MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Jan 2005

Fuzzy PSO: A Generalization of Particle Swarm Optimization

S. Abdelshahid

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Ashraf M. Abdelbar

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

S. Abdelshahid et al., "Fuzzy PSO: A Generalization of Particle Swarm Optimization," Proceedings of the
IEEE International Joint Conference on Neural Networks, 2005, Institute of Electrical and Electronics
Engineers (IEEE), Jan 2005.

The definitive version is available at https://doi.org/10.1109/IJCNN.2005.1556004

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2005.1556004
mailto:scholarsmine@mst.edu

0-7803-9048-2/05/$20.00 €2005 IEEE

Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

Fuzzy PSO: A Generalization of Particle Swarm
Optimization

Ashraf M. Abdelbar, Suzan Abdelshahid
Department of Computer Science
American University in Cairo

Abstract—In standard particle swarm optimization (PSO), the
best particle in each neighborhood exerts its influence over other
particles in the neighborhood. In this paper, we propose fuzzy
PSO, a generalization which differs from standard PSO in the
following respect: charisma is defined to be a fuzzy variable,
and more than one particle in each neighborhood can have a
non-zero degree of charisma, and, consequently, is allowed to
influence others to a degree that depends on its charisma. We
evaluate our model on the weighted maximum satisfiability (max-
sat) problem, comparing performance to standard PSO and to
Walk-Sat.

I. INTRODUCTION

Particle swarm optimization (PSO) [Kennedy and Eber-
hart, 1995; Kennedy and Eberhart, 2001] is a computational
paradigm based on an analogy with models of the social
behavior of groups of simple individuals. When PSO is used
to solve a discrete optimization problem, a group, or swarm,
of computational elements, or particles, is used to explore
the solution space of a given instance Z of the optimization
problem. Each particle i stores a candidate solution vector
z; for Z, and stochastically modifies its candidate over time,
based on the best solution found by the particle ¢ itself, and
based on the best solution of neighboring particles, where
a neighborhood structure, defining particle adjacencies, is
applied to the swarm.

In this paper, we propose fuzzy PSO, a generalization of
PSO, which differs from standard PSO in only one respect:
in each neighborhood, instead of only the best particle in the
neighborhood being allowed to influence other particles in the
neighborhood, several particles in each neighborhood can be
allowed to influence others to a degree that depends on their
degree of charisma, where charisma is defined to be a fuzzy
variable. This will be described more fully in Section IIL

We evaluate the performance of our proposed model on
the weighted maximum satisifiability problem, comparing
performance to standard PSO and to Walk-Sat [Selman et
al., 1994], a well-known satisfiability algorithm. We find
that standard PSO does not perform well on Max-Sat in
comparison to Walk-Sat. Adding fuzziness to standard PSO
results in improved performance but still does not perform
well compared to Walk-Sat. In previous work [Abdelbar and
Abdelshahid, 2004], we introduced several modifications to
the standard PSO model including the use of what we have
called instinct factors, and of a neighborhood structure based
on the hypercube topology. When these modifications are used
with fuzzy PSO, performance compares favorably to Walk-Sat

Donald C. Wunsch 11

Department of Electrical and Computer Engineering

University of Missouri, Rolla

and to standard PSO with these same modifications, especially
for larger problem sizes.

We begin by reviewing PSO more fully in Section II, and
then introducing fuzzy PSO in more detail in Section IIL
Section IV reviews other modifications to the PSO model
that we introduced in previous work. Section V presents
experimental results on the weighted Max-Sat problem, and
Section VI presents some conclusions and suggestions for
future work.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) [Kennedy and Eberhart,
1995; Kennedy and Eberhart, 2001] is a computational par-
adigm based on the phenomenon of collective intelligence
exhibited by swarms of insects, and schools of fish, that has
been applied to a variety of domains [Eberhart and Shi, 2001].
Recent applications of PSO include learning to play checkers
[Franken and Engelbrecht, 2003], learning to play the Egyptian
traditional board-game Seega [Abdelbar et al., 2003; Abdelbar
et al., 2004], learning fuzzy cognitive maps [Parsopoulos et al.,
2003], detecting the existence of function roots [Parsopoulos
and Vrahatis, 2003], data clustering [Van der Merwe and
Engelbrecht, 2003], tracking extrema in dynamic environments
[Li and Dam, 2003], and linear constrained function optimiza-
tion [Paquet and Engelbrecht, 2003].

