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Abstract—Swarming Intelligence (SI) is the property of a 
system whereby the collective behaviors of (unsophisticated) 
agents interacting locally with their environment cause 
coherent global patterns to emerge. Because there are no 
central processing requirements, SI is ideal for parallelization, 
which lends it well to hardware implementations in many 
inexpensive processors. Several implementations in hardware 
that exploit this property for rapid calculation and inexpensive 
construction are highlighted in this paper to provide a good 
starting point for developing hardware platforms for SI 
algorithms. 

I. INTRODUCTION 
WARMING Intelligence (SI) is an emergent behavior of 
multiple unsophisticated agents interacting with each 

other and their environment. Among the most common 
forms of swarming intelligence are Particle Swarm 
Optimization (PSO) [1], [2], Ant Colony Optimization 
(ACO) [3], [4], Honey Bee swarming [5], and bacterial 
foraging [6]. Hardware implementations on parallel systems 
can greatly speed up SI algorithms by dividing the 
independent agents up amongst multiple processing units. 
To the knowledge of the authors, there have not yet been any 
hardware implementations of honey bee swarming or 
bacterial foraging algorithms. 

In this paper, several recent hardware applications and 
implementations of SI are surveyed and analyzed, including 
hardware optimization, hardware implementations of PSO 
and ACO algorithms, and real-world implementations of SI 
for sensor systems and other mobile robotics applications. 
By compiling several of the most recent hardware 
applications and implementations of SI here, it is hoped that 
this paper may serve as a starting point for any research into 
advancing SI in the hardware realm, especially in the area of 
real-time applications.  Due to space limitations, this paper 
focuses mainly on PSO and ACO, leaving discussion of 
honey bee swarming and bacterial foraging algorithms for 
another work. The paper is presented in the following 
format: Section II details the two primary swarming 
intelligence algorithms, PSO and ACO. Section III examines 
hardware implementations of PSO designed for use in the 
training of neural networks. Section IV contains information 
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on the use of PSO implemented for controller design and 
tuning. Section V deals with mobile robot systems and 
wireless sensor networks, and section VI covers several 
other miscellaneous hardware platforms that are promising 
for SI implementation. Section VII is the conclusion, and 
finally, Section VIII contains references.  

II. PSO AND ACO ALGORITH 
PSO and ACO are perhaps the two most well-known SI 

algorithms in use today. They both are inspired by 
flocking/swarming behavior of insects – most notably ants in 
the case of ACO – fish, and birds, and they are highly 
versatile CI paradigms. 

A. PSO 
Among the most common forms of SI is PSO [1], [2], 

whose general algorithm is illustrated in fig. 1. It is a swarm 
of individual particles designed to search a “solution space” 
by “flying” through it, testing each particle’s fitness 
according to an optimization function every iteration before 
adjusting its trajectory and moving again. The position 
within the search space is a set of coordinates which record 
the solution that the particle represents. It has velocity and 
momentum at each iteration updated according to (1) & (2), 
and two loci (personal best and global best) which exert 
force to pull it into a new trajectory. The values rand1 and 
rand2 are random numbers between 0 and 1. The constant w 
is an inertia value, typically about 0.8, while c1 and c2 are  
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Fig. 1.  PSO algorithm flowchart 
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typically about 2, but can be varied to find optimal 
performance. Each particle stores its personal best position, 
and the global best position found by any particle is stored 
globally.  
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B. ACO 
ACO is a form of swarming intelligence based on the 

social behavior and routing techniques of ants [3], [4], 
whose general algorithm is illustrated in fig. 2. It uses, in its 
most abstract sense, individual agents to traverse a graph 
from node to node in an effort to find the shortest path that 
completes the route. Each agent chooses, at each node, an 
edge of the graph along which to travel. The choice is 
random, with probability distributions determined by factors 
set up by the user. Often, it is initially a uniform distribution. 

Once an agent – analogous to an individual ant – reaches 
the destination node or a dead end, it makes a return trip to 
the starting point, dropping digital “pheromone” along its 
path to mark it. This pheromone alters the probability Φ, 
according to (3), of another “ant” choosing that particular 
path at a given node wherein a choice is presented. Φij,k is 
the probability of a path to node i being chosen at node j by 
ant k, and is determined by the amount of pheromone on the 
path to node i from node j relative to the total amount of 
pheromone on all paths leading away from j toward nodes 
which ant k has not yet visited. Ci,k is the set of nodes 
adjacent to node j which ant k has not yet visited, and α is a 
constant less than 0 and β is a constant less than 1. They are 
used to tune the algorithm [7]. 

