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Abstract - f i s  paper first presents a general overview of 
Adaptive Critic Designs (ACDs) and their existing control 
applications. It describes the importance of the right choice of 
utility functions for the development of critic networks and their 
convergence to the cost-to-go function 1. A closer look into the 
step by step derivation of an utility function for the design of an 
ACD nonlinear optimal neuroconmller to repladaugment the 
conventional controllers, the automatic voltage regulator and 
govemor. in a power system consisting of a generator connected to 
the power grid is described and some results are presented. 

I. Introduction 

There are numerous applications of artificial neural 
networks (ANNs) in control and hence the field of 
neurocontrol which is defined as the use of ANNs to emit 
control signals for dynamic systems. There are five basic 
schemes as argued by Werbos [l] ,  namely: the supervised 
control, direct inverse conh-ol, neural adaptive control. 
backpropagation through time (BPTT) and adaptive critic 
design (ACD). Of these schemes, only the last two are able 
to address the problem of planning or optimization over 
time. BPTT is simple and easy to implement provided an 
exact model of the dynamic system to be controlled exists. 
The method does not allow for residual errors in system 
identification. In addition to that, BF’TT requires a flow of 
information backwards from time T to time T-I. to T-2 and, 
so on. This requires exact storage of the entire time series of 
observations, therefore not suitable for real time adaptation 
especially if the truncation depth is high. 

Adaptive critic designs have recentfy emerged as a 
promising technique for nonlinear optimal control [2 - 61. 
ACDs are based on the combined concepts of reinforcement 
leaming and dynamic programming. In dynamic 
programming, the user supplies a utility function, U(.j, and 
a stochastic model of the extemal environment and using 
the Bellman’s equation of dynamic programming, given in 
(I), a secondary or strategic utility function J is calculated. 
In (1). y is called the discount factor and has a value 
between 0 and 1. 

J ( t )  =-jyuct +k) (1) 
,-a 

The basic theorem of dynamic programming is that 
maximizing J in the short term is equivalent to maximizing 
U in the long term and vice versa. Unfortunately, the 
number of computations increases exponentially with 
number of states in the environment; therefore, true 

dynamic programming is not feasible. With ACDs, it is 
possible to find an approximate solution to dynamic 
programming which is a difficult task to accomplish for 
complex problems. A network called the ‘Critic’ in ACDs 
is used to approximate the J function in (1). A family of 
ACDs was proposed by Werbos [7] and these include the 
model dependent ones: Heuristic Dynamic Programming 
(HDP) that approximates J ,  Dual Heuristic Programming 
(DHP) that approximates the derivatives of J ,  and Global 
Dual Heuristic Programming (GDHP) that approximates J 
and its derivatives, listed in order of increasing complexity 
and power [8]. Other versions of ACDs that do not use 
models called the action-dependent designs exist as well [SI. 

The selection of the utility function (I(.) and the discount 
factor y play an important role in getting the secondary 
function J to converge over time. The convergence of the 
critic network is critical in obtaining an optimal 
neurocontroller. This paper describes how the utility 
function for a power system adaptive critic’s based 
neurocontroller is obtained. Results are presented to show 
the impact of different discount factors on the critic 
network training. 

Section I1 of the paper describes adaptive critic designs 
further with emphasis given to HDP and DHP [3. 41. 
Section I11 describes the power system considered to 
demonstrate the adaptive critic based neurocontrol. Section 
IV describes the steps involved in deriving the utility 
function. Section V presents some critic convergence 
results and some power system control results. 

II. Adaptive Critic Designs 

The adaptive critic method determines optimal control 
laws for a system by successively adapting two neural 
networks, namely an Action neural network (which 
dispenses control signals) and a Critic neural network 
(which learns the desired performance index for some 
function associated with the performance index). These two 
neural networks approximate the Hamilton-Jacobi-BeHman 
equation associated with optimal control theory. The 
following subsections describe briefly the HDP and DHP 
techniques [3.4]. 

