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Quantum network theory of computing with respect to entangled flux qubits
and external perturbation

C. A. Cain and C. H. Wua)

Department of Electrical and Computer Engineering, Missouri University of Science and Technology,
301 W 16th St., Rolla, Missouri 65409, USA

(Received 29 November 2012; accepted 1 April 2013; published online 17 April 2013)

In this work, we attempt to show the differences between traditional qubit-based spintronic

methodology for quantum computation and the possible ballistic quantum network implementations.

Flux qubits can be considered topologically similar to the persistent currents possessed as the

angular momentum in Aharonov-Bohm loops, which can be coupled and thus entangled together.

Since entanglement is guaranteed for coupled quantum networks, starting from a point-contacted

situation, we first investigate how varying the degree of entanglement strength can affect the

superposition of the four possible states for two isolated flux qubits being brought together.

In general, the superposition is destroyed once the degree of entanglement is altered from the

point-contact situation. However, we show that for a specific network with maximum entanglement,

a Bell state situation can be produced. We then examine the effects of varying the external

perturbation strength on the readout capability in quantum networks by changing the coupling

strength through the cross-sectional area ratio. From the analysis of our results, we are persuaded to

believe that two universally accepted components for quantum computing are not valid in the

quantum network approach: the need of a weak perturbation for measurement of computational

results and the requirement of fixed entanglement among qubits. We show there is an interplay

between the strength of the entanglement and that of the external perturbation for high-fidelity

classical readouts. VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801807]

I. INTRODUCTION

Quantum computing has been investigated extensively

by many researchers founded on the qubit-based concept.1–15

In the standard qubit formalism for a particle such as an elec-

tron, the state of the qubit can be written as the linear combi-

nation of the eigenstates of the Pauli spin matrix along the

rotational (typically z) axis

Sz ¼
�h

2

1 0

0 �1

� �
; (1)

with normalized eigenstates fð1; 0Þ; ð0; 1Þg. In quantum net-

work theory,16–21 it is possible to extend the notion of a flux

qubit to Aharonov-Bohm (AB) rings based on the angular

momentum concept. The typical spin-up/spin-down eigen-

states can be considered as the clockwise (CW)/counter-

clockwise (CCW) circulating persistent currents flowing in

an AB loop network, as shown in Fig. 1. Hence for a single

isolated AB ring, the CW or CCW angular momentum super-

position exists periodically with a period of hc/e or U0. For

example in Fig. 1 at U ¼ 60:5U0 or 0, the persistent current

will discontinuously switch between the global maximum

and minimum. This always occurs at the Brillouin zone

boundary or a Fermi level crossing between bonding and

anti-bonding states. Therefore, the AB ring is similar to an

atom whose angular momentum vector exhibits the switch-

ing of the eigenstates because the current oscillation is equiv-

alent to a chain of coupled harmonic oscillator waves.

For a single qubit, the flux model for an AB ring seems

to fit the traditional quantum computing concept. When two

such isolated AB rings are entangled with each other by shar-

ing a center common path, there are now two possible fluxes

which can penetrate each loop, denoted by /1 and /2, with

the flux periodicity deviating from the elementary flux

quanta accordingly.23 There is now an interaction along this

channel between the two partial waves embedded in each

ring, and hence, the Brillouin zone is two-dimensional. For

quantum computing purposes, any ring-to-ring entanglement

is supposed to provide the four possible spin pairings for

parallel computation, which corresponds to the parallel exe-

cution of Boolean algebra addition for two values, typically

called a half-adder. The two point-contacted AB rings

(Fig. 2(a)) can fit into this picture with the superposition con-

dition unaltered. However the ring-to-ring interaction, which

can be arbitrarily and lithographically imposed (Fig. 2(b)),

may or may not leave the superposition condition intact even

if we allow the shift of applied flux at the superposition

region. Second, the readout of the computation from the

qubit concept requires that the external perturbation be very

weak and brief as not to alter the state of the system’s four

spin pairing condition. In this paper, we show those two con-

ditions are not valid from the quantum network theory. We

describe in Sec. II how varying the entanglement strengths

may change the existence of superposition for the four pair-

ings. In essence, it depends on the ring-to-ring interaction

(internal coupling) that is physically imposed on the system.

