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Two-dimensional simulation of switch-on speeds in hydrogenated 
amorphous silicon thin-film transistors 

J. S. Huang and C. H. Wu 
Department of Electrical Engineering, University of Missouri-Rolla, Rolla, Missouri 65401 

(Received 1 March 1993; accepted for publication 25 June 1993) 

We report accurate two-dimensional simulations of switch-on speeds in hydrogenated 
amorphous silicon thin-film transistors. The trap charge density along, or transverse to, the 
direction of semiconductor channel is highly nonuniform and the trap filling time dominates the 
switching time as compared to the transit time, which is about four orders of magnitude smaller. 
Near both contacts, direction of the transverse current is always upwards toward the 
insulator-semiconductor interface due to the strong electric fields. However, at the central region 
of the channel, the transient current is quite complex and is discussed here. When the channel 
length varies from 2 to 10 pm, the switching-on time is of the order of 10-s s. The occupation 
function everywhere displays a partial filling of higher-energy trap states during the switch-on. 
This is in contrast to results presented by other investigators. Finally, the relationship between 
the transit time and the switch-on time with respect to the amount of trap states is discussed. 

I. INTRODUCTION 

The use of hydrogenated amorphous silicon thin-film 
transistors (a-Si:H TFT) for driving large-area active- 
matrix liquid-crystal displays has become a commercial 
reality in recent years. Most of the theoretical 
investigations’d have been centered on the static charac- 
teristics. Notably, Hack6.’ and Shur3,* and their collabora- 
tors have investigated various realistic inverted-gate device 
geometries and contacts with immense success. By com- 
parison, dynamical characteristics have not been as thor- 
oughly studied. The use of disordered materials, such as 
hydrogenated amorphous silicon, for switching devices 
presents an interesting and challenging problem to calcu- 
late the switching speeds because such calculation is out- 
side the framework of traditional transit-time theory used 
for crystalline devices. Earlier, Yue ef al. 9 asserted that the 
slow switching-on time was due to the large amount of trap 
charges present in the channel. The result is a much weak- 
ened electric field in the mid section of the channel. This 
fact, coupled with the smaller conduction-band mobility 
(13 cm2/V s), results in a much longer transit time, the 
time required for the formation of conduction channel. The 
failure of this model lies in the fact that occupation dy- 
namics of the trap states is not properly evaluated. They 
have assumed that as soon as electron density changes due 
to the applied voltage, the quasi-Fermi distribution of the 
trap states is instantaneously reached. Therefore, the 
switch-on time is determined by the time-dependent conti- 
nuity equation for electrons as in the crystalline case. 
Powell1o7” has proposed a two-fluid model from the fact 
that both initial and final trap occupation functions are 
Fermi-distribution-like and the transition from the initial 
state to the final state is exponential in time with a char- 
acteristic switching time r(e) as a function of the trap state 
energy E. This model misjudged the nature of trapping 
dynamics as we will discuss later in this work. Bullock and 
one of the authors12 were the first to evaluate complete 
dynamics of trap filling and trap emptying in one- 

dimensional geometry. In particular, a partial filling of 
higher-energy trap states during the switch-on is clearly 
shown. In this work, we present the first accurate results of 
two-dimensional simulation of switch-on times. The finite 
thickness of the semiconductor channel is such that there 
are large differences of both free-carrier and trap charge 
densities at the semiconductor-insulator interface and at 
the semiconductor-substrate interface. The switch-on time 
is then determined by the nonuniform filling of trap states 
in the entire semiconductor channel. In particular, there is 
an increased upward movement of free-carrier towards the 
semiconductor-insulator interface at the later part of the 
switch-on. In Sec. II we discuss the physical model and the 
appropriate two time-dependent equations involved for 
free-carrier density and the occupation function of trap 
states for our simulations. The reason that trap-filling dy- 
namics dominate the switch-on time is clearly demon- 
strated. The numerical method used is briefly described in 
Sec. III. Four cases of numerical computations are pre- 
sented here and discussed in Sec. IV. Section V contains 
our conclusions. 

