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Pulse Regulation Control Technique
for Flyback Converter

Mehdi Ferdowsi, Member, IEEE, Ali Emadi, Senior Member, IEEE, Mark Telefus, and Curtis Davis

Abstract—Pulse regulation, a fixed frequency control technique,
is introduced and applied to flyback converter operating in dis-
continuous conduction mode (DCM). The control parameters are
designed in a way that the converter operates as close as possible
to the critical conduction mode. In contrast to the conventional
pulsewidth modulation control scheme, the principal idea of pulse
regulation is to achieve output voltage regulation using high and
low-power pulses. Pulse regulation is simple, cost effective, and en-
joys a fast dynamic response. The proposed technique is applicable
to any converter operating in DCM. However, this work mainly
focuses on flyback topology. In this paper, the main mathematical
concept of the new control algorithm is introduced and simulations
as well as experimental results are presented.

Index Terms—Critical conduction mode (CCM), dc–dc power
converters, discontinuous conduction mode (DCM), flyback con-
verter, switch mode power supplies.

I. INTRODUCTION

DUE to high efficiency and high power density as well as
reduced costs, switched mode power supplies (SMPS) are

now becoming more popular compared to the linear power sup-
plies [1]. This topology perfectly suits off-line low-cost power
supply applications due to the facts that it provides input-output
isolation and the number of its semiconductor and magnetic
components is less than other SMPS.

Flyback converter has been employed operating both in con-
tinuous conduction mode (CCM) and discontinuous conduction
mode (DCM) as well as critical conduction mode, i.e., at the
boundary between CCM and DCM [2], [3]. Compared with
CCM, critical conduction mode enjoys benefits such as zero
current turn-on of the switch and zero current turn-off of the
freewheeling diode. These soft switching transitions reduce
the switching losses as well at the electromagnetic interference
(EMI) noise [4]. Critical conduction mode has less current
stress than DCM and higher current stress than CCM. Further-
more, the transfer function of the flyback converter operating
in critical conduction mode is of order one; thus, the feedback
compensation is less complicated than CCM. However, despite
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Fig. 1. Block diagram of pulse regulation control scheme.

the advantageous benefits of critical conduction mode, its major
drawback is the variations of the switching frequency of the
converter as the output load changes.

This paper introduces pulse regulation, a fixed frequency con-
trol technique, which regulates the output voltage based on the
presence and absence of high-power and low-power pulses and
makes the flyback converter operate as close as possible to the
critical conduction mode. This control scheme offers a faster dy-
namic response compared with pulsewidth modulation (PWM)
control method [5]–[7]. Pulse regulation is simple, cost effec-
tive, and robust against the variations of the parameters of the
converter.

In this paper, Section II introduces the basic concepts of the
new control algorithm. Section III investigates the stability of
the proposed control scheme. In Section IV, a comprehensive
analysis of the output voltage ripple is presented. Experimental
results of applying Pulse Train technique on a flyback converter
are presented in Section V. Finally, Section VI draws conclu-
sions and presents an overall evaluation of this new control
technique.

0885-8993/$20.00 © 2005 IEEE
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Fig. 2. High and low-power pulse cycles.

Fig. 3. Simulation results of the pulse regulation control of flyback converter; (top) magnetizing inductor current (A) and (bottom) output voltage ripple (V) versus
time (s).

II. PULSE REGULATION CONTROL SCHEME

Pulse regulation control algorithm achieves output voltage
regulation based on generating high and low power pulses,
rather than employing PWM control technique. If the output
voltage is lower than the desired level, the controller chooses

to be the duty ratio and therefore, high-power pulses are
generated sequentially until the desired voltage level is reached.
On the other hand, if the output voltage is higher than the
desired level, instead of generating the high-power pulses, the
controller chooses ( ) to be the duty ratio and
hence, low-power pulses are generated to descend the level of
the output voltage. Fig. 1 depicts the block diagram of the pulse
regulation control technique. Due to the longer on time of the
switch during a high-power pulse, compared to a low-power
pulse, more power will be delivered to the load. The switching
frequency is constant and is chosen in a way that the con-
verter operates in DCM but as close as possible to the critical
conduction mode. Critical conduction mode occurs when the
input voltage is at its maximum level. , the ratio between duty
cycle of the switch in a high-power cycle and duty cycle
of the switch in a low-power cycle , is chosen by making a
compromise between the output voltage ripple and the power
regulation range from full load to low load.