If the destination was reached, the pheromone dropped 
increases the likelihood that other ants will choose that path. 
If the path led to a dead end, the pheromone dropped 
decreases the likelihood an ant will choose that path. The 

“desirability” ηij of a path is often the inverse of the distance 
of the path, and used to simulate, in algorithms (like the one 
shown in Fig. 2) where each ant’s entire route is handled at 
once before moving on to a second ant, the delayed 
pheromone-dropping effect of ants working simultaneously 
in parallel. The amount of pheromone τij on each path 
between nodes is controlled at each stage by (4), with a 
decay in pheromone levels controlled by the constant ρ, and 
an addition of pheromone Δτij(t) equal to the sum of all 
pheromone dropped on that path in a given iteration. 
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Because pheromone is dropped either in greater amounts 

or earlier (or both) along shorter paths, dead-ends are more 
quickly ruled out, and shorter successful paths have an 
increased chance that a later ant will take that route. 
Likewise, however, pheromones slowly “evaporate” 
(according to the constant ρ, which is a value between 0 and 
1 [7]) with time, which means a path neglected for too long 
will lose any markings it might have. So the more desirable 
a route is, the more pheromone is laid on it and the greater 
chance more ants will take it. This leads to reinforcement of 
valid, desirable paths and neglect of invalid or less desirable 
paths, but leaves room for experimentation thus potential for 
improvement. 

III. PSO FOR NEURAL NETWORK APPLICATIONS 
Neural Networks are a computational intelligence (CI) 

paradigm all their own, but PSO has been successfully used 
in conjunction with them for several purposes. 

PSO has been found to be a highly effective means of 
training neural networks (NNs). Each individual particle is a 
candidate NN, and the coordinates within the solution space 
are the synaptic weights between the neural layers. The 
authors of [8] and [9] used such a method to train a feed-
forward multi-layer perceptron (such as the one shown in 
Fig. 3) on a Xilinx Virtex2P FPGA [8]. They designed a 
hardware PSO core detailed in [9] which handled all particle 
functions and a temporary storage system consisting of two 
memory blocks for temporary storage of weights. While the 
PSO updates and stores a new set of weights in one memory 
block, the NN runs to generate its fitness for use in updating 
the next iteration of the PSO. 

The neuron architecture performed competitively with 
more standard software implementations, and while it was a 
bit slower in some instances, it had higher precision. The 
system’s performance could be easily improved by adding 
more neuron processing elements (by taking up more slices 
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Fig. 2.  ACO algorithm flowchart. 
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in the FPGA) or by upgrading to a faster FPGA. Of 
particular interest in this design is that, once trained, the 
PSO elements can be reconfigured to serve as part of the 
trained neural network’s processing elements, leaving a 
trained network in place without requiring additional 
hardware. 

SI is also quite useful for retraining a neural network in an 
adaptive environment.  For instance, controlling multiple 
data signals in a power line for use in power line 
communication requires that each of the signal frequencies 
on the line be distinctly detectable. In [10], a design for a 
hardware NN is implemented that can distinguish between 
multiple peaks in frequencies which represent the individual 
channels. Unfortunately, without careful control of the load 
impedance on the sensors, the signals tend to cluster 
unpredictably, which causes interference between the data 
signals. An adaptive PSO is used in real-time in [10] to test 
and control the load impedance signal spikes at the sensors 
are more evenly distributed, thus making the NNs much 
more robust in interpreting multiple signals and sorting the 
data. 

Perhaps more interestingly, PSO can also be used to invert 
a neural network [11]. One situation where this is useful is 
simulation of sonar in a given environment. Computationally 
intensive models can determine what dB level of sonar will 
be in every location of the environment (broken down into 
grid squares) with high accuracy given the placement of 
sonar sensors. A neural network can greatly enhance the 
speed of this simulation, using the sonar pulse loci as the 
input layer and the map grid locations as the output layer 
(outputting the dB measures at each grid square). A properly 
trained NN can institute such a simulation in microseconds. 
However, the information desired is where to place the 
sensors to obtain a desired dB level at each grid location. In 
other words, rather than training the network such that a 
known set of inputs (xi variables in Fig. 3) generates a 
desired set of outputs (yi variables in Fig. 3), the desired 
information is what inputs to use on a given set of weights 
(wij variables in Fig. 3) to generate a desired output. 

