
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Sep 2008

Hardware Implementations of Swarming Intelligence -- A Survey Hardware Implementations of Swarming Intelligence -- A Survey

Cameron Eric Johnson

Parviz Palangpour

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
C. E. Johnson et al., "Hardware Implementations of Swarming Intelligence -- A Survey," Proceedings of the
2008 IEEE Swarm Intelligence Symposium (2008, St. Louis, MO), Institute of Electrical and Electronics
Engineers (IEEE), Sep 2008.
The definitive version is available at https://doi.org/10.1109/SIS.2008.4668331

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229168276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SIS.2008.4668331
mailto:scholarsmine@mst.edu

2008 IEEE Swarm Intelligence Symposium
St. Louis MO USA, September 21-23, 2008

978-1-4244-2705-5/08/$25.00 ©2008 IEEE

Abstract—Swarming Intelligence (SI) is the property of a
system whereby the collective behaviors of (unsophisticated)
agents interacting locally with their environment cause
coherent global patterns to emerge. Because there are no
central processing requirements, SI is ideal for parallelization,
which lends it well to hardware implementations in many
inexpensive processors. Several implementations in hardware
that exploit this property for rapid calculation and inexpensive
construction are highlighted in this paper to provide a good
starting point for developing hardware platforms for SI
algorithms.

I. INTRODUCTION
WARMING Intelligence (SI) is an emergent behavior of
multiple unsophisticated agents interacting with each

other and their environment. Among the most common
forms of swarming intelligence are Particle Swarm
Optimization (PSO) [1], [2], Ant Colony Optimization
(ACO) [3], [4], Honey Bee swarming [5], and bacterial
foraging [6]. Hardware implementations on parallel systems
can greatly speed up SI algorithms by dividing the
independent agents up amongst multiple processing units.
To the knowledge of the authors, there have not yet been any
hardware implementations of honey bee swarming or
bacterial foraging algorithms.

In this paper, several recent hardware applications and
implementations of SI are surveyed and analyzed, including
hardware optimization, hardware implementations of PSO
and ACO algorithms, and real-world implementations of SI
for sensor systems and other mobile robotics applications.
By compiling several of the most recent hardware
applications and implementations of SI here, it is hoped that
this paper may serve as a starting point for any research into
advancing SI in the hardware realm, especially in the area of
real-time applications. Due to space limitations, this paper
focuses mainly on PSO and ACO, leaving discussion of
honey bee swarming and bacterial foraging algorithms for
another work. The paper is presented in the following
format: Section II details the two primary swarming
intelligence algorithms, PSO and ACO. Section III examines
hardware implementations of PSO designed for use in the
training of neural networks. Section IV contains information

Manuscript received June 15, 2008.
The funding from the National Science Foundation (USA) CAREER

Grant ECCS #0348221 and the US Dept. of Education GAANN program,
award #P200A070504-08, is gratefully acknowledged for this research by
the authors.

C. Johnson, G. K. Venayagamoorthy and P. Palangpour are with the
Real-Time Power and Intelligent Systems Laboratory, Missouri University
of Science & Technology, Rolla, MO 65409 USA (email: cej@mst.edu,
gkumar@ieee.org and pmpv3b@mst.edu).

on the use of PSO implemented for controller design and
tuning. Section V deals with mobile robot systems and
wireless sensor networks, and section VI covers several
other miscellaneous hardware platforms that are promising
for SI implementation. Section VII is the conclusion, and
finally, Section VIII contains references.

II. PSO AND ACO ALGORITH
PSO and ACO are perhaps the two most well-known SI

algorithms in use today. They both are inspired by
flocking/swarming behavior of insects – most notably ants in
the case of ACO – fish, and birds, and they are highly
versatile CI paradigms.

A. PSO
Among the most common forms of SI is PSO [1], [2],

whose general algorithm is illustrated in fig. 1. It is a swarm
of individual particles designed to search a “solution space”
by “flying” through it, testing each particle’s fitness
according to an optimization function every iteration before
adjusting its trajectory and moving again. The position
within the search space is a set of coordinates which record
the solution that the particle represents. It has velocity and
momentum at each iteration updated according to (1) & (2),
and two loci (personal best and global best) which exert
force to pull it into a new trajectory. The values rand1 and
rand2 are random numbers between 0 and 1. The constant w
is an inertia value, typically about 0.8, while c1 and c2 are

Hardware Implementations of Swarming Intelligence – A Survey
Cameron Johnson, Student Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE, and

Parviz Palangpour, Student Member, IEEE

S

Start

Initialize no. particles and position

Calculate pbest and gbest

Covered all
Particles?

Is fitness(particle) < pbest?

Evaluate fitness of particle for
operation/task

Update pbest and store in memory
Y

N

Y

N

Is fitness(gbest) < target fitnesss?

