
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2006

Speeding Up VLSI Layout Verification Using Fuzzy Attributed Speeding Up VLSI Layout Verification Using Fuzzy Attributed

Graphs Approach Graphs Approach

Nian Zhang

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
N. Zhang and D. C. Wunsch, "Speeding Up VLSI Layout Verification Using Fuzzy Attributed Graphs
Approach," IEEE Transactions on Fuzzy Systems, Institute of Electrical and Electronics Engineers (IEEE),
Jan 2006.
The definitive version is available at https://doi.org/10.1109/TFUZZ.2006.877358

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229167923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TFUZZ.2006.877358
mailto:scholarsmine@mst.edu

728 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

Speeding up VLSI Layout Verification Using Fuzzy
Attributed Graphs Approach

Nian Zhang, Member, IEEE, and Donald C. Wunsch II, Fellow, IEEE

Abstract—Technical and economic factors have caused the field
of physical design automation to receive increasing attention and
commercialization. The steady down-scaling of complementary
metal oxide semiconductor (CMOS) device dimensions has been
the main stimulus to the growth of microelectronics and com-
puter-aided very large scale integration (VLSI) design. The more
an Integrated Circuit (IC) is scaled, the higher its packing density
becomes. For example, in 2006 Intel’s 65-nm process technology
for high performance microprocessor has a reduced gate length
of 35 nanometers. In their 70-Mbit SRAM chip, there are up to
0.5 billion transistors in a 110mm2 chip size with 3.4 GHz clock
speed. New technology generations come out every two years
and provide an approximate 0.7 times transistor size reduction
as predicted by Moore’s Law. For the ultimate scaled MOSFET
beyond 2015 or so, the transistor gate length is projected to
be 10 nm and below. The continually increasing size of chips,
measured in either area or number of transistors, and the wasted
investment involving fabricating and testing faulty circuits, make
layout analysis an important part of physical design automation.
Layout-versus-schematic (LVS) is one of three kinds of layout
analysis tools. Subcircuit extraction is the key problem to be
solved in LVS. In LVS, two factors are important. One is run
time, the other is identification correctness. This has created a
need for computational intelligence. Fuzzy attributed graph is not
only widely used in the fields of image understanding and pattern
recognition, it is also useful to the fuzzy graph matching problem.
Since the subcircuit extraction problem is a special case of a
general-interest problem known as subgraph isomorphism, fuzzy
attributed graphs are first effectively applied to the subgraph iso-
morphism problem. Then we provide an efficient fuzzy attributed
graph algorithm based on the solution to subgraph isomorphism
for the subcircuit extraction problem. Similarity measurement
makes a significant contribution to evaluate the equivalence of two
circuit graphs. To evaluate its performance, we compare fuzzy
attributed graph approach with the commercial software called
SubGemini, and two of the fastest approaches called DECIDE and
SubHDP. We are able to achieve up to 12 times faster performance
than alternatives, without loss of accuracy.

Index Terms—Fuzzy attributed graph, fuzzy logic, very large
scale integration (VLSI).

I. INTRODUCTION

I N THE physical design automation of very large scale
integration (VLSI) systems, we are concerned with layout

analysis—recovering properties that the chip would have if it
were manufactured as specified by a given layout. There are

Manuscript received March 18, 2004; revised April 3, 2006. This work was
supported by the National Science Foundation and the Mary K. Finley endow-
ment.

N. Zhang is with the Department of Electrical and Computer Engineering,
South Dakota School of Mines and Technology, Rapid City, SD 57701 USA
(e-mail: nian.zhang@sdsmt.edu).

D. C. Wunsch II is with the Department of Electrical and Computer
Engineering, University of Missouri-Rolla, Rolla, MO 65409 USA (e-mail:
dwunsch@ece.umr.edu).

Digital Object Identifier 10.1109/TFUZZ.2006.877358

three kinds of layout analysis tools: first, design-rule checkers,
which detect violations of rules that govern the technology in
which the chip is to be made; second, netlist extractors and
comparators, which tell the designer what circuit is expressed
by a layout, for comparison to another representation of the
circuit; and third, parameter extractors, which provide infor-
mation about electrical characteristics that can be used for
full-scale simulation [1]. This paper focuses on designing and
implementing netlist extractors and comparators.