Like neural networks, computation in the PSO paradigm
is based on a collection (called a swarm) of fairly-primitive
processing elements (called particles). Connectivities are de-
fined over the swarm, whereby each particle has an adjacency
relationship with a subset of the other particles in the swarm.
The neighborhood of each particle is the set of particles with
which it is adjacent. The two most common neighborhood
structures are gbest, in which the entire swarm is considered
a single neighborhood, and lbest, in which the particles are
arranged in a ring, and each particle’s neighborhood consists
of itself, its immediate ring-neighbor to the right, and its
immediate ring-neighbor to the left.

Suppose we would like to use a swarm of M particles to
solve a discrete combinatorial optimization problem whose
candidate solutions can be represented as vectors of bits; let
7 be a given instance of such a problem. Let N denote the
number of elements in the solution vector for Z. Each particle
i would contain two N-dimensional vectors: a boolean vector
x;, which represents a candidate solution to Z and is called
particle i’s state, and a real vector v;, called the velocity of the

1086

particle. In the biological insect-swarm analogy, the velocity
vector represents how fast, and in which direction, the particle
is flying for each dimension of the problem being solved.
Let N(i) denote the neighbors of particle i, and let p;
denote the best solution ever found by particle <. In each time
iteration, each particle ¢ adjusts its velocity based on

v; = avfld + ¢17(-)(pi — xi) + dar () (pg — i), (1)

where «, called inertia, is a parameter within the range
[0,1] and is often decreased over time [Shi and Eberhart,
1998a]; ¢; and ¢ are two constants, often chosen so that
¢1 + ¢2 = 4 [Kennedy and Eberhart, 2001], which control the
degree to which the particle “follows the herd” thus stressing
exploitation (higher values of ¢2), or “goes its own way” thus
stressing exploration (higher values of ¢;); r(-) is a uniformly
random number generator function that returns values within
the interval (0,1); and g is the particle in i’s neighborhood
with the current neighborhood-best candidate solution.
For each dimension d = 1,..., N, we then apply

Vinaz if vig > Vinaz
Vid = Vid if — Vinaz € vid £ Vinas 2)
~Vimaz if via < —Vinaz

where Vi, is a constant that limits the growth of velocity in
either direction; then, we apply

Pr(zyq =1) = 0(via) , 3)

where ¢ is the sigmoidal function o(a) = {ri==. Equation
(3) can be implemented by generating a random number p
within the interval [0,1] and setting z;4 to 1 if p < o(viq)
and to O otherwise. We then determine the highest-quality
solution within each neighborhood, according to a domain-
dependent fitness measure, and adjust each particle’s best
neighbor pointer accordingly.

There has been some recent work [Clerc and Kennedy,
2002; Trelea, 2003; van den Bergh and Engelbrecht, 2002]
on the convergence properties of PSO. Hierarchical neighbor-
hood structures were introduced by Janson and Middendort
[2003]; and dynamic neighborhoods were explored by Hu
and Eberhart [2002]. Mendes er al. [2004] presented a fully-
informed PSO variation, and the use of mutation in PSO was
investigated by Stacey et al. [2003].

III. Fuzzy PSO

In this paper, we propose fuzzy PSO [Abdelshahid, 2004],
a generalization of PSO, which differs from standard PSO in
only one respect: in each neighborhood, instead of only the
best particle in the neighborhood being allowed to influence
its neighbors, several particles in each neighborhood can be
allowed to influence others to a degree that depends on their
degree of charisma, where charisma is a fuzzy variable.
Several alternatives are possible for each of the following
questions:

1) How many particles in each neighborhood will have non-
zero charisma, and which particles will be selected to be
charismatic?