A. Heuristic Dynamic Programming 
The HDP critic network estimates the function J (cost-to- 

go) in (1). The configuration for training the critic network 
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is shown in Fig. 1. The critic network is a neural network 
trained forward in time, which is of great importance for 
real-time operation. The inputs to the critic are the 
estimared states (outputs of the model neural network), and 
their two time delayed values respectively, forming the six 
inputs. The critic network tries to minimize the following 
ermr measure over time 

(2) 

(3) 

1 
ll~ciU= 7 Ce2-i~t) 

I 

ecr ( 1 )  = J [ A Y ( f ) l -  yJ [ A Y 0  +I)] - U(r )  
where AY(f)  is a vector of observables of the plant (or the 
states, if available). The necessary condition for (2) to be 
minimal is given in (4). 

.. 

The expression for the weights' update for the critic neural 
network is as follows: 

(5)  
where q2 is a positive learning rate and Wcf is the weights 
of the HDP critic neural network. 

Fig. 1 Critic Adaptation in HDP. The same critic network is 
shown for two consecutive times, t and t+l. The critic's output 

J(t+l) at time t+l, is nccessaty to generate a target signal yJ(t+l) + 
Ut). for uaining the critic network. The discount factory is 
chosen to be 0.5. The backpropagation path i s  shown by the 

dashed line 

The same critic neural network is shown in two 
consecutive moments in time in Fig. 1. The critic neural 
network's output J ( r + l )  is necessary in order to provide the 
training signal yJ(r+l) + U(r), which is the large! value for 
J(r). The objective of the action neural network in HDP 
setup, is to minimize J in the immediate future, thereby 
optimizing the overall cost expressed as a sum of all U(r) 
over the horizon of the problem. This is achieved by 
training the action neural network with an error signal 
&(rO/dA(f). The gradient of  the cost function J(f ) ,  with 
respect to the outputs A(?), of the action network, is 
obtained by backpropagating &/a (i.e. the constant I )  

through the critic neural network and then through the 
pretrained model neural network to the action neural 
network. This gives &(rYdA(f) and &(f,J/(rydw,,(t) for all the 
outputs of the action neural.network, and all the action 
neural network's weights WA,, respectively. The action 
neural network is trained to minimize (6). The expression 
for the weights' update in the action neural network is 
based on an ermr feedback from the critic neural network 
backpropagated through the model neural network using the 
backpropagation algorithm. and is given by (7) [4]. 

(6) 
I 

[EA, 11 = 7 z e:, ( t )  
1 

where q~ is a positive learning rate and WAf is the weights 
of the HDP action neural network. 

U(f)  is the local utility function which plays a direct role 
in the HDP critic training (5)  and indirectly through the 
critic network on the action network training (7). Here, the 
value of J is a scalar and on the critic convergence J takes a 
value depending on (I), which is dependent on U(tJ and y. It 
is critical that U(r) is a true evaluation of the states of the 
plant and this is dealt with in detail in Section IV. J(t) is 
expected for a trained critic and action network to ideally be 
zero. But most of the time a non-zero value is observed. 

B. Dual Heuristic Programming 
The DHP critic neural network in Fig. 2, estimates the 

derivatives of J with respect to the vector AY, and learns 
minimization of the following error measure over time: 

l l~cz l  = & (0eC2 ( r )  (8) 
1 

where 

where $.YdAY(t) is a vector containing partial derivatives 
of the scalar (.) with respect to the components of the vector 
AY. The critic neural network's training is more 
complicated than in HDP, since there is a need to take into 
account all relevant pathways of backpropagation as shown 
in Fig. 2, where the paths of derivatives and adaptation of 
the critic are depicted by dashed lines. The adaptation of the 
DHP critic network weights based on the error given by (5). 
can be further expressed using chained derivatives by (IO). 

(10) 
The adaptation of the action neural network in Fig. 2 is to 

satisfy the goal [8] and is given by (11). The weights' 
update expression [SI. when applying backpropagation, is 
given by (12). 
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where r], is a positive learning rate and W,, is the weights 
of the action neural network in the DHP scheme. The 
structure of the action neural network is identical to that of 
the action network in the HDP scheme. The general 
derivation of the equations in this section is given in detail 
in [4]. 