Update gbest with values corresponding
to best fitness and store in memory

Update velocity
and position of all
particles according

to (1) and (2)

N

Stop

Y

Repeat

Fig. 1. PSO algorithm flowchart

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

typically about 2, but can be varied to find optimal
performance. Each particle stores its personal best position,
and the global best position found by any particle is stored
globally.

() () ()kvkxkx iii +−= 1 (1)

() () () ()()...111 11 −−−⋅⋅+−⋅= kxkpbestrandckvwkv iiii

()()122 −−⋅⋅+ kxgbestrandc ii (2)

B. ACO
ACO is a form of swarming intelligence based on the

social behavior and routing techniques of ants [3], [4],
whose general algorithm is illustrated in fig. 2. It uses, in its
most abstract sense, individual agents to traverse a graph
from node to node in an effort to find the shortest path that
completes the route. Each agent chooses, at each node, an
edge of the graph along which to travel. The choice is
random, with probability distributions determined by factors
set up by the user. Often, it is initially a uniform distribution.

Once an agent – analogous to an individual ant – reaches
the destination node or a dead end, it makes a return trip to
the starting point, dropping digital “pheromone” along its
path to mark it. This pheromone alters the probability Φ,
according to (3), of another “ant” choosing that particular
path at a given node wherein a choice is presented. Φij,k is
the probability of a path to node i being chosen at node j by
ant k, and is determined by the amount of pheromone on the
path to node i from node j relative to the total amount of
pheromone on all paths leading away from j toward nodes
which ant k has not yet visited. Ci,k is the set of nodes
adjacent to node j which ant k has not yet visited, and α is a
constant less than 0 and β is a constant less than 1. They are
used to tune the algorithm [7].

If the destination was reached, the pheromone dropped
increases the likelihood that other ants will choose that path.
If the path led to a dead end, the pheromone dropped
decreases the likelihood an ant will choose that path. The

“desirability” ηij of a path is often the inverse of the distance
of the path, and used to simulate, in algorithms (like the one
shown in Fig. 2) where each ant’s entire route is handled at
once before moving on to a second ant, the delayed
pheromone-dropping effect of ants working simultaneously
in parallel. The amount of pheromone τij on each path
between nodes is controlled at each stage by (4), with a
decay in pheromone levels controlled by the constant ρ, and
an addition of pheromone Δτij(t) equal to the sum of all
pheromone dropped on that path in a given iteration.

 () ()[] []
()[] []∑ ∈

=Φ
kiCc icic

ijij
kij t

t
t

,

, βα

βα

ητ
ητ

 if j∈Ci,k

 (3)
() 0, =Φ tkij if j∉Ci,k

() () () ()ttt ijijij ττρτ Δ+−=+ 11 (4)

Because pheromone is dropped either in greater amounts

or earlier (or both) along shorter paths, dead-ends are more
quickly ruled out, and shorter successful paths have an
increased chance that a later ant will take that route.
Likewise, however, pheromones slowly “evaporate”
(according to the constant ρ, which is a value between 0 and
1 [7]) with time, which means a path neglected for too long
will lose any markings it might have. So the more desirable
a route is, the more pheromone is laid on it and the greater
chance more ants will take it. This leads to reinforcement of
valid, desirable paths and neglect of invalid or less desirable
paths, but leaves room for experimentation thus potential for
improvement.

III. PSO FOR NEURAL NETWORK APPLICATIONS
Neural Networks are a computational intelligence (CI)

paradigm all their own, but PSO has been successfully used
in conjunction with them for several purposes.

PSO has been found to be a highly effective means of
training neural networks (NNs). Each individual particle is a
candidate NN, and the coordinates within the solution space
are the synaptic weights between the neural layers. The
authors of [8] and [9] used such a method to train a feed-
forward multi-layer perceptron (such as the one shown in
Fig. 3) on a Xilinx Virtex2P FPGA [8]. They designed a
hardware PSO core detailed in [9] which handled all particle
functions and a temporary storage system consisting of two
memory blocks for temporary storage of weights. While the
PSO updates and stores a new set of weights in one memory
block, the NN runs to generate its fitness for use in updating
the next iteration of the PSO.

The neuron architecture performed competitively with
more standard software implementations, and while it was a
bit slower in some instances, it had higher precision. The
system’s performance could be easily improved by adding
more neuron processing elements (by taking up more slices

Start

Initialize pheromones to small random values along each path

Place all ants at starting location

Covered all
ants?

Deposit pheromone along path
according to (4)

Is the termination condition
met?

Stop

Build entire path for current ant (to
completion or failure) according to (3)

Determine whether to apply successful-
path or failed-path pheromone

Y

N

Y

N

Fig. 2. ACO algorithm flowchart.

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

in the FPGA) or by upgrading to a faster FPGA. Of
particular interest in this design is that, once trained, the
PSO elements can be reconfigured to serve as part of the
trained neural network’s processing elements, leaving a
trained network in place without requiring additional
hardware.