Fig. 1. A plot of a Gaussian function (solid line) with o = 0 and 0 =
42.466, and a Cauchy function (dashed line) with & = 0, and 3 = 50. The
two functions are aligned to have the same center and half-width. The two
functions are very similar up to +50 (the half-width); beyond this point, the
Cauchy function has a much lower rate of decay.

1

09

08

100 200 200 400 500 600 00 800

Fig.2. A plot of 1(h) (y-axis) versus f(pp) (xz-axis), based on f(py) = 100
and 8 = 50.

2) What membership function (MF) will be employed to
determine level of charisma for each of the k selected
particles?

In this paper, we use a simple rule to answer the first
question: the k best particles in each neighborhood are selected
to be charismatic, where k is a user-set parameter.

A number of alternatives are possible for the charisma
ME. Popular MF choices include the triangular, trapezoidal,
Gaussian, and Cauchy MFs [Jang et al., 1996]. The Gaussian
and Cauchy MFs, shown in Fig. 1, are specified by:

gauss(T;,0) = e_%(l'_’u)2 , 4
cauchy(z; a, 8) = ——1———2 . (&)
1+(52)

Compared to the Gaussian, we can see from the figure that
the Cauchy function has a “wider tail;” we can illustrate this
as follows. Consider a Gaussian function with center a; and
half-width 3;, and a Cauchy function with center a; and half-
width (32, where the center « represents the point along the
z-axis where the function output is 1, and (o £) is the
point along the z-axis at which the function output is 0.5.
The output of the Gaussian function at the point (a; + 201)
is always 0.0625 while the output of the Cauchy function at
(a2+20,) is always 0.2, regardless of the values of the centers
and half-widths. At the point (a; + 33;) and (a2 + 302), the
output of the two functions is 0.002 and 0.1, respectively. At
(a1 +108;) and (a2 + 1003), the outputs are 7.8 x 1073 and

0.01, respectively. The difference between the two functions
continues to grow the further away from the center we move
along the z-axis.

In this paper, we use an MF based on the Cauchy function.
Let h be one of the k-best particles in a given neighborhood,
and let f(pg) refer to the fitness of the very-best particle for the
neighborhood under consideration. We compute the charisma
P(h) of particle h as

(k) = -

3 .
flpn)—f(py)
14 (Leno/iea))

(6)

Because f(pn) # f(pg), ¥(h) is actually half of a Cauchy
function, as shown in Fig. 2. ¢ is a decaying function that is
1 when f(pr) = f(pg), and asymptotically approaches zero as
f(pr) moves away from f(pg). ¥(h)’s output is 0.5 at a + 3.
To avoid dependence on the scale of the fitness function, we
set

p=1d, ™

where £ is a user-specified parameter. For a fixed f(pp), the
larger the value of ¢, the smaller the charisma (k). Figure 3
shows plots of ¢ (y-axis) against f(py) (z-axis), for several
values of £.

We employ an MF based on the Cauchy rather the Gaussian
function because the amount of charisma allocated by the latter
falls too quickly as we move away from f(z4). From our
discussion above, a particle whose fitness is two units of half-
width above the neighborhood-best is given a small charisma
of 0.1 by equation (6) but would be given practically-zero
charisma by a Gaussian-based MF. Therefore, the Cauchy will
better promote search space exploration.

In fuzzy PSO, equation (1) is replaced by:

vi = o+ pyr()(pi — i)
+ Y pr((k) (pn — xi) ®)
heB(ik)

where B(i, k) denotes the k-best particles in the neighborhood
of particle i. Each particle ¢ is influenced by its own best
solution p; and the best solutions obtained by the k charismatic
particles in its neighborhood, with the effect of each weighted
by its charisma 1. Of course, if k is taken as 1, this reduces
to the standard PSO model.

IV. OTHER MODIFICATIONS TO PSO

In this section, we review a number of modifications to the
standard PSO model, that we have presented in previous work
[Abdelbar and Abdelshahid, 2004]. In this paper, we will refer
to these modifications collectively as PSO+.