Considering a flyback converter, Fig. 2 depicts the current
waveform of magnetizing inductance of the transformer
after pulse regulation is being applied. At the beginning of each

switching cycle, output voltage is being sampled and based on
the difference of the output voltage with the desired voltage
level, pulse regulation controller decides whether a high-power
or a low-power cycle needs to be generated. Since the input cur-
rent ramps linearly with the on-time of the switch, the amount
of energy that is drawn from the input power source in a high-
power cycle is equal to

(1)

while the amount of energy that is drawn from the input power
source in a low-power cycle is equal to

(2)

Therefore a low-power pulse transfers just time as much
energy as a high-power pulse. Output voltage sampler and the
driver of the switch of the converter are synchronized, therefore
the switching frequency is constant and the output voltage is
being sampled only once during each switching period.

Fig. 3 shows the simulation results of applying this control
method on a flyback converter with parameters defined in
Table I. For this specific value of the output power demand,
the control scheme generates two high-power pulses and one
low-power pulse in each regulation cycle. Since the input
voltage is not at its maximum level, the current of the magne-
tizing inductor is slightly operating in DCM.
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Fig. 4. Simulation results of the output voltage variation after a step load change of 30% to 65% of full-load: (a) pulse regulation and (b) PWM.

TABLE I
DEFINITION OF VARIABLES

Pulse regulation enjoys on-line waveform analysis and,
hence, fast dynamic response. Fig. 4 compares the speed of
response of pulse regulation with a typical PWM control to
a step load change of 30% to 65% of full load. Arrows in
this figure mark the time instant at which the step change has
applied. As we can observe, pulse regulation has a much faster
speed of response in contrast with PWM.

III. STABILITY ANALYSIS

Considering a general switching period, as shown in Fig. 5,
and based on the energy conservation rule, one can write

(3)

where is the amount of energy that has been drawn from
the input power source during the considered switching period.

is the difference of the energy stored in the magnetizing
inductance of the transformer and is equal to zero since
de-energizes at the end of each switching period. is the
change of the energy stored in the output capacitor during the
same switching period, which can be described as

(4)

Fig. 5. General switching period.

And finally, is the amount of energy delivered to load
during the same period. Output capacitor provides the load

current; hence, we can write

(5)

In (5), using the trapezoidal rule instead of integration, we
can approximate as

(6)

Moreover, the energy stored in a capacitor at each instant is
equal to the squared value of the voltage that appears across the
capacitor divided by twice the value of the capacitor; hence, (6)
can be rewritten as

(7)

Substituting (4) and (7) into (3) and solving for the energy
stored in the output capacitor at the end of the desired switching
period, one obtains

(8)

where

(9)

Equation (8) shows the recursive relation of the energy stored
in the output capacitor as a function of circuit parameters. In
(9), has been trivially assumed to be positive, due to the de-
sign fact that the switching period of converters is much smaller
than the time constant of the output RC circuit. We need to note
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Fig. 6. Sequential evolution of high and low power pulses.

that is always less than one; therefore, the converter is stable
under any pattern of high and low-power pulses in the closed
loop system. Using the input current, can be described as

(10)

where, for a high-power pulse, we have

(11)

and for a low-power pulse, we have

(12)

Therefore, in the closed loop control, the controller makes the
decision of generating a high or low-power pulse, such that

high power pulse

low power pulse

(13)