SI is also quite useful for retraining a neural network in an
adaptive environment. For instance, controlling multiple
data signals in a power line for use in power line
communication requires that each of the signal frequencies
on the line be distinctly detectable. In [10], a design for a
hardware NN is implemented that can distinguish between
multiple peaks in frequencies which represent the individual
channels. Unfortunately, without careful control of the load
impedance on the sensors, the signals tend to cluster
unpredictably, which causes interference between the data
signals. An adaptive PSO is used in real-time in [10] to test
and control the load impedance signal spikes at the sensors
are more evenly distributed, thus making the NNs much
more robust in interpreting multiple signals and sorting the
data.

Perhaps more interestingly, PSO can also be used to invert
a neural network [11]. One situation where this is useful is
simulation of sonar in a given environment. Computationally
intensive models can determine what dB level of sonar will
be in every location of the environment (broken down into
grid squares) with high accuracy given the placement of
sonar sensors. A neural network can greatly enhance the
speed of this simulation, using the sonar pulse loci as the
input layer and the map grid locations as the output layer
(outputting the dB measures at each grid square). A properly
trained NN can institute such a simulation in microseconds.
However, the information desired is where to place the
sensors to obtain a desired dB level at each grid location. In
other words, rather than training the network such that a
known set of inputs (xi variables in Fig. 3) generates a
desired set of outputs (yi variables in Fig. 3), the desired
information is what inputs to use on a given set of weights
(wij variables in Fig. 3) to generate a desired output.

A PSO is implemented on the Xilinx XC2V6000 in [11],
using the NN (implemented on another FPGA of the same
make and model) as the fitness function. In software testing,
the PSO was found to be less than 2 dB off of the desired
patterns, but took nearly two minutes on a 1.2 GHz
processor to find these solutions. The FPGA implementation
(which ran at 100 MHz) of the NN runs about 60 times
faster than the software simulation. Shortening the time it
takes to perform fitness evaluations 60-fold is already a
dramatic increase in performance rate.

In order to properly implement the PSO on the FPGA,

certain alterations were necessary, and are detailed in [11].
Of particular note, random number generation proved to be
an issue. Three approaches to random number generation
were tried in [11]: a linear left shift register; a squaring
method where the “random” number is the fractional portion
of the square; and simply not generating a random number at
all (i.e. a deterministic swarm).

In software simulation, the deterministic swarm
performed very poorly. However, in hardware, it actually
out-performed the software stochastic swarm’s accuracy by
about a tenth of a dB. In all, the shift from software to
hardware resulted in insignificant increase in error between
desired output and best found solution. The hardware
implementation takes 1.8 seconds, which is a 60-fold
reduction in the time from the software implementation.
While this is still not quite fast enough for real-time, the
latest Xilinx FPGAs that operate at 500 MHz can reduce the
time to a mere 0.36 seconds with an identical
implementation.

IV. PSO FOR CONTROLLER DESIGN AND TUNING
Controllers are complicated devices which need to

monitor several factors and react to them quickly by
adjusting parameters to other devices. SI can be used to tune
them initially, and, perhaps more interestingly, to retune
them as the environment changes.

PSO has been implemented on DSP boards for the
purpose of minimizing oscillations in a power system in [12]
and [13], designing and tuning the controller parameters in
an adaptive and reactive fashion that leaves them robust
against rapid changes and oscillations in the systems they
control.

An electrically powered naval vessel with multiple
sources of pulsed power requirements can keep its power
levels relatively stable by implementing generator field
excitation control coupled with immediate energy storage
devices to meet the pulsed energy needs and then slowly
recharge [12]. An online design for an optimized excitation
controller is proposed in [12], utilizing a PSO implemented

Fig. 3. MLP Network with a hidden layer neuron and an output layer
neuron highlighted.

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

on a DSP to minimize the voltage deviations when high
power pulsed loads are directly powered from DC elements
in the ship’s power system.

To simulate the hypothetical ship’s power systems in the
lab, a smaller-scale model was set up using a small-scale
three-phase 60 Hz 5kV asynchronous generator and a 15kW
DC motor to apply mechanical torque to a synchronous
generator. The laboratory model of the excitation controller
consists of a sensor board, an A/D converter, an MSK2812
DSP board, and a D/A converter. The laboratory setup is
shown in Fig. 4.

Fig. 4. Experimental Setup for Scaled Model of Hypothetical Ship's Power
System [12].