A PSO is implemented on the Xilinx XC2V6000 in [11], 
using the NN (implemented on another FPGA of the same 
make and model) as the fitness function. In software testing, 
the PSO was found to be less than 2 dB off of the desired 
patterns, but took nearly two minutes on a 1.2 GHz 
processor to find these solutions. The FPGA implementation 
(which ran at 100 MHz) of the NN runs about 60 times 
faster than the software simulation. Shortening the time it 
takes to perform fitness evaluations 60-fold is already a 
dramatic increase in performance rate. 

 
In order to properly implement the PSO on the FPGA, 

certain alterations were necessary, and are detailed in [11]. 
Of particular note, random number generation proved to be 
an issue. Three approaches to random number generation 
were tried in [11]: a linear left shift register; a squaring 
method where the “random” number is the fractional portion 
of the square; and simply not generating a random number at 
all (i.e. a deterministic swarm). 

In software simulation, the deterministic swarm 
performed very poorly. However, in hardware, it actually 
out-performed the software stochastic swarm’s accuracy by 
about a tenth of a dB. In all, the shift from software to 
hardware resulted in insignificant increase in error between 
desired output and best found solution. The hardware 
implementation takes 1.8 seconds, which is a 60-fold 
reduction in the time from the software implementation. 
While this is still not quite fast enough for real-time, the 
latest Xilinx FPGAs that operate at 500 MHz can reduce the 
time to a mere 0.36 seconds with an identical 
implementation.  

IV. PSO FOR CONTROLLER DESIGN AND TUNING 
Controllers are complicated devices which need to 

monitor several factors and react to them quickly by 
adjusting parameters to other devices. SI can be used to tune 
them initially, and, perhaps more interestingly, to retune 
them as the environment changes.  

PSO has been implemented on DSP boards for the 
purpose of minimizing oscillations in a power system in [12] 
and [13], designing and tuning the controller parameters in 
an adaptive and reactive fashion that leaves them robust 
against rapid changes and oscillations in the systems they 
control.  

An electrically powered naval vessel with multiple 
sources of pulsed power requirements can keep its power 
levels relatively stable by implementing generator field 
excitation control coupled with immediate energy storage 
devices to meet the pulsed energy needs and then slowly 
recharge [12]. An online design for an optimized excitation 
controller is proposed in [12], utilizing a PSO implemented 

Fig. 3.  MLP Network with a hidden layer neuron and an output layer 
neuron highlighted. 
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on a DSP to minimize the voltage deviations when high 
power pulsed loads are directly powered from DC elements 
in the ship’s power system.  

To simulate the hypothetical ship’s power systems in the 
lab, a smaller-scale model was set up using a small-scale 
three-phase 60 Hz 5kV asynchronous generator and a 15kW 
DC motor to apply mechanical torque to a synchronous 
generator. The laboratory model of the excitation controller 
consists of a sensor board, an A/D converter, an MSK2812 
DSP board, and a D/A converter. The laboratory setup is 
shown in Fig. 4. 

 
Fig. 4.  Experimental Setup for Scaled Model of Hypothetical Ship's Power 
System [12]. 

The four parameters being tuned by the PSO are three 
time constants (Ta, Tb, Tc) and a gain constant (Ka), which 
must be carefully selected to give the excitation controller 
(Fig. 5) satisfactory performance under normal and pulsed 
load conditions. The sampling rate used in the laboratory 
was 1s, starting when the pulsed load is removed, and the 
sampling period was 2ms, leading to a total of 500 sampled 
points. Twenty particles were used in the experiment, and 
their fitnesses were determined by the settling time of the 
system oscillations after a disturbance, with better fitness 
going to shorter settling times. The PSO-controlled 
oscillations damped out in hundreds of milliseconds or less 
(Fig. 6), while a normal control system bounced five or six 
times over nearly 1000 ms before settling. 

 

s 1
Ka

Ta +
1 s
1 s

Tc
Tb

+
+

*
sV

 
Fig. 5.  A block diagram for synchronous machine excitation control system 
[12]. 