Il. PHYSICAL MODEL OF a-Si:H TFT 

The device under investigation is an insulated-gate 
field-effect transistor (IGFET). The model is restricted to 
a single-gate device, although a similar model could be 
developed for a double-gate IGFET.’ A simple device ge- 
ometry is shown in Fig. 1. The semiconductor layer con- 
sists of a-Si:H that is generally intrinsic or mildly IZ type 
with doping concentration ND and the source and drain 
consist of a heavily doped n-type a-Si:H. Experimentally, it 
has been observed that contacts of nearly all metals with 
a-Si:H are low resistance or ohmic,13 so the source and 
drain interfaces with the semiconductor are essentially 
ohmic. 

The geometric parameters specified in the device 
model are the channel length L, the semiconductor layer 
thickness t,, and the insulator thickness rj. The material 
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FIG. 1. Device geometry of a-Si:H TFTs. 

parameters are the semiconductor doping concentration 
ND, of the channel between the source and the drain, the 
insulator and semiconductor dielectric permittivity, er and 
4, and the semiconductors diffusivity D, . The source con- 
tact (at x=0) is taken to be at ground potential. When no 
voltage is applied to the gate, the energy bands are assumed 
to be flat. When a positive-gate voltage is applied, negative 
charges are pulled from the source and the drain and ac- 
cumulated near the insulator-semiconductor interface to 
form a conducting channel. In our two-dimensional com- 
putational model, current flows between the source and 
drain contacts (i.e., x direction) and between the 
semiconductor-substrate and insulator-semiconductor in- 
terfaces (i.e., y direction). 

The two-dimensional Poisson equation can be written 
as 

8% a% P 
32+p=-E,y (1) 

where the space charge p is the sum of free electron n, 
ionized dopant N& and trap charges from donorlike states 
ND(e) and acceptor-like states NA ( E) , so that 

p=q --n+N$+ 
( .I- 

ND(E) [ 1 --f(d lde 

- 
s N.4(E)f(me f ) (2) 

where f (e,x,y,t) is the occupation function which is a 
function of trap state energy e, position (x,y), and time t 
and will be discussed later. The donorlike states can be 
approximated from experimental results as 

ND(E)= g ek”-dkl ( ) 
and similarly 

NA(E) = 2 ( ) e~+Ecve.4, 
where e,=43 meV and eA =27 meV are used-l4 

Using the dimensionless unit of potential V=qqVkT, 
the 2D Poisson equation can be written as 

a2v a2v 4” 
zz+lp=kTE, Npv-E-N;: 

- 
s 

[ND(~--f)-N’fldrl (5) 

where the free-electron density n =N,/-“, E is the dimen- 
sionless quasi-Fermi level, and 7 =qdkT is the dimension- 
less energy. 

The dynamics of the occupation function for trap 
states f can be appropriately described by a rate equation 
based on Simmons and Taylor’s theory for continuous dis- 
tributions of trap states.” The occupation of a particular 
trap level is controlled by two opposing processes of cap- 
ture into the trap and emission into the conduction band. 
Thus, 

df ;ET”OYn(l-f)-eJ, (6) 

where (T is the capture cross section, Y is the thermal ve- 
locity, and e, is the emission rate that is determined by the 
equilibrium condition so that 

e,=crvNg?. (7) 

Thus, Pq. (6) is simplified to 

4f dt=ovNp V-E[l-f(l+e~-v+E)]. 

If we consider a-Si:H as a unipolar device so that gen- 
eration and recombination effects can be neglected, then 
the time-dependent 2D continuity equation can be written 
as 

(9) 

where the hrst term of Eq. (9) contains the displacement 
current through the Poisson equation. The conduction cur- 
rent and the electron current are identical, which in the x 
direction is J, , and in they direction is Jny . J,, and J,,,, are 
given by 

aE 
Jnx= -qD,n 3~) 

(10) 
aE 

J,,,,= -qD,n a~. 

As we have shown here, there are two time derivatives, 
df/dt of Pq. (8) and dp/& of Eq. (9). In the examples 
shown later, we prove that the switching speed is domi- 
nated by the df/dt term and not by the dp/at term. This 
is the essence of disproving the transit-time theory. The 
time derivative of space charge p in Eq. (9) can be ob- 
tained from Pq. (2) to yield the current continuity equa- 
tion that is expressed in terms of variable E, the quasi- 
Fermi level, and can be written as 
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~+~(~-~)+$+~(g-~) (11) 
1 av dE 

=-- Dn x-at+” 
( s 

wD+NA) 

X [l-f(l+eV-V+E)dq] 
) 

. 