A. Instinct Factors

We propose a modification to PSO based on an idea from ant
colony systems [Dorigo et al., 1996]. Instead of the velocity-

update Equation (1), we use
avs® + ¢17(-)(Pid — Tia)

+ ¢2r(-)(Pgd — Tia) + P30a(xi) , (&)

Vid =

00 800 90

Fig. 3. Plots of ¥(h) (y-axis) versus f(pp) (z-axis) for different values of
¢, based on f(py) = 100.

where 64(z;) is an instinct function that determines the par-
ticle’s natural tendency towards the dt* bit of the solution
vector, conditioned on the current solution string z;. In the
biological metaphor, this can be seen as modeling the primitive
instinctive intelligence that even an insect might have. We will
illustrate this in the context of the weighted max-sat problem.

An instance of weighted max-sat consists of a set U of
n propositional variables, and a set C of m clauses, where
each clause consists of a weight and a disjunction of literals,
where each literal is a variable or its negation. The objective
is to find a truth assignment to the n variables that satisfies the
maximum-weight subset of the clauses. For example, consider
the following instance:

40: avbd
9: bVe

80: bVe
50: avbVve

75: aVe

The optimal assignment for this instance, {a — true,b —
false,c — true}, leaves one clause unsatisfied: (@ V b).

In modeling satisfiability problems with PSO, we would
let the number of dimensions be equal to the number of
propositional variables, and a value of 1, or 0, for a given
dimension would indicate an assignment of true, or false,
respectively, for the corresponding variable.

Let 7 be an arbitrary truth assignment for U, and let v
be an arbitrary member of U. Let C, refer to the subset of
clauses in which v participates. Then let h(7,v — true) refer
to the weight of clauses in the set C,, left unsatisfied when v is
forced to true and all other variables of 7 remain unchanged;
let h(T,v — false) be analogously defined. We then define
0,(7) as

h(r,v — false)
h(t,v — true) + h(r,v — false)

The reasoning behind this equation is as follows. The function
0,(7) measures the degree to which it is a good idea to set v
to true assuming nothing else changes. For example, suppose
a hypothesis h participates in a set of clauses C, of total
weight 2000. Now, suppose that if v is clamped to false, and
all other hypotheses retain their values under 7, the weight
of unsatisfied clauses within C,, is h(7,v — false) = 200.
Suppose the corresponding value for true, h(7,v — true), is
300. (Of course, h(T,v — true) + h(r,v — false) will not
necessarily equal the total weight of C, because there could

0,(T) =2 %

—-1. (10)

1088

Fig. 4. An example of a hypercube topology (with number of dimensions
equal to 4). Two nodes are adjacent if and only if the binary representation
of their indices differ in only one bit position.

be clauses in C,, that are not satisfied under either truth value
of v.) Then, the value of the 6 function in our example would
be equal to (% x 2) —1 = —0.2, and the effect of 64(z:q)
in equation (9) would be-to move v;q downward.

Note that the instinct function described in this section is
a modified version of the function used in previous work
[Abdelbar and Abdelshahid, 2004].

In the case of fuzzy PSO+, equation (9) would be replaced
by

vt + ¢17()(Pia — Tid)

+ Y bar(V(h)(Pha — Tia)

heB(i k)
+ ¢364(x;) .

B. Hypercube Topology

Vid =

an

With the addition of the instinct component, we have found
that better performance is obtained with a hypercube topology
than with the gbest topology. In a hypercube (see example in
Fig. 4), the number of particles must be a power of 2; each
particle is given an index between O and 2% — 1, for some
k. Two particles are neighbors if the binary representations of
their indices différ in exactly one bit position. The hypercube
topology has been extensively studied as an interconnection
network structure for parallel processing [Kumar et al., 1994].
It has a number of desirable properties (let 2¢ be the number
of particles):

« each neighborhood contains exactly k particles,

« the maximum distance between any two particles (called

the diameter) is exactly k,

o if particle ¢ and particle j are neighbors, then 7 and j will

not have any neighbors in common except for each other.

These properties suggest that the hypercube topology pro-
vides a good balance between effective communication (thus
facilitating exploitation) and allowing independent solution
trajectories to develop (thus facilitating exploration).

C. Stochastic Local Search

At the end of each iteration, the current state vector x; for
each particle i is used as the seed of a stochastic local search,
as follows:

1) We repeatedly select a random bit 1 < d < N of i’s
state vector, x;4. This process is repeated N times until
all bits have been selected.