Even if the entanglement between two AB rings manages to

preserve the superposition at an altered flux period, any forma)Electronic mail: chw@mst.edu
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of external readout measurement (external coupling), which

is supposed to collapse the wavefunction of the network to

provide a classical result, does not need to be weak or brief.

In fact strong and permanent external perturbation to the

isolated and entangled AB rings is desirable for a robust

readout, provided that the strength of the entanglement is

stronger in cooperation with the external perturbation.

The half-adder computing capability from two coupled

AB rings is clear. The four angular momentum pairings can

be mapped into the four rules for addition of two binary val-

ues: 00, 01, 10, and 11. Here, the 00 pair indicates the angu-

lar momenta of the two AB rings are both CW, and so on.

This mapping can be arbitrarily assigned and evaluated with

flux values of the same magnitude. Such a circuit has been

shown recently by us.23 The classical readout requires a test

signal (an input) to sample through the two coupled AB rings

and the results (the outputs), namely “sum” and “carry,”

need to be correctly separated. That requires two terminals

alone. Furthermore, an additional third terminal is needed

when the 00 operation case arises, since the Boolean rules

require the test signal not to reach the “sum” or “carry” ter-

minals. Hence, it must appear on the extra third terminal.

Thus, a half-adder is composed of a simple structure of two

coupled AB rings with three attached external terminals for

readouts, which is further characterized in Sec. III A. Such a

half-adder replaces between one and two dozen MOSFET

transistors (depending on static or dynamic implementation)

used in current classical circuits. More broadly in Sec. III,

we examine how weak and strong external perturbations

affect the readout from a quantum computing scheme that is

implemented.

The demonstration of electron transmission through an

AB ring with two strongly coupled terminals was shown in

the mid-1980s.24 This is the simplest form of a quantum net-

work connected to two chemical potential reservoirs. Even

in this form, there are three classes of electron transmission,

depending on the locations of the two terminals and the total

number of atoms (sites) in the ring. Each class is like a fun-

damental mode of a microwave waveguide. There is further

a scaling relation where a properly scaled up version of the

ring will exhibit an identical transmission to its smallest pos-

sible atomic sized ring.21 Generalization of such quantum

networks to three and four terminals have been investigated

for possible wave-computing using the vector sum of two

coherent inputs.25,26

Recently, we tried to relate the qubit-concept based

computing through a quantum network-based framework.

We showed that with three such strongly perturbed external

leads, a high-fidelity classical sequential readout is possible.

In this paper, we will further show (I) how weak and strong

entanglements along with (II) how weak and strong external

perturbations will affect the result for a classical readout

separately. Our investigation of these quantum networks is

based on an exact and non-tight-binding global node equa-

tion method formulated previously by one of these authors,

and can be reviewed in the literature.21 Finally, we summa-

rize the differences between mainstream qubit-based com-

puting and the approach for quantum networks in Sec. IV.

II. ANGULAR MOMENTUM ENTANGLEMENT IN
QUANTUM NETWORKS

If two AB rings are entangled together in a very weak

manner, such as by quantum point contact, then each loop

can be treated as their own Hilbert spaces. This leads to four

possible system states jAloopi � jBloopi and is illustrated in

Fig. 2(a) where the persistent current of the pair behaves

similarly to that of a single AB ring shown in Fig. 1, with

superpositions exhibited at U ¼ 0; 60:5U0; 6U0, and so on.

Therefore with a point contact entanglement, the qubit model

is still valid for any combination of input fluxes.