The four parameters being tuned by the PSO are three
time constants (Ta, Tb, Tc) and a gain constant (Ka), which
must be carefully selected to give the excitation controller
(Fig. 5) satisfactory performance under normal and pulsed
load conditions. The sampling rate used in the laboratory
was 1s, starting when the pulsed load is removed, and the
sampling period was 2ms, leading to a total of 500 sampled
points. Twenty particles were used in the experiment, and
their fitnesses were determined by the settling time of the
system oscillations after a disturbance, with better fitness
going to shorter settling times. The PSO-controlled
oscillations damped out in hundreds of milliseconds or less
(Fig. 6), while a normal control system bounced five or six
times over nearly 1000 ms before settling.

s 1
Ka

Ta +
1 s
1 s

Tc
Tb

+
+

*
sV

Fig. 5. A block diagram for synchronous machine excitation control system
[12].

Another DSP implementation of PSOs experimented with
Power System Stabilizers (PSSs) simulated on a Real Time
Digital Power System Simulator (RTDS), shown in Fig. 7
[13]. This experiment utilized a TMS32067 DSP integrated
in the Innovative Integration M67 to implement the two
PSSs used. Each PSS has six time constants and a gain
constant, for a total of seven parameters to be tuned per PSS,
or fourteen parameters in each particle. The objective fitness

function of each particle is determined by reading the
transient energy out of two generators, G1 and G3, in post-
fault operating conditions. The fitness function ultimately
also incorporates the settling time of the transient energy, as
well as its overall magnitude. Two testing loads were used,
967 MW and 1167 MW, for one operating mode, and 1100
MW and 1600 MW for a second operating mode. In both
operating modes, G1 stabilized fastest, but both G1 and G3
stabilized much faster and exhibited less transient energy
than the untuned system. So [13] successfully implemented
real-time PSO tuning of a PSS in DSP hardware.

Fig. 6. Pulse recovery with 4.86kW pulse and 0.4s duration with terminal
voltage [12].

V. SI FOR MOBILE ROBOTS AND SENSOR NETWORKS
Mobile Robot swarms and networks of individual sensors

are an obvious place to implement SI: they consist of
physical independent units, and each can be directly
analogous to a swarming agent.

A. ACO in Wireless Sensor Networks
Perhaps one of the most obvious implementations of an

SI algorithm in hardware is one whose physical structure
closely parallels the conceptual architecture of the algorithm.
One such scenario is data routing in Wireless Sensor
Networks (WSNs). Because wireless sensor nodes are
largely unattended, low-power and low-cost devices, power
consumption is of significant concern to their useful
lifespan. One method of minimizing power consumption is
to minimize individual transmission distances, transferring
collected data from node to node back to the base station.

Fig. 7. Laboratory setup with RTDS and DSP for real-time power
system studies with computational intelligence paradigms [13].

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

This architecture, combined with the problem of finding the
lowest-cost path back to the base station, is ideal for an ACO
implementation.

Such an algorithm is implemented in [14] using stationary
wireless sensors as the nodes and the paths between them as
potential directions to travel. “Ants” are implemented as data
packets sent to nearby nodes with a probability to choose
any given path based on several factors. Initial probability
distributions are based on power consumption requirements
from the current node to the next node. The base station, not
having any particular power constraints, can broadcast
updates globally based on the information carried in by the
data package ants. Because the base station can’t tell if an
ant was sent but never made it, there is no “bad path”
pheromone, but an evaporation coefficient slowly degrades
the probability of paths being chosen over time, so any path
that did not successfully lead to the base station will slowly
lose favorable chances of being taken. In order to prevent a
data packet from getting lost in an interminable loop
between wireless sensor nodes, each ant also retains a
memory of what nodes it has visited before. If a node
receives an ant which has visited it already, it will not write
that ant into its memory for retransmission, and the ant will
have to go to a different node. This also conveniently
prevents back-tracking.

In this application, hardware implementation happens
naturally, as the nodes and paths are literal things in the real
world, with the nodes themselves serving as parallel
hardware units. The analogy to ACO is not perfect, as there
is some redundancy as ants may be received and
retransmitted by more than one node (resulting in some
minor duplication), but this redundancy was found to be
minimal in impact on power consumption and ensured a
more rapid and reliable transmission of data back to the base
station, with less sensitivity to the loss or failure of sensor
nodes due to the ability to reroute in real time.

Another SI-based WSN implementation, designed for
military scouting and target tracking applications, is
described in [15] and uses a variant on ACO wherein digital
pheromones are laid on areas of interest found by individual
agents, and reinforced if other agents find them and agree, or
allowed to evaporate if agents determine them to be of less
interest than indicated (by not reinforcing them upon return
visits). Different “flavors” of pheromones can be
implemented to represent different kinds of information, or
even to add new functionality to the algorithm. This
implementation proved to be capable of a wide variety of
applications, including area surveillance, area-of-interest
observation, and target acquisition and tracking. It exhibited
complex self-organization to divide labor evenly between
agents in surveying the target area and focusing on the
interesting pieces.

B. PSO in Collective Robotic Search
A similarly direct application for PSO in hardware is

presented in [16], where robotic platforms are used as literal
swarming agents searching a physical search space. Created

for use in hazardous environments or for dangerous
materials, the design goals called for the robots to be
individually “small, inexpensive, and dispensable” [16].