In these, we must perform LVS to ensure layout correctness.
After the mask layout design of the circuit is completed, the LVS
design will extract the circuit netlist description from the mask
layout, and compare it with the original circuit description to
see whether they are equivalent [2]. If they are equivalent, the
design process will move to the post-layout simulation; other-
wise the designer must go back to the mask layout to correct
the errors, such as unintended connections between transistors,
missing connections or missing devices [3]. LVS can be done in
two steps: first, known as circuit extraction, converts the layout
into a machine-readable network description; second, the ex-
tracted circuit has to be compared to a description of the orig-
inal schematic [4]. In this paper, we designed and tested the al-
gorithm for the second step.

One primary difficulty associated with an LVS process is
caused by a dissimilarity in the labeling of devices and nets
in the extracted schematic relative to the original schematic
[5]. Designers are frequently confronted with different netlists
representing the same design. For example, one netlist might
be generated from a schematic representation of a circuit,
while the other is produced by an extraction program from
a physical layout of that circuit. Inevitably, the two netlists
employ different names for the nets and devices of the circuit
and list the objects in different orders. The most efficient way to
overcome these difficulties is to identify a related collection of
interconnected primitive devices as an instance of a pattern cir-
cuit, which is usually called the subcircuit extraction problem.
If the two netlists represent different circuits, the program will
pinpoint the differences.

We can obtain either a hierarchical or a flattened netlist from
a schematic. However, when doing LVS, the circuit extracted
from the layout comes back as a flat netlist, requiring a flat-
versus-flat comparison [6]. In the layout versus schematic, two
factors are important. The first factor is the run time associated
with circuit setup and identification. The second factor is identi-
fication correctness. An excellent algorithm should have a very
good tradeoff between speed and accuracy.

Many specialized LVS algorithms have been devised, starting
as early as 1983 [4]. Early algorithms rely on the specific char-
acteristics of the technology or circuits being transformed and
are not easily applied to different technologies or circuit types,

1063-6706/$20.00 © IEEE

ZHANG AND WUNSCH II: SPEEDING UP VLSI LAYOUT VERIFICATION USING FUZZY ATTRIBUTED GRAPHS APPROACH 729

such as analog circuits [7]. Moreover, these techniques rely on
assumptions about the subcircuits being extracted and do not
generalize to allow arbitrary subcircuits to be found [8].

In 1993, graph theory was applied to the subcircuit extrac-
tion problem [9]. By treating the subcircuit extraction as the
subgraph isomorphism problem that assumes nothing about the
underlying circuits, we obtain a truly technology-independent
solution. Technology-independence means the same algorithm
can be used in many different contexts, including digital and
analog circuits, metal-oxide-semiconductor (MOS) and bipolar
technologies, and for circuits using varying levels of abstraction.

Ohlrich et al. were the first researchers to solve the subcir-
cuit extraction problem based on a solution to subgraph isomor-
phism. Their algorithm has been implemented in commercial
software called SubGemini. SubGemini works in two phases.
In Phase I, it identifies all possible locations of the subcircuit in
the main circuit. It does this by applying a partitioning algorithm
to both the subcircuit and the main circuit, in order to choose a
key vertex (K) in the subcircuit, and identify all possible ver-
tices in the main circuit that might match the key vertex. This
set of vertices is called the candidate vector (CV). Phase I acts
as a filter that tries to reduce the number of instances that need
to be checked; later, Phase II will check each instance in order
to determine if it is part of a subcircuit. Because this algorithm
replies on the assumption that the outputs of a subgraph are not
connected to its inputs, thus this algorithm is not applicable to
the shorted circuit.

More approaches were proposed [10]–[16]. Among these ap-
proaches, DECIDE [13] and SubHDP [14] approaches reported
the fastest speed against the others. The DECIDE algorithm
created by Chang et al. in 2001, adopts a recursive scheme to
achieve the identification operation. In 2002, Wunsch and Zhang
reported a neural networks-based heuristic dynamic program-
ming (HDP) algorithm, called SubHDP, for subcircuit extrac-
tion. HDP is a type of approximate dynamic programming, dis-
cussed in great detail in the literature. See [17]–[20] for a small,
but representative sample. The SubHDP approach took advan-
tage of the high accuracy and speed of trained neural nets.

Recently, we proposed a successful fuzzy attributed graph ap-
proach on subcircuit extraction [21], which demonstrated the
power of fuzzy logic for netlist comparison. In this paper, we
thoroughly present an improved fuzzy attributed graph approach
on the subcircuit extraction problem and show its superior per-
formance to all published approaches we are aware of.