An example of the time-evolution of the sequence of high and
low power pulses, in a closed loop system and based on (8) and
(13), is depicted in Fig. 6. In this figure, based on the initial
value of the output voltage, two high-power pulses followed by a
low-power pulse are generated. The closed loop system is stable
under any conditions of the initial energy stored in the output
capacitor. In Fig. 6, the energy level corresponding to is
depicted as and is equal to

(14)

IV. OUTPUT VOLTAGE RIPPLE

Stability analysis does not determine the output voltage
ripple. Hence, the circuit differential equations need to be
solved to predict the output voltage ripple. Fig. 7 depicts the
switching period of a high power cycle. The new notations that

Fig. 7. Switching period of a high power cycle.

will be used are; is the time period in which the switch
is on, is the time period during which the diode conducts
and the time period in which both the switch
and diode are off.

During time intervals and , diode is off, hence the
output capacitor discharges through the load and the output
voltage decreases. In a high-power cycle, assuming that the
output voltage is at its desired level , the changes of
the output voltage can be written as

(15)
During time interval , diode conducts and charges the

output capacitor, hence the output voltage increases. Assuming
that the magnetizing current decreases linearly and the output
voltage variation is small, the increase of the output voltage
during on time of the diode can be obtained solving the dif-
ferential equation and is equal to

(16)

where and
.

The total changes of the output voltage after applying a high-
power pulse is the summation of the above two extracted values
and can be estimated as

(17)

Equation (17) depicts how different circuit parameters involve
in the generation of output voltage ripple. Fig. 8 sketches

as a function of the load for different values of .
As a high-power pulse, we expect to have positive values of

for the entire load range. Therefore, 0.35 are
good choices for the value of the duty cycle in a high-power
pulse. As the values of decreases, the functionality of
high-power pulses deteriorates and gets similar to a low-power
pulse. In order to be in the DCM operating condition, the
maximum value of is determined by

(18)
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Fig. 8. �v as a function of load for different values of D .

Fig. 9. �v as a function of load for different values of output capacitor
C .

Fig. 9 depicts as a function of load resistance for dif-
ferent values of output capacitor . Choosing the right value of
output capacitor provides the desired range of output resistance
in which output voltage regulation is attainable.

Continuing the same procedure for a low-power cycle, we
can easily get that the total changes of the output voltage after
applying a low-power pulse is equal to

(19)

and , for the parameters defined in
Table I, as functions of the load resistance are sketched in
Fig. 10. As we can observe, the control scheme tries to reg-
ulate the output voltage by generating the right number of
high-power and low-power pulses in each regulation cycle. As
the output power increases, decreases; but
increases. This fact implies that, in each regulation cycle at a
higher output power level, the control strategy prefers to have
more high-power pulses rather than low-power pulses and vice
versa in light loads. The value of the output load resistance
at which the two graphs cross each other is the value of the
load, which requires one high-power pulse associated with one
low-power pulse in each regulation cycle.
as a function of load resistance is shown in Fig. 11. As the
value of the load increases the ratio of

Fig. 10. �v and ��v as functions of load resistance.

Fig. 11. �v =��v as functions of load resistance.

TABLE II
HIGH AND LOW POWER PATTERN PREDICTION IN ONE REGULATION CYCLE

increase as well. Using Figs. 10 and 11, the patterns of high
and low power pulses in a regulation cycle for a specific value
of the load resistance can be extracted. Table II shows some
examples of this case.