The drain current per unit length is determined by 

I 
ts 

ID==--- J&= L)dY 
0 

and the source current per unit length is given by 

Is=- J,(x=O)dy. (13) 

The gate durrent per unit length is caused by the displace- 
ment current only and is determined as 

I@== - (14) 

In our model, there are no trap charges inside the in- 
sulator, and the substrate layer is floating so that the elec- 
tric field inside is zero. The boundary conditions at the 
semiconductor-substrate interface (y=O), and the 
insulator-semiconductor interface (y = t,) for the Poisson 
equation can be determined by the continuity of dielectric 
displacement at both interfaces. The interface charges are 
neglected. Thus 

g @=t,) =; ( ‘:T v) 

s 
(15) 

Now consider the boundary conditions at these interfaces 
for the continuity equation, since Jny=O at both interfaces. 
The boundary conditions to solve Fq. ( 11) are 

and 

III. NUMERlCAL METHOD 

We note that the inclusion of a dynamical equation for 
trap occupation in Eq. (8) makes all numerical programs 
available for crystalline devices invalid for our calculations. 
In our formulation the three differential equations (2D 
Poisson equation, 2D continuity equation, and occupation 
equation of trap states) are coupled to each other. We have 
developed a new numerical scheme to solve simultaneously 
two coupled second-order 2D differential equations [Eqs. 
(5) and ( 1 1 ), and a third tirst-order nonlinear differential 
equation Eq. (S)]. The two partial differential equations 

MESH GENERATOR 

POISSON SOLVER AND 
OCCUPATION FUNCTION 

t 
CO- SOLVER AND 
OCCUPATION FUNCTION 

FIG. 2. Flow chart of the program. 

and the first-order differential equation are of the following 
form for variables K E, and J as a function of position 
(x,y), and time t 

a2v a2v 
s+q=gd V&f 1, 

=a( K&f- 1, 
(19) 

4f 
-5=g3( K-W-). 

Our two-dimensional results have been obtained using 
implicit finite-difference techniques. A nonuniform mesh 
and newly developed higher-accuracy finite difference 
equations were used to obtain an accurate solution. The 
first-order equation is solved by a single-step backward 
Euler method. The system of equations set up by the hnite- 
difference equations is solved using a Newton-Raphson 
method. The method described above has been imple- 
mented in a computer program as shown by the flow charts 
illustrated in Fig. 2. An adaptive nonuniform mesh of 
400 x 30 is used along the semiconductor channel and an 
equally spaced mesh of 100 points in the energy gap is used 
to adequately represent the continuous energy distribution 
of the occupation function. The occupation function 
f( qx,y,t) thus requires a fairly large storage memory. The 
iterative computings during the drastic change of carrier 

5233 J. Appl. Phys., Vol. 74, No. 8, 15 October 1993 J. S. Huang and C. H. Wu 5233 



density that occurs at 10-7<t<10-” s require a typical 
computing time of 100 h at each time step using an IBM 
RISC/6000 model 550 computer. 

IV. RESULTS AND DISCUSSIONS 

Equations (5), (8), and (11) aresolvedfor V,JandE 
at every point (x,y) in the semiconductor layer for a given 
time t using the f&owing input parameters: 

D,,=O.33 cm2/s, T=300 K, 

ND= lOI cmm3 , fs=10-5 cm, 

tt= 10m5 cm, E,= 11.0, and ei=3,9. 