Generally when two AB rings are touching one another,

there is an entanglement or overlapping of the partial wave-

functions of the two rings. When two AB rings are point-

contacted (Fig. 2(a)), this is a minimum entanglement where

a superposition of the four states exists because the energy

spectrum remains the same as that of a single AB ring. As

two rings become closer, the overlapping is increased and

there is a common path (one or two channels) such that the

phase of the wavefunction can be modulated by two inde-

pendent fluxes (Fig. 2(b)). This increases the degree of

entanglement and is reflected by the lowering of the Fermi

FIG. 1. Single isolated AB ring whose angular momentum state is in a

superposition. At zero flux, there is an overlap at Ef between bonding and

anti-bonding states which causes this, with the other case being the zone

boundary. There are four possible groups, M¼ 4N, 4N þ 2, 4N þ 1, and 4N
þ 3, where M is the number of scattering sites and N an integer. For the

even and odd curves shown, we use the lowest M for each group.

I0 ¼ ð�h2MÞ=ð2meU0Þ. The two odd groups are in superposition at zero flux

and the zone boundary, while the even groups only have a single flux value

for superposition. There is a half period flux shift between the superposition

for the even 4N (zero flux) and 4N þ 2 (zone boundary), as well as the odd

4N þ 1 and 4N þ 3 (min/max switched) groups. We have described these

relations in the past.21,22
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level, Ef, with the overlap of bonding states being pulled up,

and the anti-bonding states being pulled down, respectively,

in energy space at one flux period. In isolated coupled AB

networks that only share a middle common path (or two), the

entanglement is much stronger with a broadened flux perio-

dicity (dependent upon the geometry of the network), as

given by Eqs. (6) and (7) in Ref. 23. The entanglement is

considered at its strongest when there is only a single com-

mon path, shown in the upper-left of Fig. 2(b). When the

entanglement becomes this strong, the bonding and anti-

bonding states can be at equal energy for certain flux values

within the first Brillouin zone and when the applied fluxes to

the loops are equal in magnitude.22 At these Fermi level

crossing points between states, there is an inherent uncer-

tainty in the direction of the persistent current flowing in

the network (hence in a superposition), at jUj ¼ 2
9
U0.

Superposition is also observed for single AB loops with no

applied flux, which was outlined in Sec. I (Fig. 1). It is im-

portant to note that for entanglements stronger than a point

contact situation, this Fermi level crossover behavior is only

observed in even-numbered rings (either groups M¼ 4N or

4N þ 2 due to scaling laws) that are coupled by a single path

(the strongest form). Since the charge density within the

common path is either zero at its midpoint or its divergence

is,22 the portions of the persistent current in both rings must

be flowing in the same direction of the angular momentum.

Physically, if one were to measure the current for one loop,

there would be no guarantee of a given direction. However,

whatever the outcome for the first loop, the second loop’s

measurement is guaranteed to be identical with the first. This

is true even for Fermi level crossings and at the zone bound-

ary. Therefore, the state of the system can be described by

two Bell states

jWi ¼ ajwþi þ bjw�i; (2)

where jwþi ¼ 1ffiffi
2
p ðj00i þ j11iÞ and jw�i ¼ 1ffiffi

2
p ðj00i � j11iÞ.

It is clear that as the degree of entanglement between the

coupled rings increases past the point contact stage, there is

no guarantee anymore of preserving all four possible states.

We show that the ring-to-ring interaction destroys the super-

position for the weaker double bond couplings, while mov-

ing to maximum entanglement (singe bond) will intuitively

produce a Bell situation, though only for networks that fall

into an even-numbered classification group. This provides a

contrast with qubit-based quantum computing, where super-

position is assumed during entanglement. Quantum comput-

ing at a minimum must be able to perform the algebraic

operations first.