The rest of this paper is organized as follows: Section II pro-
vides the notation and definitions for fuzzy attributed graph.
Section III described the subgraph isomorphism and the sub-
circuit extraction problem. Section IV first introduces the sim-
ilarity of a fuzzy attributed graph pair, then describes the cir-
cuit setup approach, followed by the subcircuit identification
process. Section V provides the experimental results. Section VI
gives the time complexity analysis and conclusions.

II. FUZZY ATTRIBUTED GRAPH

Attributed graph was introduced by Tsai and Fu for pattern
analysis [22]. It gives a straightforward representation of struc-
tural patterns. The vertices of the graph represent pattern prim-
itives describing the pattern, while the arcs are the relations be-
tween these primitives. However, the pattern often possesses

properties that are fuzzy in nature and it has been extended to
include fuzzy information into the attributes.

Each vertex may take attributes from the set
. For each attribute , it will take values from

The set of all possible at-
tribute-value pairs of the vertices is

. A valid pattern primitive is just a subset
of Lv in which each attribute appears only once, and rep-
resents the set of all those valid pattern primitives. Thus, each
vertex will be represented by an element of .

Similarly, each arc may take attributes from the set
in which each may take

values from .
denotes the set of all possible

relational attribute value pairs. A valid relation is just a subset
of La in which each attribute appears only once. The set of all
those valid relations is denoted as .

Let be a finite nonempty set of vertices and
a set of distinct ordered pairs of distinct elements in .

Definition 1: An attributed graph over , with
an underlying graph structure is defined to be an
ordered pair , where is called an attributed
vertex set and is called an attributed arc set. The
mapping and are called vertex inter-
preter and arc interpreter, respectively.

The vertex and arc interpreter is just a mapping that maps the
vertices or arcs to their corresponding attribute sets. When using
attributed graph to represent a CMOS circuit, a natural way is to
represent each node as a vertex and the relation between nodes
as arcs. Each node has an attribute of Node_type, and each re-
lation has an attribute of Edge_relation

Node type - type - type terminal

Edge relation - type-terminal

- type- terminal terminal- terminal

- type- - type - type- - type

- type- - type

With the definition of attributed graph given previously

Node type

- type - type terminal

Node type - type Node type - type

Node type terminal

Similarly

Edge relation

- type- terminal - type- terminal

terminal- terminal - type- - type

- type- - type - type- - type

Edge relation - type- terminal

Edge relation - type- terminal

730 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

Edge relation terminal- terminal

Edge relation - type- - type

Edge relation - type- - type

Edge relation - type- - type

The following equations are valid pattern primitives and re-
lations:

Node type - type and

(Edge relation - type- terminal

The matching of vertices and arcs can be determined by
equality of attributes.

Since every crisp set can be represented as a particular case of
a fuzzy set by setting the membership to 0 or 1 for all elements,
we can extend the definition to include fuzzy attributes.

In a fuzzy attributed graph, each vertex may take attributes
from the set [23]. For each attribute

, it will take values from .
The set of all possible fuzzy attribute-value pairs is

, where is a fuzzy
set on the attribute-value set . A valid pattern primitive is just
a subset of Lv in which each attribute appears only once, and

represents the set of all those valid pattern primitives. Thus,
each vertex will be represented by an element of .

Similarly, each arc may take attributes from the set
in which each may take values from

. And
denotes the set of all possible relational attribute value pairs,
where is a fuzzy set on the relational attribute value set .
A valid relation is just a subset of La in which each attribute
appears only once. The set of all those valid relations is denoted
as .

Definition 2: A fuzzy attributed graph over ,
with an underlying graph structure is defined to
be an ordered pair , where is called a fuzzy
vertex set and is called a fuzzy arc set. The mapping

and are called fuzzy vertex interpreter
and fuzzy arc interpreter, respectively [24].

With the aforementioned definition and the assumption that
the accuracy of the circuit extraction is 90%, we may have an

-type node and its possible relationship to another node rep-
resented as

Node type
- type - type

terminal
and

Edge relation
- type- terminal

- type- terminal terminal- terminal

- type- - type - type- - type

- type- - type

Fig. 1. Pattern circuit.

Definition 3: In pairing two fuzzy attributed graphs, nodes
that are paired are named core nodes; nodes that are not paired
but have branches directly connected to core nodes are named
goal nodes, and the others are named free nodes.

III. CIRCUIT GRAPH REPRESENTATION

A. Subgraph Isomorphism

The problem of subcircuit extraction can be transformed to
the subgraph isomorphism problem. A graph consists of a
finite nonempty set of points together with a pre-
scribed set of unordered pairs of distinct points of [25].
Each pair of points in is a line of , and is
said to join and . A subgraph of is a graph having all of
its points and lines in . The subgraph isomorphism problem is
defined as: Given a graph and another larger graph , to find
all the subgraphs of which are identified with .