The pre-existing iRobot Roomba was chosen as the base
platform for the individual robots in the swarm, and the
experiment was done with a population of five such robots,
which already had built-in sensor systems and motion
controls. The details of the wireless communication are fully
explained in [16], and the overall hardware system is shown
in Fig. 8. The system is broken into two parts: a control
module whose two primary duties are to initialize the
network so the robots can join, ensuring all communicate
properly, and to correlate the robots’ positional data and
fitness to calculate the global best fitness (gbest) and
broadcast it to all members of the swarm, and the robots
themselves, who handle their own individual positional
updates and calculations and keep track of their own
personal best fitnesses (pbest), sending updates of their
pbests to the control module when they change.

Experiments run on this system were reported in [16] to

demonstrate accurate and swift convergence on real-world
physical targets in the search space, demonstrating that a
direct translation of the PSO algorithm to real-world
physical search tasks is viable and useful. Ultimately, this
should not be surprising, since the PSO algorithm is
modeled on real-world birds flocking and fish schooling [1].

One requirement of such systems, however, is an initial
distribution. The experiment in [16] did this manually, but
[17] suggests three methods for automating their distribution
from a single location, all of which require minimal
communication.

Another of the earlier implementations of mobile robot
swarms was a design for adding mobile sensors to a static
sensor network [18]. Unmanned aerial units (UAVs) with
multiple wireless radios serve as the mobile sensors. One
radio is used to talk to other UAVs, another is used to talk to
static sensor nodes and/or a base station, and a third can be
installed to talk to a satellite for relaying data.

Lacking a satellite, a backbone of swarms can be used for
data forwarding back to a base. Backbone design relies on
one member of a swarm being named “Swarm Leader”, and
receives a hardware radio with a longer range than normal. It
is used to contact swarm leaders of nearby swarms, using a
multi-hop ad hoc network to relay information back to base.

As sensor swarms move more into fully autonomous
robotic units, the power consumption becomes of greater
concern, both due to miniaturization causing a shrinking of

Fig. 8. Schematic block diagram for the hardware implementation of the
collective search robotic platform [16].

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

available space for batteries, and due to lack of stationary
sensors to back up failing mobile units. One solution is
presented in [19], dividing the sensor units into “perimeter”
and “core” nodes. The framework, called “SenseSwarm”,
has three conceptual phases: Perimeter Construction,
Acquisition, and Replication.

Perimeter construction involves determining the relative
locations of the mobile sensors, and divides them into
“perimeter” and “core” nodes based on this positioning. The
philosophy behind this sensor design is that interesting
changes to the environment will only happen on the
perimeter, and anything internal to that will remain much the
same as when it was last detected. This phase is run every
few cycles to ensure that new perimeter nodes are
appropriately assigned as the swarm changes its physical
configuration. Perimeter nodes perform all sensing duties,
while core nodes save energy by performing data storage
and processing duties rather than operating their external
sensors.

The acquisition phase is constantly running on all
perimeter nodes, as they collect data. Replication is a phase
run every few cycles just before the next perimeter
construction phase, and involves perimeter nodes replicating
their data into nearby neighbors, helping to determine the
next perimeter/core division.

Overall, this sensor network proved in testing to be equal
to more uniform structures in data acquisition, but
demonstrated up to a 75% energy savings over the uniform
variant.

C. PSO for Fault-Tolerant Sensor Systems
PSO can also be used in conjunction with an autoencoder

to create fault-tolerance in a sensor encoding scheme. In
[20], an autoencoder is described as a Multi-Layer
Perceptron (MLP) NN with as many inputs and outputs as
there are sensors in the system, and fewer neurons in the
hidden layer than there are sensors in the system. Relying on
the fact that some of the data from the sensors is redundant,
the autoencoder uses the reduced dimensionality of the
hidden layer to correlate the redundant data and return as
output the same information it receives on its input. The
autoencoder is shown in Fig. 9, where X are the incoming
signals to the sensors, S is the input to the system as well as
the comparison of desired results, and Ŝ is the output of the
sensor system.

This redundancy can then be exploited to minimize the
impact of failed sensors in the system by the inclusion of a
PSO on the inputs of the autoencoder. SH and SR are the
healthy inputs from the sensors and the outputs from the
autoencoder, respectively. SE is the error between ŜH and SR
and is zero (or at least below the threshold of error tolerance
set up when the system was trained) as long as all sensors
are working.

When one (or more) of the sensors stops working,
however, SH and SR will no longer be equal, and SE will
become significantly non-zero. The remaining healthy inputs
are then fed into the auto-encoder along with an estimate of

the missing sensor data SM generated by the PSO. The PSO
uses SE as a fitness measure to adjust SM until SE is once
again negligible.

Fig. 9. Overall structure of the MSR with on-line restoration of missing
sensor data. TDL denotes “time-delay lock” [20].