2) Let £4(x;) refer to the truth assignment produced by
flipping the truth value of the selected bit x,4 to the
negation of its current value.

3) If the weight of clauses satisfied by £4(x;) is greater
than the weight of clauses satisfied by x;, then z; takes
the value of £4(x;). This new assignment takes effect
immediately before we go back to step 1 to process the
next bit.

The results of this process of course will depend on the
random order in which the bits are selected in step 1. There-
fore, for the same state vector, the results could be different
for different runs of the stochastic search process.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results comparing
five models: PSO, PSO+, Fuzzy PSO, Fuzzy PSO+, and Walk-
Sat.

A. Experimental Suite and Parameter Settings

The number of particles used in PSO+ (and Fuzzy PSO+)
is 64 particles. Since the computation of # and the stochastic
local search cause these methods to take more time than
standard PSO, the number of particles in PSO (and Fuzzy
PSO) is adjusted to 256 particles, to give the different methods
roughly the same amount of time. We employ a suite of four
large and ten small weighted max-sat instances to compare the
different models:

e auc-1, auc-2, and auc-3: Three instances that we
randomly generated with (n; m) equal to (4,000;32,000),
(6,000;48,000), and (10,000;80,000), respectively. These
were randomly generated with the number of vari-
ables per clause varying from 3 to 6, and the clause-
weight varying from 10 to 200. (Available from
www .aucegypt .edu/faculty/abdelbar/aucsat/)

e rndw2000: A 2000-variable, 8500-clause instance ob-
tained from satlib [Holger and Stiitzle, 2000].

e Ten 100-variable, 900-clause instances, (jnh301
through jnh310), obtained from [Resende et al., 1997].

The following experiments were executed for each instance:

o The PSO model was applied to each of these instances
with ¢; = ¢ = 2, as recommended in [Shi and Eberhart,
1998b). Ten runs were executed for each of the large
instances. For the smaller jnh instances, 20 runs were
executed.

o The PSO+ model was applied to each instance with ¢; =
0.6, and ¢ = 1.1. The parameter ¢3 was set to an initial
value qb:(,O) of 1.0 and its value ¢3(t) at iteration ¢ was

made equal to
0 _ g0 (;__t)
3 3 1000

12)

1089

These PSO+ parameters are based on experiments de-
scribed in [Abdelbar and Abdelshahid, 2003]. The num-
ber of runs for each instance is the same as described for
the PSO model above.

o The Fuzzy PSO model was applied for different values of
the parameters k and ¢. For each of the larger instances,
the model was run 5 times for each value of k € {3,4,5},
and for £ varying from 1.2,1.4,...,3.0 (a total of 30
parameter pair settings). For the smaller instances, the
model was run 20 times for each parameter pair setting.

o The Fuzzy PSO+ model was also applied for different
values of k£ and ¢. The number of runs for each parameter
pair is the same as described for Fuzzy PSO above. Based
on preliminary experimentation, the ¢, and ¢ parameters
were set to 0.6 and 0.5, respectively. The ¢3 parameter
was set as described for the PSO+ model above.

o The Walk-Sat algorithm was run 5 times for each
of the large instances and 20 times for each of the
jnh instances, with its maximum number of steps
set so that its run-time is commensurate with the
other methods. We used Walser’s well-known publicly-
available (http://www.ps.uni-sb.de/~walser) implementa-
tion wsatoip.

B. Analysis of Results

Table I shows the average score (weight of clauses left
unsatisfied) of the different methods on the various instances.
For FPSO and FPSO+, performance of course depends on
the setting of k and ¢. We used the FPSO+ results of the
four larger instances to determine a “default” parameter pair
(k = 5;€ = 2.4); we will refer to FPSO+ operating with this
default parameter pair as dFPSO+. Table I presents the average
score for the following (in order of column): pure PSO, FPSO
averaged over all values of k and ¢, PSO+, average FPSO+ for
k = 3, average FPSO+ for k = 4, average FPSO+ for k = 5,
dFPSO+, and Walk-Sat.