Another DSP implementation of PSOs experimented with 
Power System Stabilizers (PSSs) simulated on a Real Time 
Digital Power System Simulator (RTDS), shown in Fig. 7 
[13]. This experiment utilized a TMS32067 DSP integrated 
in the Innovative Integration M67 to implement the two 
PSSs used. Each PSS has six time constants and a gain 
constant, for a total of seven parameters to be tuned per PSS, 
or fourteen parameters in each particle. The objective fitness 

function of each particle is determined by reading the 
transient energy out of two generators, G1 and G3, in post-
fault operating conditions. The fitness function ultimately 
also incorporates the settling time of the transient energy, as 
well as its overall magnitude. Two testing loads were used, 
967 MW and 1167 MW, for one operating mode, and 1100 
MW and 1600 MW for a second operating mode.  In both 
operating modes, G1 stabilized fastest, but both G1 and G3 
stabilized much faster and exhibited less transient energy 
than the untuned system. So [13] successfully implemented 
real-time PSO tuning of a PSS in DSP hardware.  

 
Fig. 6.  Pulse recovery with 4.86kW pulse and 0.4s duration with terminal 
voltage [12]. 

 

V. SI FOR MOBILE ROBOTS AND SENSOR NETWORKS 
Mobile Robot swarms and networks of individual sensors 

are an obvious place to implement SI: they consist of 
physical independent units, and each can be directly 
analogous to a swarming agent. 

A. ACO in Wireless Sensor Networks 
Perhaps one of the most obvious implementations of an 

SI algorithm in hardware is one whose physical structure 
closely parallels the conceptual architecture of the algorithm. 
One such scenario is data routing in Wireless Sensor 
Networks (WSNs). Because wireless sensor nodes are 
largely unattended, low-power and low-cost devices, power 
consumption is of significant concern to their useful 
lifespan. One method of minimizing power consumption is 
to minimize individual transmission distances, transferring 
collected data from node to node back to the base station. 

Fig. 7.  Laboratory setup with RTDS and DSP for real-time power 
system studies with computational intelligence paradigms [13]. 
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This architecture, combined with the problem of finding the 
lowest-cost path back to the base station, is ideal for an ACO 
implementation. 

Such an algorithm is implemented in [14] using stationary 
wireless sensors as the nodes and the paths between them as 
potential directions to travel. “Ants” are implemented as data 
packets sent to nearby nodes with a probability to choose 
any given path based on several factors. Initial probability 
distributions are based on power consumption requirements 
from the current node to the next node. The base station, not 
having any particular power constraints, can broadcast 
updates globally based on the information carried in by the 
data package ants. Because the base station can’t tell if an 
ant was sent but never made it, there is no “bad path” 
pheromone, but an evaporation coefficient slowly degrades 
the probability of paths being chosen over time, so any path 
that did not successfully lead to the base station will slowly 
lose favorable chances of being taken. In order to prevent a 
data packet from getting lost in an interminable loop 
between wireless sensor nodes, each ant also retains a 
memory of what nodes it has visited before. If a node 
receives an ant which has visited it already, it will not write 
that ant into its memory for retransmission, and the ant will 
have to go to a different node. This also conveniently 
prevents back-tracking. 

In this application, hardware implementation happens 
naturally, as the nodes and paths are literal things in the real 
world, with the nodes themselves serving as parallel 
hardware units. The analogy to ACO is not perfect, as there 
is some redundancy as ants may be received and 
retransmitted by more than one node (resulting in some 
minor duplication), but this redundancy was found to be 
minimal in impact on power consumption and ensured a 
more rapid and reliable transmission of data back to the base 
station, with less sensitivity to the loss or failure of sensor 
nodes due to the ability to reroute in real time. 

Another SI-based WSN implementation, designed for 
military scouting and target tracking applications, is 
described in [15] and uses a variant on ACO wherein digital 
pheromones are laid on areas of interest found by individual 
agents, and reinforced if other agents find them and agree, or 
allowed to evaporate if agents determine them to be of less 
interest than indicated (by not reinforcing them upon return 
visits). Different “flavors” of pheromones can be 
implemented to represent different kinds of information, or 
even to add new functionality to the algorithm. This 
implementation proved to be capable of a wide variety of 
applications, including area surveillance, area-of-interest 
observation, and target acquisition and tracking. It exhibited 
complex self-organization to divide labor evenly between 
agents in surveying the target area and focusing on the 
interesting pieces.  