As long as the number of functioning sensors exceeds the
dimensionality of the hidden layer of the autoencoding MLP,
the redundancy will keep the system functioning with
reasonable levels of accuracy. This system was implemented
and tested in hardware on the RTDS (with hardware
specifications as given earlier) shown in Fig. 7. A
disturbance in the power supply or draw causes a sudden
change in necessary operating mode, and the sensors are
used to control the fluctuations and adapt to the new
situation.

Fig. 10 illustrates the performance of the power regulator
as controlled by this system with zero, two, and three current
sensors missing. The close similarity of the performance
with all three conditions indicates how well this missing-
sensor replacement works in real-time.

0 1 2 3 4 5 6 7 8 9 10 11
376.7

376.8

376.9

377.0

377.1

ω
6 (r

ad
/s)

Time (s)

 No sensor missing
 ib and ic missing
 ia , ib and ic missing

Fig. 10. Dynamic performance of a power regulation system with different
(missing) sensor tests during an increase of electric load [20].

VI. OTHER SI HARDWARE PLATFORMS
There are far too many parallel hardware platforms to

cover in the limited space of this paper, but a few are
mentioned here, including Grid Computing, ACO on
FPGAs, and multi-agent systems.

A. Grid Computing
Grid computing is another parallel system demonstrated to

be useful for implementation of SI. Grid computing applies
the metaphor of a power grid to computing, connecting
computers over a wide area together, and letting users plug
into the entire system without worrying about where,
specifically, the computational resources are coming from
[21].

A multi-objective PSO (MOPSO) is implemented in [21]
via grid computing. Swarms are repeatedly divided into

-

Input
Hidden

Output

…
…
…

…
…

W V

∑

Auto - encoder

Particle Swarm
Optimizer

TDL

XH(k)

TDL

XH(k-1)

XH(k-2)

SH(k) ŜH(k)

SE(k)

SR(k)SM(k)

+

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

subswarms, which run for a limited amount of time and
return their result to a central server. The next iteration
includes a “guide” in the form of a functional particle to re-
start the search with all other particles re-initialized within
the local search space.

Two methods of selecting guides are proposed: cluster-
based (designed to function on a fixed number of similar
processors, and hypervolume-based (designed to operate on
a heterogeneous set of processors) [21]. Both algorithms out-
performed more traditional implementations of the MOPSO
on single processors.

B. ACO in Hardware
The majority of work with ACO has been done in

software implementations on problems whose structure
lends itself to ACO’s structure and style of problem solving.
[22] utilizes it in perhaps the most obvious test problem: the
traveling salesman. However, there are several hardware
applications that logically lend themselves to this paradigm’s
quirks. One such direct hardware implementation is
presented in [23], which is an attempt to speed up the
algorithm by taking advantage of its parallel capabilities and
make it more useable in real-time. The algorithm is broken
down into several key segments:

1) Initial Setting of a Parameter
2) Read Data
3) Calculation of Distance
4) Sorting
5) Hardware
6) Finish.

The hardware section is further broken down into sub-

steps comprised of one loop nested within another. The outer
loop includes an initialization step to determine how many
iterations are to run and where each of the active ants will
start. The inner loop exploits the parallel nature of ACO to
greatly increase the algorithm’s speed, with multiple ants
running at once, using the individual local update rule to
traverse the route from node to node until termination
conditions are met. Once the inner loops are done, the outer
loop updates pheromone levels, checks for global
termination conditions, and repeats if termination conditions
are not met.

In experiments, the ACO algorithm (both simulated
entirely in software and implemented in hardware)
outperformed a GA used as a control, and the hardware
implementation of the ACO algorithm achieved speeds up to
six times faster than the software simulation.

An FPGA implementation discussed and tested in [24]
lists some key restrictions FPGA hardware places on ACO:

1) Pheromone values and random numbers take floating

point representation which is too fine-grained for
FPGAs.

2) Multiplication operations required by evaporation and
heuristic integration operations are not easily supported

by most FPGAs.
3) Space and time complexity is too large for modern

FPGAs due to need to calculate prefix sums in
numerators over as-yet unchosen items in the selection
set.

To circumvent these difficulties, a high-level mapping of

ACO to an FPGA design is proposed in [24] using a series
of modules. The population module contains a matrix of the
individuals, with the best fit individual at the top of the list
and a first-in-first-out (FIFO) matrix containing the rest. The
Generator module sends individuals out one after another to
explore the solution space, where the Evaluation module
waits to send those who have completed their path for this
iteration back to the Population module with pheromone
updates for the path they took, as well as the fitness of the
path they took. If one comes back with a higher fitness than
the current best, the new one is placed at the top of the list.
The route-traversal takes advantage of the parallel nature of
the FPGA by allowing several ants to be exploring at once,
but solving the floating-point precision difficulties still
remains an issue.