Let us examine the results, first, for the four large instances.
For auc-3, we can see that:

o FPSO (averaged over all parameter pairs) is a small

improvement over standard PSO;

o PSO+ dramatically improves on FPSO and also improves
over Walksat;

« for FPSO+, performance is better on average the higher
the value of k, with PSO+ performing better than the
FPSO+ average for k = 3 and k = 4;

o dFPSO+ improves over PSO+ by over 12%.

The pattern is similar for the other large instances, except for
auc-2 where PSO+ is slightly better than dFPSO+ (however,
if the £ and ¢ parameters are individually optimized for
auc-2, the FPSO+ score with the parameters £k = 5 and
£ = 1.6 would be slightly better than PSO+).

The pattern for the smaller jnh instances is different:

o the performance difference between FPSO and PSO is

more substantial than for the larger instances;

o the performance difference between PSO+ and FPSO is
large but not as dramatic as for the larger instances;

TABLE |

This table shows the multiple-run average score (weight of unsatisfied clauses)
of each of the following methods (in order of column): pure PSO (P), FPSO
averaged over all parameter settings (FP), PSO+ (P+), FPSO+ averaged for
k = 3 (F3+), FPSO+ for k = 4 (F4+), FPSO+ averaged for k = 5 (F5+),
dFPSO+ (dF+), and Walk-Sat (WS). The term dFPSO+ refers to FPSO+ under
the default parameter settings of k = 5 and £ = 2.4.

name P FP P+ F3+ F4&4 F5+ dF+ WS
auc-3 238918 229657 1955 2471 2063 1782 1714 4194
auc-2 135309 126206 901 LI07 L4l 974 %05 1918
auc-1 8$5.361 77981 395 a1 385 343 300 509
rndw 38.710 34.398 917 866 86 784 74 1341
jnh301 1.741 735 62 62 63 65 54 0
jnh302 3299 1914 695 723 55 75 774 395
jnh303 2736 1575 512 501 506 s13 509 355
jnh304 3261 1.803 426 433 4 166 467 321
jnh305 3918 2494 1116 1.152 1198 1.228 1221 816
jnh306 2432 1,195 30 38 43 48 40 16
jnh307 32m2 1.734 679 685 722 749 736 540
jnh308 2930 1,369 289 288 29 297 293 130
jnh309 2.802 1308 282 219 281 280 283 276
jnh310 3.526 2,135 607 628 667 696 508 463

o FPSO+ performs better the smaller the value of k, unlike
for the large instances;

o however, FPSO+, even with (k = 3), does not improve
over PSO+ for the smaller jnh instances;

o since the default parameters were chosen with the large
instances in mind, their performance is expectedly poor
against, say, the average for (k = 3);

o for the smaller instances, Walk-Sat outperforms all the
PSO methods.

These observations tend to suggest that fuzzy PSO tends
to be more useful the harder the problem instance. They also
tend to suggest that larger values of k are more appropriate
for larger problem sizes.

C. Sensitivity to Parameter Selction

To explore how sensitive FPSO+ is to parameter selection,
we computed the score-ratio of the instance-specific worst
parameter pair (within our experimental range) to the instance-
specific best parameter pair; of the average over all parameter
pairs to the instance-best parameter pair; and of the default
pair to the instance-best pair. Table II shows these ratios
for each instance, with the first column specifying the value
of the instance-best parameter pair. The final row gives the
ratio averages for the ten smaller jnh instances; the (5;2.4)
parameter pair is used as the default for the smaller instances
even though it performs poorly for them. From the table, we
note that the ratio of the average over all parameter pairs to the
instance-specific best setting is no more than 128%, and even
the ratio of the worst to the best setting is no more than 172%.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a fuzzy generalization of particle swarm
optimization, based on allowing more than one particle in
each neighborhood to influence its neighbors, depending on
its degree of charisma. Our experimental results on max-
sat suggest that our proposed generalization improves perfor-
mance, especially for larger problem instances. The results

1090

TABLE I

How sensitive is FPSO+ to parameter selection? This table shows, for each of
the four larger instances in our test suite, the instance-specific best parameter
pair, the ratio of the average score over all parameter pairs to the score of
the instance-best parameter pair, the ratio of the score of the instance-specific
worst pair to the score of the instance-best pair, and the ratio of the default
pair (5;2.4) to the instance-best pair. We can see that the ratio of the average
over all pairs to the instance-best pair is never more than 128%, and even the
ratio of the worst to the best setting is no more than 172%.

