of total
amount of amino acid in the reactor, the first term on the right
gives the rate of inflow of amino acid to the reactor and the
second term on the right gives the rate of consumption of amino
acid during cell growth.

The variation of some process parameters as functions of
process states is described below.

1) The Specific Rate of Growth of Cells : In the
model

(A9A)

In the process

(A9B)
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Here, it should be noted that if the effect of substrate concentra-
tion on the specific growth rate is negligible, then would
be the concentration of dissolved oxygen that would yield a spe-
cific growth rate, which is half of the maximum possible. On the
other hand, if the concentration of dissolved oxygen had a neg-
ligible effect of the specific growth rate, then the value of is
the concentration of substrate that yields a specific growth rate,
which is half of the maximum possible.

Further, as experts in the field would be aware, the specific
growth rate of cells could be represented by a factor that ac-
count for effects of amino acid concentration. However, since
the substrate is typically the limiting nutrient and since the aim
of this study was to test the efficacy of adaptive critic designs,
this factor has been omitted from this study. It is recommended
that more detailed equations be used for a more rigorous anal-
ysis.

2) The Specific Rate of Death of Cells : In the model

(A10A)

In the process

(A10B)

3) The Growth Yield Factor : In both the model and
process

(A11)

In cell cultivation, the instantaneous yield of cell mass per unit
consumption of glucose ( ) is a function of glucose and
oxygen concentration in the fermentation broth. There is a cer-
tain concentration of the glucose and of oxygen when the in-
stantaneous yield is a maximum ( ). For other concentra-
tions of glucose and oxygen, the yield is less than the maximum.
This effect is modeled in (A11) above by the introduction of a
nonzero factor . So long as is nonzero, the value
of will always be less than . The value of was
selected so as to ensure that at a specific growth rate, equal to
the maximum specific growth rate , the instantaneous yield
of cell mass was about 95% of the maximum yield factor. How-
ever, the selection of this number will not have a bearing on the
results of optimization. A different value for m would only re-
sult in a different trajectory for cell growth and, consequently, a
different trajectory for product formation.

Further units on m are mass of glucose consumed per unit
mass of cells per unit time while units on are time .
Hence the ratio, , has the same units as those of
either or , viz. mass of glucose consumed per
unit mass of viable cells produced.

4) The Specific Rate of Inhibitor Formation:In the model

(A12A)

In the process

(A12B)

5) The Specific Product Synthesis Rate:In the model

(A13A)

In the process

(A13B)
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