In the first example, we show a case in which both the gate 
and drain-source voltages are turned on simultaneously 
from the equilibrium condition. At turn-on voltages of 
qDs=5 V, qG= 10 V, and the channel length L= 10 pm, 
the free-electron concentration is shown in Fig. 3 for suc- 
cessive intervals of time. At t= lo-l4 s pig. 3 (a)], the 
concentration is almost uniform as in the case of equilib- 
rium. At that interval, the Poisson equation resembles the 
Laplace equation, because no appreciable space charge has 
flowed into the layer. At t=10B9 s, the two peaks of Fig. 
3(b) near the source and the drain indicate that extra 
electrons are being drawn into the layer from the source 
and drain contact. At t= 10m6 s [Fig. 3 (c)l, which is the 
order of the transit time, the channel is only weakly 
formed. This is still far from the steady state. At t= lo-’ s 
[Fig. 3(d)], a roughly smooth layer exists except near the 
source and drain contacts. The pulled-in charges are accu- 
mulated mainly on the immediate region of the insulator- 
semiconductor interface. There is a two- to three-times dif- 
ference in the magnitude of the free-carrier density in they 
direction. The free-carrier density is still two orders of 
magnitude below the steady-state value, which is reason- 
ably reached at t> 10F4 s [Fig. 3(e)]. The free charges 
increase everywhere until tcr 10v5 s. From tss 10v5 s on, 
the region further away from the insulator-semiconductor 
interface begins to reach the steady-state value, but the free 
charges keep increasing near the interface region. This is 
achieved by an increased upward movement of free carriers 
toward the interface near the source and drain regions. At 
the steady-state condition [Fig. 3(f)], there is a difference 
of about 50 times of magnitude in the free-carrier density 
in the y direction that is exhibited. In the switch-on of 
a-Si:H TFTs, the free-carrier concentration will increase 
only in cooperation with the tilling of the trap states. This 
can be observed from the filling of the corresponding ac- 
ceptorlike states as shown in Figs. 4(a)-4(c). Note the 
similarity in the shape of each figure as compared to the 
corresponding free-carrier density figures [Figs. 3 (b) , 
3 (c), and 3 (f)], except that the order of magnitude is 
about one higher. Also note that the peak positions in the 
x direction in Fig. 4(a) are a little closer to the source and 
drain contacts than in Fig. 3 (b). We note that capturing 
time for the trap states is proportional to the inverse of the 
capture rate, and is of the order of 10-s s. Thus, when 

t<lO-* s, the acceptorlike-charge density shows a little 
“delay” compared to the free-charge density. 

The occupation function, f (e,x,y,t), depends on gap 
state energy, as well as position, (xty), in the semiconduc- 
tors’ layer. At x=O.5L and y=t,, f (e,t) is shown in Fig. 
5 at various time intervals. At time t= lo-l4 s [curve (a)], 

f is almost an equilibrium Fermi distribution. At steady 
state [curve (d)], the Fermi level Ed is shifted about 0.35 
eV toward the conduction band. However, at any interme- 
diate state a non-Fermi distribution is obtained. It is evi- 
dent that at t= 10m6 s [curve (b)], the quasi-equilibrium 
approximation, or the two-fluid model, fails to obtain the 
correct result and consequently, the correct switch-on 
time. If curve (b) is approximated by a Fermi distribution 
with a time-dependent Ed, the net effect. is that. higher- 
energy trap states are filled “completely” too quickly. 
Curve (b) clearly indicates “partially” filled higher-energy 
trap states. Thus, the quasi-equilibrium approximation 
grossly underestimates the time to reach steady state as in 
the work by Matsumura et aL9 The trap occupation dy- 
namics have also been analyzed by Van Berkel et al. l1 
However, their calculations are based on an inaccurate 
two-fluid model for the occupation function, which can be 
written as 

f (e,t) = [ f (wfo) -f (e,ef) le--t’T(E)+f (wf), 

where f (e,EfJ and ~(E,E~) are the initial and final Fermi 
distributions. This equation implies that the transient oc- 
cupation is expressible in terms of fractions of initial and 
final Fermi distributions. Clearly, it is impossible to obtain 
the results of curve (b) and curve (c) in Fig. 5 from their 
model distribution function because the partial filling is not. 
uniform over the range between efO and Ed. In crystalline 
FETs, the time-dependent continuity equation (or dn/dt 
term) determines the switch-on time, which is on the order 
of the transit time because of the drift-diffusion mechanism 
described in the transport equation. However, the dynamic 
behavior of the a-Si:H TFTs in the switch-on situation is 
determined by two distinct processes; the first is the trans- 
port of free carriers from the source and drain contacts 
(dn/dt term), and the second is the trapping into and the 
emission from the deep localized states (df/dt term). 
These two processes, or the two time derivatives, dominate 
at different time scales. From Fig. 3 we show that the 
switch-on time is at least the order of 10m4 s. Thus, the 
switch-on time of a-Si:H TFTs is determined by the cap- 
ture process of electrons described by df/dtzovn ( 1 -f >, 
which is much larger than the dn/dt term in the continuity 
equation. Therefore, the switch-on time is the time re- 
quired to fill all the trap states from the equilibrium Ed,, 
level up to the steady-state ef level, and is not the transit 
time. The f (e,t) at x=O.5L and y=O.St, is shown in Fig. 
6. From t= lo-l4 s to t= 10e6 s [curves (a) and (b)], f is 
about the same as in Fig. 5. From t= 10m5 s to steady state 
[curves (c) and (d)], it. indicates that the amount of 
higher-energy trap states filled at y=0.5ts is less than that 
at the insulator-semiconductor interface. By comparing 
Fig. 5 with Fig. 6, we observe that the accumulation of trap 
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FIG. 4. Charged acceptorlike state density for rpns= 5 V, q~o= 10 V, and 
.L= 10 pm. Each figure is for a different time: (a) 10m9 s, (b) 10m6 s, (c) 
steady state. Note the similarity in the density profile of each figure as 
compared to the corresponding free-electron figure in Fig. 3, except that 
the order of magnitude is about one higher. Also note that the peak 
positions in the x direction in (a) are slightly closer to the source and 
drain contacts than in Fig. 3(b). 