III. EXTERNAL COUPLING STRENGTH
CONSIDERATION

In qubit-based quantum computing, the typical approach

is to attempt to determine the state of the system without

FIG. 2. Change of superposition capability as the strength of entanglement increases. (a) Weak entanglement of the four possible groups for even and odd AB

rings, coupled by a single scattering site (point contact rings). The superposition is preserved due to the band structure being unaltered from the single ring. (b)

Strong entanglement for the two smallest even/odd groups (4N, 4N þ 3), either with a single center common path (S) or a double (D). Generally, the superposi-

tion is destroyed, but single bonds which represent the strongest entanglement in quantum networks can overlap the band states at Ef to a degree that also pro-

duces a superposition (as in M4S). The applied fluxes are given as U ¼ /1 ¼ /2. Note that the other two groups (4N þ 2, 4N þ 1) need not be investigated

due to scaling laws we have noted earlier. Thus they will behave qualitatively similar to that of their respective sister group, though with a possible flux shift.
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disturbing the internal state or superposition, meaning a

closed system basically. In other words, for a readout a weak

or indirect measurement is necessary. In the quantum net-

work approach, external perturbations for readouts are

typically permanently attached and strong. In this section,

we describe how varying the external coupling strengths for

both weak and strong entangled quantum rings can affect the

readout of the computations. We denote the external pertur-

bation strength with the coupling parameter D, which is the

cross-sectional area ratio of the terminal probe to the elec-

tron waveguides of the ring itself. In the global node equa-

tion approach we have used in our calculations, D can be

derived for an intersection site A connected to three other

scattering sites (labeled A1�3) by leads of a single lattice

spacing as (see Fig. 3)

s1WðA1Þ csc klAA1
¼ s1WðAÞ½cot klAA1

� tandAA1
�e�ihAA1 ;

s2WðA2Þ csc klAA2
¼ s2WðAÞ½cot klAA2

� tandAA2
�e�ihAA2;

s3WðA3Þ csc klAA3
¼ s3WðAÞ½cot klAA3

� tandAA3
�e�ihAA3

;

(3)

where cross sections s1 ¼ s2 ¼ s; s3 ¼ s0, lengths lAA1
¼ lAA2

¼ lAA3
¼ l, and phase factor hAAj

¼ 1
U0

Ð l
0

Aðx0Þ � dx0.

Satisfying conservation of current,
P3

j¼1 tan dAAj
¼ 0, with

tan dAAj
¼ i

CAAj
�DAAj

CAAj
þDAAj

, where C and D are the outgoing and

FIG. 3. Lattice-structured quantum network which forms the basis for the

global node equation method. The boundary condition for conservation of

momentum at A allows us to form a linear set of equations describing the

stationary states at each of the scattering sites.

FIG. 4. Two strongly coupled AB rings, beyond the point-contact situation, is shown in the upper figures. When /1 ¼ /2 ¼ 60:1U0 in (a), a test signal from

the sum terminal, results in a total reflection, so that the output at the sum terminal � 0:9, while the carry terminal output � 0:1. The two results are mapped

into the Boolean algebra rules of addition for two bits 1 and 0. This is shown in the bold solid curve when D ¼ 1 (strong external coupling). The grayscale

arrows indicate the progression as the coupling is reduced. When D is reduced, the results are no longer valid because the sum/carry relation changes into dif-

ferent, less distinguishable modes (D ¼ 0:1 and 0.01). In (b) when /1 ¼ �/2 ¼ 0:1U0, the carry terminal � 0:9, while the sum terminal � 0:1. This maps into

the Boolean algebra rules of addition for two bits 1 and 1. On the other hand when /1 ¼ �/2 ¼ �0:1U0, both carry and sum terminals are low, and the output

goes to the third dump terminal (not shown). This maps into the addition for two bits 0 and 0. The above statement is valid only at D ¼ 1, the maximum exter-

nal coupling situation. When D is reduced to 0.1 or 0.01, the results are not valid as shown in the dotted curves. Thus a workable half-adder we have shown

here has uniform cross-sectional area throughout the rings and the external leads.