B. PSO in Collective Robotic Search 
A similarly direct application for PSO in hardware is 

presented in [16], where robotic platforms are used as literal 
swarming agents searching a physical search space. Created 

for use in hazardous environments or for dangerous 
materials, the design goals called for the robots to be 
individually “small, inexpensive, and dispensable” [16]. 

The pre-existing iRobot Roomba was chosen as the base 
platform for the individual robots in the swarm, and the 
experiment was done with a population of five such robots, 
which already had built-in sensor systems and motion 
controls. The details of the wireless communication are fully 
explained in [16], and the overall hardware system is shown 
in Fig. 8. The system is broken into two parts: a control 
module whose two primary duties are to initialize the 
network so the robots can join, ensuring all communicate 
properly, and to correlate the robots’ positional data and 
fitness to calculate the global best fitness (gbest) and 
broadcast it to all members of the swarm, and the robots 
themselves, who handle their own individual positional 
updates and calculations and keep track of their own 
personal best fitnesses (pbest), sending updates of their 
pbests to the control module when they change. 

 
Experiments run on this system were reported in [16] to 

demonstrate accurate and swift convergence on real-world 
physical targets in the search space, demonstrating that a 
direct translation of the PSO algorithm to real-world 
physical search tasks is viable and useful. Ultimately, this 
should not be surprising, since the PSO algorithm is 
modeled on real-world birds flocking and fish schooling [1]. 

One requirement of such systems, however, is an initial 
distribution. The experiment in [16] did this manually, but 
[17] suggests three methods for automating their distribution 
from a single location, all of which require minimal 
communication. 

Another of the earlier implementations of mobile robot 
swarms was a design for adding mobile sensors to a static 
sensor network [18]. Unmanned aerial units (UAVs) with 
multiple wireless radios serve as the mobile sensors. One 
radio is used to talk to other UAVs, another is used to talk to 
static sensor nodes and/or a base station, and a third can be 
installed to talk to a satellite for relaying data.  

Lacking a satellite, a backbone of swarms can be used for 
data forwarding back to a base. Backbone design relies on 
one member of a swarm being named “Swarm Leader”, and 
receives a hardware radio with a longer range than normal. It 
is used to contact swarm leaders of nearby swarms, using a 
multi-hop ad hoc network to relay information back to base. 

As sensor swarms move more into fully autonomous 
robotic units, the power consumption becomes of greater 
concern, both due to miniaturization causing a shrinking of 

Fig. 8.  Schematic block diagram for the hardware implementation of the 
collective search robotic platform [16]. 
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available space for batteries, and due to lack of stationary 
sensors to back up failing mobile units. One solution is 
presented in [19], dividing the sensor units into “perimeter” 
and “core” nodes. The framework, called “SenseSwarm”, 
has three conceptual phases: Perimeter Construction, 
Acquisition, and Replication.  

Perimeter construction involves determining the relative 
locations of the mobile sensors, and divides them into 
“perimeter” and “core” nodes based on this positioning. The 
philosophy behind this sensor design is that interesting 
changes to the environment will only happen on the 
perimeter, and anything internal to that will remain much the 
same as when it was last detected. This phase is run every 
few cycles to ensure that new perimeter nodes are 
appropriately assigned as the swarm changes its physical 
configuration. Perimeter nodes perform all sensing duties, 
while core nodes save energy by performing data storage 
and processing duties rather than operating their external 
sensors. 

The acquisition phase is constantly running on all 
perimeter nodes, as they collect data. Replication is a phase 
run every few cycles just before the next perimeter 
construction phase, and involves perimeter nodes replicating 
their data into nearby neighbors, helping to determine the 
next perimeter/core division. 

Overall, this sensor network proved in testing to be equal 
to more uniform structures in data acquisition, but 
demonstrated up to a 75% energy savings over the uniform 
variant. 