In DHP, the utility function has a direct effect in both the 
critic and action neural networks' training. DHP critic 
output is the derivatives of J with respect to the model 
outputs; therefore, if the trained action is giving the optimal 
right control signal, the critic outputs should he zero. 

Fig. 2 Critic adaptation in DHP. lhis diagram shows the 
implementation of eq. (IO). lhe  same critic network is shown for 

two consecutive times. t and t+1. Backpropagation paths are 
shown by dashed lines. The output of the critic network h(t+l) is 
backpropagated through the model network from its outputs to its 

inputs. Backpropagation of the vector aU(t)/JA(t) through the 
action network results in a vector with components computed as 

the last term of eq. (IO). The summation produces the error vectoi 
e& used for training the critic network 

HI. Power System 

The synchronous generator, turbine. exciter and 
transmission system connected to an infinite bus form the 
power system called the plant (dotted block) in Fig. 3 that 
has to be controlled. Nonlinear equations are used to 
describe and simulate the dynamics of the plant in order to 
generate the data for the optimal neurocontrollers [3]. On a 
physical plant, this data would be measured. In the plant, P, 
and Q, are the real and reactive power at the generator 
terminal, respectively, Ze is the transmission line 
impedance, P,,, is the mechanical input power to the 
generator, V, is the exciter field voltage, V ,  is the infinite 
bus voltage, A@ is the speed deviation, AV, is the terminal 
voltage deviation, V, is the terminal voltage, AVm, is the 
reference voltage deviation, VM is the reference voltage, 

AP;" is the input power deviation, and P, is the turbine input 
power. The position of the switches SI and S2 in Fig. 3 
determines whether the optimal neurocontroller. or the 
conventional controller (CONVC) consisting of governor 
and AVR, is controlling the plant. Block diagrams. time 
constants. and gains of the CONVC (AVWexciter and 
turbindgovernor systems) are given in [3]. 

._ PJwt ~. - ~ ~ - -. . - - ~ -. - -. -. - - ~ ~. . -. -. . ~. . . . . -. 

Fig. 3 A power system with a synchronous generator connected to 
an infinite bus with conventional automatic voltage regulator and 
govemor conmllen (CONVC) that are augmented/replaced by a 

newocontroller 

IV. Design of Utility Function 

The design of the utility function V(r)in (1) is described 
in [9] and is repeated here. V(fJ is designed based on a 
desired response predictor which has the following 
characteristics: 

(a) It must be flexible enough to modify the 
performance of the generator. 

(b) The desired response signal must ensure that the 
generator is inherently stable at all times. In other 
words, the predictor must be stable. 

(c) The desired response signal must incorporate the 
effects of a power system stabiliser. 

The optimal predictor is designed on the basis of guiding 
the disturbed output variables, in this case the terminal 
voltage and speed, of the generator to a desired steady 
operating point or set point, in a step by step fashion. In 
other words, a desired trace of outputs from I; to ti+, can be 
predicted. based on the present and past-time values of the 
outputs. Optimal here refers to predictions of the desired 
response for the generator and ensuring its stability over a 
wide range of operating conditions. The prediction equation 
of the optimal predictor is given in (13). 

X ( k  t 1) = B , X ( k ) +  B,X(k -1) +...+ B N X ( k  - N )  (13) 
BXi = 0.1. .... N) are chosen so that any disturbed output 
variable always transfers towards the desired steady 
operating point, that is the optimal predictor is always 

globally asymptotically stable. is the value predicted for 
the next immediate time step and X can be either the 
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terminal voltage deviation AV, or speed deviation A u  
In (13). it is assumed that each output variable of the 

optimal predictor is a linear combination of the 
independently predicted output variables of the dynamic 
system. The magnitude of the coefficients,A. determine the 
magnitude of the error signal between the identifier output 
and the desired response signal (or predictor), and therefore, 
the magnitude of the error backpropagated to the controller 
to adapt its weights. 

If the output X(t)  is bounded for 0 < t < - and 
I 

(14) 

then a predictor can be designed which forces the generator, 
by means of the neurocontroller. back to desired setpoints 
[9]. The magnitude of the forcing signal depends on the 
coefficients Ai. 