good agreement with the experimental results in Ref. 17. 
In the second example, we show a situation similar to 

the lirst example with a reduced channel length. At 
turn-on voltages of (pDs=2.5 V, qo=5 V, and the channel 
length L=2 pm, the transit time will be shown in Fig. 8 to 
be about 10-s s, which is two orders of magnitude less than 

0.8 
z 
@  
t 
5 0.6 
k 

$ 

-I 
0.86 1.29 1.72 

ENERGY GAP (eV) 

FIG. 5. Occupation function at x=O.SL, v=t,, for qos=5 V, pc= 10 V, 
and L= 10 pm. Each curve is for a different time: (a) lo-l4 s, [b) 10m6 
s, (c) lo-’ s, (d) 10e4 s to steady state. Energy of 1.72 eV is located at 
the mobility edge of the conduction band. Note the partially iilled higher- 
energy trap dstates in curve (b). 

the transit time of the first case. Note that the transit time 
formula given by t= L2/ppDs is not valid for estimating 
transit time in amorphous silicon transistors. This expres- 
sion is accurate only if the electric potential along the 
channel is fairly linear. In a-Si:H TFTs, the electric poten- 
tial in the channel varies extremely nonlinear. Near the 
source and drain contacts the electric field is very high, but 
the weak electric geld in the midsection of the channel 
causes the transit time to be much longer. In our example, 
the electric field in the source or drain regions is roughly 

0.86 1.29 1.72 
ENERGY GAP ( eV ) 

FIG. 6. Occupation function at x=0.5& y=O.5&, for pm=5 V, q,O= 10 
V, and L=lO pm. Each curve is for a different time: (a) lo-l4 s, (b) 
10W6 s, (c) lo-’ s, (d) low4 s to steady state. Comparing to Fig. 5, it is 
shown that when the location is further away from the insulator- 
semiconductor interface, the steady-state Fermi-level shit?, e/ - e/a, is 
smaller. 
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FIG. 7. Terminal currents ID, I,, and IG.per unit channel width vs time 
for pDs=5 V, qG= 10 V, and L= 10 pm. Switch-on time of about 10m3 s 
is clearly shown. 