According to Table II, for instance, when , we
have which predicts for this value of
load, in each regulation cycle, the controller generates three low-
power pulses associated with each high-power pulse. Therefore,
first we calculate and ((17) and (19)) asso-
ciated with each value of , then we find two integers as this
equation holds

(20)

Where and represent the number of high-power and
low-power pulses in each regulation period. For any value of

and and with any degree of precision, we
would be able to find integer numbers for and . However,
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the regulation cycle would be very long if and do not
have a large common multiple. Practically, this doesn’t happen
due to two reasons, a) the value of load is not absolutely
invariant and b) a large regulation cycle can be subdivided
to smaller intervals, where instead of (20), this equation

holds, as can be seen on the first
and last row of Table II. In a high-power cycle, we can express
the average value of the diode current as

(21)

The on time of the switch during a low-power pulse is of
the on time of the switch in a high-power pulse and, hence, for
a low-power pulse, we can write

(22)

In the steady state operation, if there are high-power pulses
associated with low-power pulses in each regulation cycle,
then the average value of the diode current is

(23)

By noting that and, by solving for the load resis-
tance, one obtains

(24)

Equation (24) shows how different parameters like input
voltage, output voltage, output load resistance, , and
affect the pattern of high and low power pulses. This equation
is being used through the design procedure.

V. EXPERIMENTAL RESULTS

Using the derived formulation in the previous section, a 90-W
prototype dc-dc flyback power supply with 135 165 V,

19 V, and switching frequency of 100 KHz was designed
and developed. Using the parameters introduced in Fig. 7, we
can write

(25)

In order to make the converter operate as close as possible to
the critical conduction mode, we need to make sure that
is as close as possible to , which using (25) leads to

(26)

Using (26), for the maximum value of the input voltage, gives
us an upper limit for the value of .

A TMS320LF2407 digital signal processor was used to im-
plement the suggested control scheme. This DSP has integrated
peripherals specifically chosen for embedded control applica-
tions. These include analog to digital (A/D) converters, timers,
protection circuitry, serial communications, digital to analog
(D/A) converters, and other functions. Most instructions for the

Fig. 12. Experimental results of (a) input current (2 A/div), (b) secondary
current of transformer (6 A/div), and (c) output voltage ripple (0.1 V/div) versus
time (5 �s=div).

Fig. 13. Experimental results of applying a step load change; (a) input current
(2 A/div) and (b) output voltage ripple (0.5 V/div) versus time (10 �s=div).

F240, including multiplication and accumulation (MAC) as one
instruction, are single cycle. Therefore, multiple control algo-
rithms can be executed at high speed, thus making it possible
to achieve the required high sampling rate for good dynamic re-
sponse. An external circuitry, using an operational amplifier, has
been utilized to bring down the level of the output voltage to the
measurable range of the ADC. Duty cycle was presented by an
8-bit binary digit while the resolution of the ADC’s was chosen
to be 7-bit.

Fig. 12 depicts the experimental results of the primary and
secondary currents of the transformer as well as the output
voltage ripple. In this figure, a low-power pulse follows each
high-power pulse. Fig. 13 depicts the experimental results
of the input current and output voltage ripple for a 30% to
65% step load change. The vertical arrow specifies the instant
at which the step change is applied. As we can observe, the
pattern of high and low power pulses changes after the step load
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Fig. 14. Experimental results of applying a step load change: (a) pulse
regulation (1 V/div) and (b) PWM controller (1 V/div) versus time
(200 �s=div).

change and the density of the number of the high power pulses
increase upon load demand. The transient response of pulse
regulation is so fast that no disturbance at the output voltage
can be observed after the load step change. Fig. 14 compares
the transient response of pulse regulation with PWM control
method.

VI. CONCLUSION

Flyback power converter has found its way into many applica-
tions. To address the challenge of designing a simple controller
for this type of converters, this paper introduces the new pulse
regulation control technique. This technique is mainly designed
for power converters operating in DCM. Pulse regulation enjoys
several advantages over conventional control techniques, such
as simplicity of design and implementation, accuracy, and fast
transient response. Furthermore, pulse regulation makes power
converters to operate in fixed switching frequency yet as close as
possible to critical conduction mode to reduce the current stress
of the elements of the power circuit on one hand and enjoy bene-
fits of DCM operational mode on the other. However, do to using
two discrete duty cycles; output voltage ripple might be higher
than PWM-based controllers. Simulation and experimental re-
sults completely match with the theoretical concept.
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