C. Multi-Agent Systems and SI
Multi-agent systems are related to SI in that both utilize

multiple relatively simple and independent agents to achieve
complex emergent behaviors. The only difference is that
multi-agent systems allow differences between their agents,
whereas SI agents are all homogeneous. It would be remiss
to conclude this paper without giving some examination to
the work done in implementing hardware multi-agent
systems.

The majority of multi-agent work, however, has been
done in the development of software agent design to create
intelligent emergent behavior in a single computer system
[25], [26]. In particular, [25] examines in detail protocols
and design rules for software agents useful in controlling
power systems, while [26] explains a programming language
called “New Valid” for programming multi-agent systems,
including the creation of new agents dynamically. Promising
work on multi-agent control mechanisms for hardware-based
mobile robots is shown in [27], where successful MatLab
simulations of their programming language designed to
control multiple mobile robot agents have been performed,
but as of yet the specific problems peculiar to hardware
processing have yet to be addressed by the authors of said
language.

However, successful completion of the complex task of
jointly carrying a load between three independent robot
agents through a narrow opening was accomplished in [28].
Physically identical, one robot was designated “leader”,
which amounts to being responsible for primary path
discernment, while the other two were “followers”. All three
robots were equipped with tactile sensors to detect the
balance and lateral force of the object they jointly carry on
their backs and IR sensors for environmental proximity
detection and, in the leader’s case, beacon-finding. They

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

worked to maintain a stable hold with minimal lateral force,
which kept them in the proper orientation without any
sophisticated communication systems. Once the leader
detected the beacon, it began moving in that direction. The
other robots’ maintained proximity to the leader due to the
need to keep the object stable, and the followers used their
proximity detection to avoid running the whole group into
the wall, correctly orienting themselves so that the whole
team and their attendant object passed safely through the
opening.

While [28]’s implementation is not an SI algorithm, it
provides insight into the kinds of simple behavioral controls
that can be performed on physical agents, which is
applicable in the SI field.

VII. CONCLUSION
Swarm Intelligence algorithms are robust systems easily

executed in parallel, making them ideal for hardware
implementation in inexpensive but plentiful processors, such
as FPGAs, GPUs, or Grid Computing systems. The very
nature of their metaphor lends them well to mobile robot
swarms and wireless sensor network control. Several recent
promising implementations have been highlighted in this
paper, demonstrating the power and versatility of this
paradigm. Hardware implementations greatly enhance the
speed and performance of these algorithms, and it is hoped
that implementations such as those shown here can be used
to make real-time Swarm Intelligence a feasible
advancement in the near future.

REFERENCES
[1] J. Kennedy, R. Eberhart, “Particle swarm optimization,” Proceedings

of IEEE International Conference on Neural Networks, Vol.4, Perth,
Australia, 1995, pp. 1942-1948.

[2] Y. del Valle, G. K. Venayagamoorthy, S. Mohaghenghi, J.C.
Hernandez, R. G. Harley, “Particle swarm optimization: basic
concepts variants and applications in power systems,” IEEE
Transactions on Evolutionary Computation, Vol. 12, No. 2, April
2008, pp. 171-195.

[3] A. Colorni, M. Dorigo, V. Maniezzo, “Distributed optimization by
ant colonies,” ECAL91, European Conference on Artificial Life,
Paris, France, 1991, pp. 134-142.

[4] M. Dorigo, V. Maniezzo, A. Colorni, “The ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,
Man, and Cybernetics, 1996, pp. 29-42.

[5] K. Weber, S. Venkatesh, M. V. Srinivasan, “Insect inspired
behaviours for the autonomous control of mobile robots,” Proceedings
of the 13th International Conference on Pattern Recognition, Vol. 1,
Aug. 25-29 1996, pp. 156-160.

[6] K. M. Passino, “Distributed optimization and control using only a
germ of intelligence,” Proceedings of the 2000 IEEE International
Symposium on Intelligent Control, July 17-19, pp. 5-13.

[7] V. Maniezzo, L.M. Gambardella, F. De Luigi, “Ant colony
optimization, new optimization techniques in engineering,” by G. C.
Onwubolu and B.V. Babu, Springer-Verlag Berlin Heidelberg, 2004,
pp. 101-117.

[8] A. Farmahini-Farahani, S. M. Fakhraie, S. Safari, “Scalable
architecture for on-chip neural network training using swarm
intelligence,” EDAA 2008, Design, Automation, and Test in Europe,
March 2008, pp. 1340-1345.

[9] A. Farmahini-Farahani, S. M. Fakhraie, S. Safari, “Sopc-based
architecture for discrete particle swarm optimization,” Proc. of IEEE

Intel. Conf. on Electronics, Circuits and Systems, Marrakech,
Morocco, Dec. 2007, pp. 1003-1006.