C. PSO for Fault-Tolerant Sensor Systems 
PSO can also be used in conjunction with an autoencoder 

to create fault-tolerance in a sensor encoding scheme. In 
[20], an autoencoder is described as a Multi-Layer 
Perceptron (MLP) NN with as many inputs and outputs as 
there are sensors in the system, and fewer neurons in the 
hidden layer than there are sensors in the system. Relying on 
the fact that some of the data from the sensors is redundant, 
the autoencoder uses the reduced dimensionality of the 
hidden layer to correlate the redundant data and return as 
output the same information it receives on its input. The 
autoencoder is shown in Fig. 9, where X are the incoming 
signals to the sensors, S is the input to the system as well as 
the comparison of desired results, and Ŝ is the output of the 
sensor system. 

This redundancy can then be exploited to minimize the 
impact of failed sensors in the system by the inclusion of a 
PSO on the inputs of the autoencoder. SH and SR are the 
healthy inputs from the sensors and the outputs from the 
autoencoder, respectively. SE is the error between ŜH and SR 
and is zero (or at least below the threshold of error tolerance 
set up when the system was trained) as long as all sensors 
are working.  

When one (or more) of the sensors stops working, 
however, SH and SR will no longer be equal, and SE will 
become significantly non-zero. The remaining healthy inputs 
are then fed into the auto-encoder along with an estimate of 

the missing sensor data SM generated by the PSO. The PSO 
uses SE as a fitness measure to adjust SM until SE is once 
again negligible. 

 
Fig. 9.  Overall structure of the MSR with on-line restoration of missing 
sensor data. TDL denotes “time-delay lock” [20]. 

As long as the number of functioning sensors exceeds the 
dimensionality of the hidden layer of the autoencoding MLP, 
the redundancy will keep the system functioning with 
reasonable levels of accuracy. This system was implemented 
and tested in hardware on the RTDS (with hardware 
specifications as given earlier) shown in Fig. 7. A 
disturbance in the power supply or draw causes a sudden 
change in necessary operating mode, and the sensors are 
used to control the fluctuations and adapt to the new 
situation.  

Fig. 10 illustrates the performance of the power regulator 
as controlled by this system with zero, two, and three current 
sensors missing. The close similarity of the performance 
with all three conditions indicates how well this missing-
sensor replacement works in real-time.  
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Fig. 10.  Dynamic performance of a power regulation system with different 
(missing) sensor tests during an increase of electric load [20]. 

VI. OTHER SI HARDWARE PLATFORMS 
There are far too many parallel hardware platforms to 

cover in the limited space of this paper, but a few are 
mentioned here, including Grid Computing, ACO on 
FPGAs, and multi-agent systems. 

A. Grid Computing 
Grid computing is another parallel system demonstrated to 

be useful for implementation of SI. Grid computing applies 
the metaphor of a power grid to computing, connecting 
computers over a wide area together, and letting users plug 
into the entire system without worrying about where, 
specifically, the computational resources are coming from 
[21].  

A multi-objective PSO (MOPSO) is implemented in [21] 
via grid computing. Swarms are repeatedly divided into 
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subswarms, which run for a limited amount of time and 
return their result to a central server. The next iteration 
includes a “guide” in the form of a functional particle to re-
start the search with all other particles re-initialized within 
the local search space.  

Two methods of selecting guides are proposed: cluster-
based (designed to function on a fixed number of similar 
processors, and hypervolume-based (designed to operate on 
a heterogeneous set of processors) [21]. Both algorithms out-
performed more traditional implementations of the MOPSO 
on single processors. 

B. ACO in Hardware 
The majority of work with ACO has been done in 

software implementations on problems whose structure 
lends itself to ACO’s structure and style of problem solving. 
[22] utilizes it in perhaps the most obvious test problem: the 
traveling salesman. However, there are several hardware 
applications that logically lend themselves to this paradigm’s 
quirks. One such direct hardware implementation is 
presented in [23], which is an attempt to speed up the 
algorithm by taking advantage of its parallel capabilities and 
make it more useable in real-time. The algorithm is broken 
down into several key segments: 

 
1) Initial Setting of a Parameter 
2) Read Data 
3) Calculation of Distance 
4) Sorting 
5) Hardware 
6) Finish. 

 
The hardware section is further broken down into sub-

steps comprised of one loop nested within another. The outer 
loop includes an initialization step to determine how many 
iterations are to run and where each of the active ants will 
start. The inner loop exploits the parallel nature of ACO to 
greatly increase the algorithm’s speed, with multiple ants 
running at once, using the individual local update rule to 
traverse the route from node to node until termination 
conditions are met. Once the inner loops are done, the outer 
loop updates pheromone levels, checks for global 
termination conditions, and repeats if termination conditions 
are not met. 