The conditions defined by (14) are necessary because it is 
not possible to damp the generator to take up the required 
setpoints if its outputs are unbounded. If (14) does not hold 
then the outputs of the generator will not return to their 
setpoints after a given disturbance. The fundamental 
assumption made in this design is that it is possible for a 
controller to return a generator to its setpoints after a 
disturbance. 

Equation (13) can be re-written in the following way: 

i ( k  t I ) = a <  11(k +I)  t&  ;>(k +I)  t . .  . t yi ;t(k t l )  (15) 
where 

xi (k  t 1 )  = a i o x i ( k ) + a i , x i ( k  - l )+ . . .+a ,x , (k  - N) 
i = l , 2 ,  ..., h (16) 

The eigenfunction polynomial of (16) is 

or 
z - at0 -a&-' - aiZ.P - ... - aiNZ-N = 0 

z N + I  -atoZN -o,,zN-' -...-a, 

(17) 

(18) 

If Sio. Sir, ..., S, ( i  = 1.2 ,..., h) are, chosen inside a unit 
circle, then (15) will be globally asymptotically stable. It 
should be pointed out that 4.8, .... ( i  = 1, 2, ..., h)  in (15) 
are the qualitative coefficients, and are not relevant to the 
stability of the dynamic system. These coefficients describe 
the relationship between the desired outputs of the optimal 
predictor and the outputs of the dynamic system, and may 
be chosen according to the qualitative requirements of the 
controlled generator system. 

An optimal predictor for the generator is designed as 
follows: 

=(z -S , , ) ( z -S , , )  ... (Z -S , )  = 0 

1-0 

where ar,(i = 0, 1. 2) can be obtained by 
z3 -a , ,Z ' -a , ,Z -a , ,  = ( Z Z - S , , ) ( Z - S , , )  (20) 

S I J  and Si2 are real and inside a unit circle. azo ( i  = 0, 1, 2) 
can be obtained in the same way, 0 < Dl < 1. 

In (19). x ~ ( k t l )  and x * ( k + l )  refer to the predicted 
terminal voltage and speed deviation respectively. The 
predicted terminal voltage deviation depends on both the 
terminal voltage and speed deviation signals. The weighting 
of the speed deviation on the predicted terminal voltage 
deviation depends on the value of PI. The inclusion of the 
speed deviation signal for predicting the terminal voltage 
deviation brings in the effects of power system stabilisers. 

To find suitable values for the coefficients in (20). several 
simulations are carried out starting with small values for SiI  
and S I Z  and the response of the controller (to disturbances 
such as step changes in terminal voltage, and three phase 
short circuits) is evaluated. Small values of S f ]  and Sf2 give 
better damped responses in generator speed and voltage. 
The values SJI and SIz are increased in steps until 
acceptable voltage and speed responses are achieved. If too 
large values of SI, and Si? are used then the voltage and 
speed of the generator overshoot their setpoints. 

The predicted terminal voltage and speed deviation are 
given by (21). 

xi(k t I) = 4 A V ( k ) + 4 A V ( k  -1) t 16AV(k -2) 
+0.01[0.4A(u(k) +0.4A(u(k -1)+0.16Aw(k -2)) (21) 

x,(k t 1) = 0 . 4 A M k )  +0.4Aw(k -1) t 0.16Aw(k -2) 
It can be seen from (21) that the coefficients (4. 4. and 

16) used for the terminal voltage deviation fall outside the 
unit circle. Nevertheless, the results for the 
neurocontrollers (HDP and DHP) in the section V show that 
the large values of the coefficients used for voltage 
deviation (ar,) do not cause instability. The reasons for this 
are as follows: 
(a) The limit in (14)  applies to the terminal voltage 

deviations. The neurocontroller creates a damping 
signal only when there is a difference between the 
generator's setpoint terminal voltage and the 
instantaneous terminal voltage. The controller ensures 
that this difference becomes zero over a period of time 
and the output of (21) will then be zero even with large 
coefficients (ar,>l) for the voltage deviation terms. 