[10] P. Chanyagorn, H. H. Szu, H. Wang, “Collective behavior
implementation in powerline surveillance sensor network,”
Proceedings of International Join conference on Neural Networks,
Vol. 3, Montreal, Canada, July 31 – August 4, 2005, pp. 1735-1739.

[11] P. D. Reynolds, R. W. Duren, M. L. Trumbo, R. J. Marks II, “FPGA
implementation of particle swarm optimization for inversion of large
neural networks,” IEEE 2005, Swarm Intelligence Symposium 2005,
pp. 389-392.

[12] C. Yan, G. K. Venayagamoorthy, K. Corzine, “Hardware
implementation of a PSO based online design of an optimal excitation
controller,” SIS 2008, Swarm Intelligence Symposium, St. Louis, MO,
Sept. 2008.

[13] P. Palangpour, P. Mitra, S. Ray, G. K. Venayagamoorthy, “DSP PSO
implementation for online optimal controller design,” AHS 2008,
NASA/ESA Conference on Adaptive Hardware and Systems,
Noordwijk, the Netherlands, 2008.

[14] S. Okdem, D. Karaboga, “Routing in wireless sensor networks using
ant colony optimization,” AHS’06, Proceedings of the First
NASA/ESA Conference on Adaptive Hardware and Systems, 2006,
401-404.

[15] J. A. Sauter, R. Matthews, H. V. D. Parunak, S. A. Brueckner,
“Performance of digital pheromones for swarming vehicle control,”
AAMAS ’05, Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, July 25-29 2005,
Utrecht, Netherlands, 2005 ACM, pp. 903-910.

[16] P. Palangpour, C. Parrott, L. Grant, “Collective robotic search in
software and hardware implementation,” IEEE Industry Applications
Magazine, MAR/APR 2008, pp. 71-73.

[17] M. Siebold, J. Hereford, “Easily scalable algorithms for dispersing
autonomous robots,” IEEE Southeastcon, April 3-6 2008, pp. 545-
550.

[18] M. Gerla, K. Xu, “Multimedia streaming in large-scale sensor
networks with mobile swarms,” SIGMOD Record, Vol. 32, No. 4,
December 2003, pp. 72-76.

[19] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, G. Samaras,
“SenseSwarm: a perimeter-based data acquisition framework for
mobile sensor networks,” Proceedings of the 4th International
Workshop on Data Management for Sensor Networks (DMSN’07),
Vienna, Austria, 2007, pp. 13-18.

[20] W. Qiao, G.K. Venayagamoorthy, “Missing-sensor-fault-tolerant
control for SSSC FACTS device with real-time implementation,”
IEEE Transactions on Power Delivery, in print.

[21] S. Mstaghim, J. Branke, H. Schmeck, “Multi-objective particle swarm
optimization on computer grids,” GECCO’07, July 7-11, 2007 ACM.

[22] M. Dorigo, L.M. Gambardella; “Ant colony system: a cooperative
learning approach to the travelling salesman problem,” IEEE
Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997, pp.
53-66.

[23] M. Yoshikawa, K. Terai, “Architecture for high-speed ant colony
optimization,” IEEE 2007, International Conference on Information
Reuse and Integration, 2007, pp. 1-5.

[24] H. Duan, X. Yu, “Progresses and challenges of ant colony
optimization-based evolvable hardware,” WEAH 2007, Proceedings
of the 2007 IEEE Workshop on Evolvable and Adaptive Hardware,
2007, pp. 67-71.

[25] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N.
D. Hatziargyriou, F. Ponci, T. Funabashi, “Multi-agent systems for
power engineering applications—part II: technologies, standards, and
tools for building multi-agent systems,” IEEE Transactions on Power
Systems, Vol. 22, No. 4, November 2007, pp. 1753-1759.

[26] M. Amamiya, S. Kusakabe, S. Aramaki, “A multi-agent system
description language new valid and its application to robot control,”
IEEE 1993, IEEE 2nd International Workshop on Emerging
Techniques and Factory Automation, Sept. 1993, pp. 27-29.

[27] S. Ahmed, M. N. Karsiti, “A testbed for control schemes using multi
agent nonholonomic robots,” IEEE EIT 2007, IEEE International
Conference on Electro/Information Technology, 2007, pp. 459-464.

[28] M. R. Ahmad, S. H.M. Amin, R. Mamat, “Development of
decentralized based reactive control strategy for intelligent multi-agent
mobile robotics system,” ICARCV’02, Seventh Ihnternational
Conference on Control, Automation, Robotics, and Vision, Vol. 1,
Dec 2002, Singapore, pp. 220-227.

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Missouri. Downloaded on February 11, 2009 at 17:30 from IEEE Xplore. Restrictions apply.

	Hardware Implementations of Swarming Intelligence -- A Survey
	Recommended Citation

	Hardware implementations of Swarming Intelligence - a survey IEEE Swarm Intelligence Symposium, 2008