In experiments, the ACO algorithm (both simulated 
entirely in software and implemented in hardware) 
outperformed a GA used as a control, and the hardware 
implementation of the ACO algorithm achieved speeds up to 
six times faster than the software simulation. 

An FPGA implementation discussed and tested in [24] 
lists some key restrictions FPGA hardware places on ACO: 

 
1) Pheromone values and random numbers take floating 

point representation which is too fine-grained for 
FPGAs. 

2) Multiplication operations required by evaporation and 
heuristic integration operations are not easily supported 

by most FPGAs. 
3) Space and time complexity is too large for modern 

FPGAs due to need to calculate prefix sums in 
numerators over as-yet unchosen items in the selection 
set. 

 
To circumvent these difficulties, a high-level mapping of 

ACO to an FPGA design is proposed in [24] using a series 
of modules. The population module contains a matrix of the 
individuals, with the best fit individual at the top of the list 
and a first-in-first-out (FIFO) matrix containing the rest. The 
Generator module sends individuals out one after another to 
explore the solution space, where the Evaluation module 
waits to send those who have completed their path for this 
iteration back to the Population module with pheromone 
updates for the path they took, as well as the fitness of the 
path they took. If one comes back with a higher fitness than 
the current best, the new one is placed at the top of the list. 
The route-traversal takes advantage of the parallel nature of 
the FPGA by allowing several ants to be exploring at once, 
but solving the floating-point precision difficulties still 
remains an issue. 

C. Multi-Agent Systems and SI 
Multi-agent systems are related to SI in that both utilize 

multiple relatively simple and independent agents to achieve 
complex emergent behaviors. The only difference is that 
multi-agent systems allow differences between their agents, 
whereas SI agents are all homogeneous. It would be remiss 
to conclude this paper without giving some examination to 
the work done in implementing hardware multi-agent 
systems. 

The majority of multi-agent work, however, has been 
done in the development of software agent design to create 
intelligent emergent behavior in a single computer system 
[25], [26]. In particular, [25] examines in detail protocols 
and design rules for software agents useful in controlling 
power systems, while [26] explains a programming language 
called “New Valid” for programming multi-agent systems, 
including the creation of new agents dynamically. Promising 
work on multi-agent control mechanisms for hardware-based 
mobile robots is shown in [27], where successful MatLab 
simulations of their programming language designed to 
control multiple mobile robot agents have been performed, 
but as of yet the specific problems peculiar to hardware 
processing have yet to be addressed by the authors of said 
language. 

However, successful completion of the complex task of 
jointly carrying a load between three independent robot 
agents through a narrow opening was accomplished in [28]. 
Physically identical, one robot was designated “leader”, 
which amounts to being responsible for primary path 
discernment, while the other two were “followers”. All three 
robots were equipped with tactile sensors to detect the 
balance and lateral force of the object they jointly carry on 
their backs and IR sensors for environmental proximity 
detection and, in the leader’s case, beacon-finding. They 
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worked to maintain a stable hold with minimal lateral force, 
which kept them in the proper orientation without any 
sophisticated communication systems. Once the leader 
detected the beacon, it began moving in that direction. The 
other robots’ maintained proximity to the leader due to the 
need to keep the object stable, and the followers used their 
proximity detection to avoid running the whole group into 
the wall, correctly orienting themselves so that the whole 
team and their attendant object passed safely through the 
opening. 

While [28]’s implementation is not an SI algorithm, it 
provides insight into the kinds of simple behavioral controls 
that can be performed on physical agents, which is 
applicable in the SI field. 

VII. CONCLUSION 
Swarm Intelligence algorithms are robust systems easily 

executed in parallel, making them ideal for hardware 
implementation in inexpensive but plentiful processors, such 
as FPGAs, GPUs, or Grid Computing systems. The very 
nature of their metaphor lends them well to mobile robot 
swarms and wireless sensor network control. Several recent 
promising implementations have been highlighted in this 
paper, demonstrating the power and versatility of this 
paradigm. Hardware implementations greatly enhance the 
speed and performance of these algorithms, and it is hoped 
that implementations such as those shown here can be used 
to make real-time Swarm Intelligence a feasible 
advancement in the near future. 
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