154309-4 C. A. Cain and C. H. Wu J. Appl. Phys. 113, 154309 (2013)



incoming amplitudes along path AAj, respectively. If the

external terminal is connected along the non flux-modulated

path lAA3
then hAA3

¼ 0 and we can define D ¼ s0

s . Rewriting

the localized linear set of equations in homogeneous form

gives

WðAÞ½2 cot klþ D tan dAA3
� � csc kl

X2

j¼1

eihAAj WðAjÞ ¼ 0: (4)

This is equivalent to the traditional S-matrix formulation

shown by B€uttiker et al.27 Note that D ¼ 1 corresponds to

maximum coupling, while D ¼ 0 describes the isolated

unperturbed rings. If this approach is globally extended to

each scattering site in the network, a secular equation can be

formed for the eigenenergies that will lead to the calculations

of the reflection and transmission amplitudes of the test sig-

nal for given terminal sites.23

A. Strong entanglement with varying external
perturbation strengths

It is possible to construct a half-adder circuit with two

AB rings entangled by two shared center bond lengths,

where all four pairing states can be satisfied classifically. This

network presumes a strong and permanent perturbation or

D ¼ 1. Quantum networks are understood to be of a wave-

guide nature. We have shown previously how a test signal can

be transported through multiple-terminal networks.22,23,25,26

Transport with a test signal for a three-terminal network can

be generally divided into three primary classes: dominant,

half-sharing, or equal-sharing between the output terminals.

From the truth table for a half-adder, it is simple to see that

only a single output should be j1i for any given flux combina-

tion. Therefore, a dominant class of transport is favorable for

this form of computation. From our calculations, we see that

if the coupling parameter between the external terminals and

the rings begins to weaken, then the transport classification

begins to change. The domination for the sum and carry ter-

minals begins to be weakened slowly into a more distributed

class. Therefore, the ability to take a high-fidelity measure-

ment of the computation through the test signal is absent at

weak coupling parameters, leaving indistinguishable readout

results. This is shown in Fig. 4.

B. Weak entanglement with varying external
perturbation strengths

In Fig. 2(a), we show that for point-contact coupled AB

loops, superposition of states exist at jUj ¼ 1
2
U0 and 0. This

is the situation for a weakest entanglement. The question is

whether this can be accompanied by a weak external pertur-

bation to provide a classical readout. For comparison, we

investigated the two weakest entangled AB rings, where

superposition of all four states exists before the attachment

of external terminals. Since there is no shared center path

between the two partial waves in each ring, the eigenenergies

remain unchanged for applied fluxes /1 ¼ 6/2. This is due

to the associated secular equation only having flux terms

contained within cosines.23 The result is that the electron

transport is sign-invariant for one of the fluxes, and thus

there are only two possible electron wavefunction output

vectors in the weakest entanglement, instead of four. For

half-adder addition, this is not desirable since there needs to

be a total of three distinct output states. The results are

shown in Fig. 5. For the class of point-contacted AB rings,

with an odd number of atoms in each ring, labeled as M3, we

found a gradual transport trend. The two output states are

slowly degraded from dominant transport at one terminal to

a more distributed situation. For the second class of two

even point-contacted rings, M4, the test signal is completely

reflected across the entire flux period for all non-zero cou-

pling strengths (not shown), and is therefore not useful for

computation. In summary, lowering the coupling strength

between the external terminals and the network will gener-

ally degrade the readouts to such a point where the computa-

tion can no longer be reliably found or distinguished.

Therefore there is no possibility of a classical readout, even

though the unperturbed coupled rings can exhibit a superpo-

sition of states. This is because superposition of states holds

true only in a closed system, while readout possibility is

from an open system only. In special cases where there is

total reflection of a test signal across the entire first Brillouin

FIG. 5. Weak entanglement versions of the half adder circuit. (a) Odd M3

and even M4 point-contact circuits. (b) M3 point-contact network transport

as external terminal coupling is varied. The grayscale arrows indicate the

progression as the coupling is reduced. The third (dump) terminal in our

original work is not shown, since it only collects unwanted computations.