(k: f) average worst default
) hest. best best.
auc-3 (5:2.0) 1.24 1.57 1.02
auc-2 (5:1.6) 1.16 1.37 1.01
auc-1 5:2.4) 1.28 1.72 1.00
rndw (5:1.6) 1.12 1.27 1.06
jnh (avg) | (3;1.6) 1.09 1.22 1.10

also suggest that although performance is affected by the
settings of the two parameters & and £, good performance is
possible with default parameter settings.

An extension we would like to consider in the future is
the use of the generalized bell function (of which the Cauchy
function is a special case) in the charisma MF. The generalized
bell has the form

gbell (z: @, B, 7) = ———

r—a 27 ’
1+(55°)
where increasing the additional parameter v has the effect of
making the curve flatter at the top and narrower at the bottom.
Another possible extension is to allow the value of k and ¢
(and ~ if the generalized bell is used) for each particle to
change dynamically, based on the relative performance of the
particle.

An interesting alternative for selecting which particles to be
charismatic is to choose high-fitness particles whose proposed

solution differs from that of the neighborhood-best by more
than a certain threshold.

13)

ACKNOWLEDGEMENTS

We would like to acknowledge Taysir El-Hawary and Karim
El-Gebaly for programming some of the features described
in this paper, for running some of the experiments, and for
contributing to the design of the 6 function described in
Section IV.A.

REFERENCES

[Abdelbar and Abdelshahid, 2003] A.M. Abdelbar, and S. Abdelshahid,
Swarm optimization with instinct-driven particles. Proceedings IEEE
Congress on Evolutionary Computation, 2003.

[Abdelbar and Abdelshahid, 2004] A.M. Abdelbar, and S. Abdelshahid,
Instinct-based PSO with local search applied to satisfiability. Proceedings
International Joint Conference on Neural Networks, 2004.

[Abdelbar et al., 2003] A.M. Abdelbar, S. Ragab, and S. Mitri. Applying
co-evolutionary particle swarm optimization to the Egyptian board game
Seega. Proc. CEC-03 Workshop on Genetic Programming, 2003, p. 9-15.

[Abdelbar er al.. 2004] AM. Abdelbar, S. Ragab, and S. Mitri. Co-
evolutionary particle swarm optimization applied to the 7 x 7 Seega game.
Proceedings International Joint Conference on Neural Networks, 2004.

[Abdelshahid, 2004] S. Abdelshahid. Variations of particle swarm optimiza-
tion and their experimental evaluation on maximum satisfiability. M.S.
Thesis (Ashraf Abdelbar, advisor). Department of Computer Science,
American University in Cairo, May 2004.

[Clerc and Kennedy] M. Clerc and J. Kennedy. The particle swarm—
explosion, stability, and convergence in multidimensional complex space.
IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, pp. 58-73.

[Dorigo et al., 1996] M. Dorigo, V. Maniezzo, and A. Colomi. Ant system:
optimization by a colony of cooperative agents. [EEE Transactions on
Systems, Man. and Cybernetics, Vol. 26, pp. 29-41, 1996.

[Eberhart and Shi, 2001] R.C. Eberhart, and Y. Shi. Particle swarm opti-
mization: developments, applications and resources. In Proceedings IEEE
International Conference on Evolutionary Computation, pp. 81-86, 2001.

[Franken and Engelbrecht, 2003] N. Franken, and A.P. Engelbrecht. Com-
paring PSO structures to learn the game of checkers from zero knowledge.
Proceedings 2003 IEEE Congress on Evolutionary Computation, 2003.

[Holger and Stiitzle, 2000] H.H. Hoos. and T. Stiitzle. SATLIB: An online
resource for research on SAT. In: L.P. Gent, H.V. Maaren, T. Walsh, eds.,
SAT 2000. 10S Press, 2000, pp. 283-292.