(b) The generator used in this study has an open loop 
frequency response of about 0.3 Hz to changes in 
terminal voltage setpoints, which is considered to be 
slow. Therefore the damping signal mentioned in (a) 
does not cause any oscillation about the setpoint. 

The utility function U(kj is taken to be the sum of 

squares of x l ( k t 1 )  (with = 0) and x z ( k + l ) a s  shown 
in (22). The squares are taken to ensure a positive 
utility function when deviations exist. 

(22) 
U(k) =[4AV(k) t4AV(k-I)+16AV(k -2)12 

t[0.4Ao(k)  t0 .4Aw(k -1) tO.l6Aw(k -2)12 
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V. HDPlDHP Critic and Action Network Results 

The HDP critic output (J(ij) are shown in Figs. 4 and 5 
during training with discount factors of 0.5 and 0.9 
respectively for pseudorandom binary signals (PRBS) [3.4] 
applied to the power system at 4 seconds. As the discount 
factor is increased the value of J(ij increases and vice-versa. 
As the discount factor is varied between 0 and 1, it is 
observed that for lower values of f i  the J(ij flows U(i). 

Fig. 4 HDP critic's output for the utility function in  (22) 
discount factor of 0.5 for the system undergoing constant 

perturbations 
. . . .  

i 
. . .  . . . . .  

Fig. 7 HDP critic's output for the utility function in (23) 
discount factor of 0.9 for the system undergoing constant 

perturbations 

Fig. 8 shows that the HDP critic network converges 
eventually afier undergoing training with PRBS signals for 
50 seconds for U(i) in (22) and with a discount factor of 0.5. 

Fig. 5 HDP critic's output for the utility function in (22) 
discount factor of 0.9 for the system undergoing constant 

perturbations 

A U(t) given in (23) with coefficients less than one is 
used to train the critic network and the estimated J(t) by the 
network for two different discount factors, 0.5 and 0.9, are 
shown in Figs. 6 and 7. The direct impact of this U@) is less 
cost-to-go, J(iJ but the control signal damping was not 
good enough compared to that obtained with U ( f )  in (22) 
with both discount factors (0.5 and 0.9). 

U(k)=[0.4AV(k)t0.4AV(k -1)t0.16AV(k-2)]2 

t[O.4A~(k)t0.4A~(k-I)t0.16Aw(k-2)1~ 
(23) 

Fig. 6 HDP critic's output for the utility function in (23) 
discount factor of 0.5 for the system undergoing constant 

perturbations 

discount faclor of 0.5 aner undergoing training for 50s with 
perturbations 

The DHP critic network is trained with PRBS signals first. 
The trained DHP critic's outputs (two) are shown in Figs. 9 
and 10 below. 

Fig. 9 Trained DHP critic network output #1 for the utility 
function U(fj in (22) and for a discount factor of 0.5 

The dynamic and transient operation of the HDP and 
DHP action neural network (neurocontroller) is compared 
with the operation of a conventional PID controller (AVR 
and turbine govemor), under two different conditions: * 5 %  
step changes in the terminal voltage setpoint, and a three 
phase short circuit at the infinite bus. Fig. 11 shows the 
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U 

Fig. I O  Trained DHP critic network output #2 for the utility 
function Wf) in (22) and for a discount factor of 0.5 

VI. Conclusions 

This paper has summarized the important steps in 
obtaining utility function for an adaptive critic based 
neurwontroller on a power system control problem. It is 
necessary to go through an analytical approach rather just 
taking a binary utility function with a ‘1’ or ‘0’ for 
respective plant .outputs as reported in many ACD 
applications. It is noticed that having U(t) that progressively 
increases or decreases with the plant outputs over time is 
desirable for plant and controller stability. It is also critical 
to pay attention to the discount factor since it determines 
the slope of the critic function. It is desirable for y not to be 
too small or too large in order to initiate ef ic ient  action 
network learning. It is important in the design of ACD 
based controllers to have insight into the cost-to-go and 
utility functions as the critic network is trained to 
convergence. It is anticipated that an adaptive U(t) will 
enhance critic learning and this needs to be investigated. 
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