Note that the results are for all four equal-magnitude angular momentum

pairings, since the transport is sign-invariant for /2. In D ¼ 1 situation, it

behaves like a quantum circulator.25 As external terminals are weakened,

the transport approaches equal-distribution between the carry and dump (not

shown). Note the flux period for point-contact entanglements are the same

as for a single ring, U ¼ U0.
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zone, this does not hold true as changes in coupling strength

have no effect on the output.

IV. CONCLUSIONS

In this paper, we show that as long as a single qubit,

which is angular momentum based, can be established in a

man-made atom or an AB ring, quantum computing can be

made without the need to check the extent of entanglement

for superpositional flux qubits in order to guarantee the clas-

sical readouts. The superposition nature of such networks is

due to the fact that electron wavefunctions are composed of

coupled harmonic oscillators (in the global node equation)

in an AB ring, and hence at the Brillouin zone boundary a

switching of the direction of the angular momentum can

occur. Therefore, the subsequent constructions for the entan-

glement of two coupled AB rings to serve as a half-adder

circuit as well as the required setup for a classical readout do

not necessarily follow the procedures outlined by earlier

investigators. The existence of a superposition for qubits has

long been assumed when there is entanglement. This is

required strictly for a closed system only. However, our

results lead us to believe that superposition of states may not

be needed for classical readout results because the readouts

require an open system. Our findings point out that there is

an interplay between the entanglement (internal coupling)

and the external perturbation configuration (external cou-

pling). The entanglement can be provided in such a way that

there is a loss of superposition, while the external connec-

tions are attached. We show indeed that classical readouts

are possible at the loss of superposition. The conventional

wisdom of having a perfect internal quantum computation

scheme first (closed system) and then reading the result with

weak or indirect measurement, in order to keep the system

closed, turn out not to be valid in our quantum network

example shown here, and therefore is necessarily not valid

in the general situation. In general, attempting to sample a

closed quantum network in a superposition with a test signal

results in a rejection of the probes with complete reflection.

We have shown that strong external perturbations can pro-

vide high-fidelity classical readouts, while weak perturba-

tions generally switch the quantum circuit from one class

(dominant output) to another weaker (distributed output)

class that cannot provide any useful readouts. In quantum

computing, as long as it is qubit-based at the start, the inter-

nal couplings of qubits (the entanglement) and the external

couplings for collapsing the internal quantum state to a clas-

sical distribution (the setup for readouts) are one integral

part of a circuit that cannot be considered separately. For

robust classical measurements, a strong external perturbation

must be paired with a strong enough entanglement that can

destroy the superposition of the two qubits. Any other com-

bination of external and internal couplings will not lead to

this desired computational output behavior.

While qubit-based quantum computing is shown to

be able to perform so called “massive parallel computing”

as shown by Shor’s algorithm28 for fast factorization, a

fundamental problem still exists at the very elementary level

of simply adding two n-bit binary strings together. This is

analogous to performing the Fourier transform in optical

computing,29 which is a special case that a single lens gate

can solve in parallel. However, this in no way implies that

such parallelism can be extended to general arithmetic logic

operations that depend on addition-based Boolean algebra.

In quantum network theory, we show one possibility to inte-

grate a quantum algorithm with strong external perturbations

so that high-fidelity classical measurement is possible. In our

scheme, superposition of angular momentum states can exist

in a closed system fashion, but needs to be collapsed in coor-

dination with the readout configuration in an open system.

The coordination scheme we have demonstrated is to

strengthen the internal coupling, at a loss of superposition

with the attachment of strong externally coupled terminals to

form said open system. Any other combination will not pro-

vide meaningful readout results in our model. In summary, a

closed system has been transformed into an open and useful

system.
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