five to six orders of magnitude higher than that in the 
midsection of the channel. Thus, the time when the two 
free-carrier density peaks merge together to form a weekly 
conducting channel [for example, Fig. 8(a)] is much 
longer than one traditionally estimates using the formula 
with linear-potential approximation. The free-carrier con- 
centration in the channel is shown in Fig. 8. At t= lo-l4 s, 
the free-carrier concentration is essentially at the equilib- 
rium value. However, at t= 10-s s [Fig. 8 (a)], which is the 
order of the transit time, the channel is only weakly 
formed. The two peaks in the figure show that electrons are 
pulled in from both the source and the drain contacts. 
Again, this is far from the steady state. As we indicated in 
the first example, a large number of electrons are required 
to fill the trap states:in order to provide the channel with 
enough free electrons. At t= lo-’ s [Fig. 8(b)], a smooth 
conducting layer exists except near the source and drain 
contacts. At t=10m4 s [Fig. 8(c)], near steady state is 
reached. Again, the pulled-in charges are accumulated on 
the immediate region of the insulator-semiconductor inter- 
face. The free-carrier concentration at steady state, in they 
direction, shows a more than two orders of magnitude dif- 
ference. By comparing Fig. 8 with Fig. 3, it is clear that 
when the channel is longer, the flat, or smooth, region of 
the free-carrier concentration is extended and the transit 
time is much larger. The filling of acceptorlike trap states 
follows a trend similar to the buildup of free electrons 
except that the amount is one order of magnitude higher, 
as shown in Fig. 9. The occupation functions at x=O.5L 
and y= ts are shown in Fig. 10 for various time intervals. In 
Fig. 10, curves (b) and (c) show a drastic change of oc- 
cupation function from t= low7 s to t= 10m6 s. This clearly 
shows how acceptorlike states are filled “gradually” in a 
manner totally different from the Fermi distribution or the 
two-fluid model. At t= low4 s, the ef reaches its steady 
state value [curve (e)]. The terminal currents I,, I,, and 
ID are shown in Fig. 11. The switch-on time is also ap- 
proximately at t= 10m3 s. This is five orders of magnitude 
greater than the transit time. We note that, in the second 
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FIG. 8. Free-carrier density for aDs=2.5 V, cpG=5 V, and L=2 pm. 
Each figure is for a different time: (a) 10B8 s, (b) lo-’ s, (c) 10e4 s to 
steady state. Here, low8 s is the transit time as compared to low6 s in 
Fig. 3(c). 

case, the transit time is about two orders of magnitude less 
than that in the first case. However, the switch-on time is 
the same order for both cases. Thus, the switch-on time is 
determined by the df /dt term, since df /dt z o-m ( 1 -f) is 
about the same for both cases. If the dn/dt term is to be 
competitive with the df/dt term, the transit time has to be 
about 10m3 s, which requires that the channel length L be 
about 1 cm in the second case. The transient behavior of 
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FIG. 9. Charged acceptorlike state density for q~~=2.5 V, qo=5 V, and 
L=2 pm. Each figure is for a different time: (a) lo-* s, (b) lo-7 s. 
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FIG. 10. Occupation function at x=OSL,y=t,for qDS=2.5 V, ‘po=5 V, 
and L=2 pm. Each curve is for a diierent time: (a) lo-l4 s, (b) lo-’ s, 
(c) 10m6 s, (d) 10m5 s, (e) 10m4 s to steady state. This shows that a 
reduced channel length does not change the relation between free-carrier 
density and charged acceptorlike state density. Note the partially tilled 
higher-energy trap states at lo-’ and low6 s. 
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FIG. 11. Terminal currents Lo, Is, and Lo per unit channel width vs time 
for qonr=2.5 V, qo=5 V, and L=2 pm. Note the switch-on time is the 
same order as in Fig. 7 with a shortened channel. 

the electron current in the x direction (J > and in the y 
direction (J,,) is quite complex. At t= loft4 s, the electric 
field is the strongest near the source and drain contacts in 
both the x and y directions. At this interval, the free-carrier 
density is almost the same as the equilibrium value. Thus, 
the total electron currents are contributed entirely by the 
drift currents. Thus, electrons are pulled in from both con- 
tacts and immediately pushed up into the insulator- 
semiconductor interface by the strong electric field. The 
magnitudes of J,, and Jn,, are about the same at this time. 
At t= 10-l’ s, J,,, current reflects a picture that electrons 
are still pulled in from both contacts and are pushed up 
into the insulator-semiconductor interface. However, the 
Jnx is now about one order of magnitude higher than the 
Jny at the same position. From t= lo-” s to t= low4 s, J, 
is one to two orders of magnitude higher than Jn,,. At 
t= lo-’ s, the transit time, J,, current, indicates that elec- 
trons are still pulled into the channel from both contacts. 
But the Jny current behaves quite differently. Since the elec- 
tric field is very weak in both directions at the central 
region of the channel, the diffusion current becomes com- 
petitive with the drift current. In the y direction, electrons 
are pushed up into the insulator-semiconductor interface 
near both contacts. But, at the central region of the chan- 
nel, electrons are pushed down from the insulator- 
semiconductor interface to the semiconductor-substrate in- 
terface. The number of pushed-up electrons is about one 
order of magnitude higher than the pushed-down elec- 
trons. This behavior continues until t= 10m4 s. At t= 10m4 
s, the peak locations where electrons are pushed into the 
insulator-semiconductor interface shifted to the region 
away from the contacts and closer to the central region of 
the channel. This is why the free-electron density has a 
significant change at tz 10e4 s. From t= lo-’ s to steady 
state, electrons are pulled in from the source contact to the 
channel, and tlow through the channel into the drain con- 
tact. Thus J, reaches a steady state value, and Jn,, ap- 
proaches zero everywhere eventually. The increase of free- 
carrier density as shown in Figs. 8 (a) through 8 (c) reflects 
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FIG. 12. Free-carrier density for ~p~=O.25 V, 1po=5 V, and L=2 pm. 
Each figure is for a different time: (a) IO-* s, (b) lo-’ s, (c) 10e4 s to 
steady state. Comparing to Fig. 8, the peak positions are more symmetric 
and magnitude of the density is higher. 