[Hu and Eberhart, 2002] X. Hu, and R.C. Eberhart. Multiobjective opti-
mization using dynamic neighborhood particle swarm optimization. In
Proceedings Congress on Evolutionary Computation, pp. 1677-1681, 2002.

[Jang et al., 1996] J.-S.R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and
Soft Computing. Prentice-Hall, 1996.

[Janson and Middendorf, 2003] S. Janson, and M. Middendorf. A hierar-
chical particle swarm optimizer. Proceedings 2003 IEEE Congress on
Evolutionary Computation, 2003.

[Kennedy and Eberhart, 1995] J. Kennedy, and R.C. Eberhart. Particle
swarm optimization. In Proceedings IEEE International Conference on
Neural Networks, Vol. 1V, pp. 1942-1948, 1995.

[Kennedy and Eberhart, 2001] J. Kennedy, and R. C. Eberhart. Swarm Intel-
ligence. Morgan Kaufmann, 2001.

[Li and Dam, 2003] X. Li, and K.H. Dam. Comparing particle swarms for
tracking extrema in dynamic environments. /[EEE 2003 Congress on
Evolutionary Computation, 2003.

[Mendes et al., 2004] R. Mendes, J. Kennedy, and J. Neves, The fully
informed particle swarm: simpler, maybe better. [EEE Transactions on
Evolutionary Computation, Vol. 8, No. 4, 2004.

[Paquet and Engelbrecht, 2003] U. Paquet, and A.P. Engelbrecht. A new par-
ticle swarm optimiser for linearly constrained optimization. /[EEE Congress
on Evolutionary Computation, 2003.

[Parsopoulos and Vrahatis, 2003] K.E. Parsopoulos, and M.N. Vrahatis. In-
vestigating the existence of function roots using particle swarm optimiza-
tion. IEEE Congress on Evolutionary Computation, 2003.

[Parsopoulos et al., 2003] K.E. Parsopoulos, E.l. Papageorgiou, PP.
Groumpos, and M.N. Vrahatis. A first study of fuzzy cognitive
maps learning using particle swarm optimization. /[EEE Congress on
Evolutionary Computation, 2003.

[Resende et al., 1997] M.G.C. Resende, L.S. Pitsoulis, and P-M. Pardalos.
Approximate solution of weighted MAX-SAT problems using GRASP. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science,
Vol. 35, pp. 393-405, 1997.

[Selman et al., 1994] B. Selman, H.A. Kautz, and B. Cohen. Noise strate-
gies for improving local search. In Proceedings National Conference on
Artificial Intelligence, pp. 337-343, 1994.

[Shi and Eberhart, 1998a] Y. Shi, and R.C. Eberhart. A modified particle
swarm optimizer. In Proceedings IEEE International Conference on Evo-
lutionary Computation, pp. 69-73, 1998.

[Shi and Eberhart, 1998b] Y. Shi, and R.C. Eberhart. Parameter selection
in particle swarm optimization. In Proceedings Annual Conference on
Evolutionary Programming, 1998.

[Stacey et al., 2003] A. Stacey, M. Jancic, and I. Grundy. Particle swarm op-
timization with mutation. In Proceedings IEEE Congress on Evolutionary
Computation, 2003.

[Trelea, 2003] I.C. Trelea. The particle swarm optimization algorithm: con-
vergence analysis and parameter selection. Information Processing Letters,
Vol. 85, 2003, pp. 317-325.

[van den Bergh and Engelbrecht, 2002] F. van den Bergh. and A.P. Engel-
brecht. A new locally convergent particle swarm optimizer. Proceedings
IEEE International Conference on Systems, Mun and Cybernetics, pp. 94-
99, 2002.

[van der Merwe and Engelbrecht, 2003] D.W. van der Merwe, and A.P. En-
gelbrecht. Data clustering using particle swarm optimization. Proceedings
IEEE Congress on Evolutionary Computation, 2003.

1091

	Fuzzy PSO: A Generalization of Particle Swarm Optimization
	Recommended Citation

	Title