the behavior of J,, and Jny as discussed above. 
In the third example, we show a case that is the same 

as the second example, except the drain source voltage is 
reduced to 0.25 from 2.5 V. The free-carrier concentration 
is shown in Fig. 12. Comparing Fig. 12 with Fig. 8, it 
indicates that when @)Ds is decreased from 2.5 to 0.25 V, 
the amount of total pull-in charges increases two times at 
any given time, and the spatial distribution of the free- 

6x10 -’ 
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FIG. 13. Terminal currents In, I,, and Zo per unit channel width vs time 
for cpnr=0.25 V, qo= 5 V, and L=2 pm. Comparing to the second case, 
despite there is higher free-carrier density, the switch-on time remains 
-10-s s. 

carrier density is more symmetrical in the third case than 
in the second case. Note that the small ‘p,ns implies a more 
or less pure capacitance effect. The terminal currents are 
shown in Fig. 13. Again, the switch-on time is about 
1o-3 s. 

Finally, we discuss our fourth numerical computation. 
The donorlike states and acceptorlike states are the same in 
the previous three examples. To further prove that the 
switch-on time constant is determined by the capture pro- 
cess of electrons, and not by the transit time, we compute 
a case that is the same as the third example except that the 
amount of acceptorlike states is reduced by about 23% 
with ~,~=20.7 meV (Ref. 8) instead of 27 meV. The results 
verify our expectation. In this situation, the free-carrier 
density is about one order of magnitude higher than that in 
the third example and the trap charge density is only four 
times higher than the free-carrier density instead of one 
order magnitude higher as in the case of the third example. 
The net result is that both transit time and switch-on time 
are reduced approximately by 23% as compared to the 
third example, and the magnitude of the terminal current 
is increased by a factor of 5. If the trap state density is 
reduced continuously to zero, then the switch-on time is 
shortened continuously to become identical with the tran- 
sit time. 

V. CONCLUSIONS 

We present the first accurate system of 2D equations 
and numerical results for the dynamical characteristics of 
a-Si:H TFTs. We show that the time required to till the 
trap states from the equilibrium erO up to the steady state 
ef determines the switch-on time constant, which is three 
to five orders of magnitude greater than the transit time. 
During the switch-on, the occupation function is non- 
Fermi distributionlike and non-two-fluid- model-like, and 
exhibits a nonuniform partial filling of higher-energy trap 
states at any position inside the channel. This is the dy- 
namical picture that others have failed to accurately pro- 
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vide. Charges are continuously pulled in from both the 
source and the drain contacts before the steady state is 
reached and those charges are accumulated mainly at the 
immediate region of the insulator-semiconductor interface 
to exhibit a two order of magnitude difference in the trans- 
verse direction of the channel at the steady state condition. 
During the switch-on, the free and trap charges increase 
everywhere at first, and from t2; lo-’ s on, the region fur- 
ther away from the insulator-semiconductor interface be- 
gins to reach the steady state value first. Thus, the charges 
will have to keep increasing faster near the insulator- 
semiconductor interface region. This is achieved by a com- 
plex two-dimensional movement of charges toward the in- 
terface as discussed. 

Finally, we show that if the amount of trap states is 
reduced by 23%, both the transit time and the switch-on 
time are shortened linearly with respect to the trap-state 
reduction. This trend continuously approaches to a limit- 
ing case when the switch-on time becomes the transit time 
if the amount of trap states is reduced to zero. 
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