B. Subcircuit Extraction Problem

Similarly, the subcircuit extraction problem is to determine
whether one given pattern circuit has any isomorphic circuits
in the input circuit. A 2-input NAND gate serving as the pattern
circuit is shown in Fig. 1. In Fig. 2, a netlist is shown as the input
circuit (i.e., main circuit), in which we will find the instance of
the pattern circuit. Our goal is to verify that the netlist composed
of M8, M9, M10, and M11 in the input circuit is isomorphic to
the pattern circuit.

A circuit graph contains two types of nodes: device and ter-
minal. It is a bipartite (or 2-chromatic) graph, in which device
vertices connect to only terminal vertices, and terminal vertices
connect only to device vertices. A device is represented by a
square, while a terminal is represented by a circle. Therefore,
we can convert the 2-input NAND circuit in Fig. 1 to a graph in
Fig. 3(a). If we give each node a value, Fig. 3(a) can be trans-
formed to Fig. 3(b). The integer values can be obtained from the
circuit file, which we will introduce later.

ZHANG AND WUNSCH II: SPEEDING UP VLSI LAYOUT VERIFICATION USING FUZZY ATTRIBUTED GRAPHS APPROACH 731

Fig. 2. Main circuit.

Fig. 3. (a) Graph representation of a 2-input NAND gate. A device is repre-
sented by a square, and a terminal is represented by a circle. (b) Coded graph
representation of a 2-input NAND gate. A device has a negative integer value,
and a terminal vertex has a positive integer value. These values are obtained
from the circuit file.

IV. FUZZY ATTRIBUTED GRAPH ALGORITH ON SUBCIRCUIT

EXTRACTION PROBLEM

A. Similarity of a Fuzzy Attributed Graph Pair

We apply the definition of the similarity [26] to our subcircuit
extraction problem. Assume we have a fuzzy attributed graph
pair: one is the pattern circuit graph, G1; the other is a candidate
subcircuit graph, G2. The th vertex in G1 and G2 is denoted as

and , respectively. Any node and can be represented
by a vector of and , respectively. The edge between and

in G1 can be represented by a vector of , and the edge
between and in G2 can be represented by a vector of .
Similarity between G1 and G2 is calculated with all the , ,

and . The vertex in G1 and G2 can be expressed as
and ,

respectively, where , , (, 2, 3) are

memberships of a component belonging to an -type device, a
-type device and a terminal, respectively, and

with , () being member-
ships of an edge between -type device and terminal, between

-type device and terminal, between terminal and terminal, be-
tween -type device and -type device, between -type de-
vice and -type device, and between -type device and -type,
respectively.

If is a core node in G1 and its pair node in G2 is , a
square distance between the two core nodes can be given by

(1)

where is a unified distance . For goal
nodes and free nodes in G1 and G2, since there is no pair node,
the corresponding square distances can be defined as distances
to a zero vector as follows:

(2)

(3)

A synthesis square distance caused by all nodes then can be

(4)

where is the number of core nodes, J1 the number of goal
nodes and free nodes in G1, and J2 the number of goal nodes
and free nodes in G2.

Similarly, if branches and are paired branches
(i.e., nodes and are paired with and , respectively),
a square distance between two paired branches whose both end
nodes are core nodes can be given as:

(5)

If and is the th branch pair, then can
also be represented as . Thus, (5) can also be written as

732 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

For other branches in G1 and G2, the corresponding square dis-
tances can be given by

(6)

(7)

A synthesis square distance caused by all edges can also be
given as:

(8)

where is the number of paired branches whose both end nodes
are core nodes, L1 the number of other branches in G1, and L2
the number of other branches in G2.

It is clear that both DA and DE are unified. So a similarity
measure between a fuzzy attributed graph pair can be defined
directly with

(9)

where and are properly selected parameters, which are
both set to 0.5 in our algorithm.

To determine the subgraph isomorphism between the two
fuzzy attributed graphs, we should measure how much one
fuzzy attributed graph is a part of another. We denote the
measurement as COM, shown in (10). Value “1” stands for a
complete part.

(10)

where is the number of core nodes, and and
are two fuzzy attributed graphs, consisting of

only the core nodes in G1 and G2, respectively. This notation
provides us a good way to determine the similarity between the
two graphs based on the percentage of the core nodes in each
graph. That is, if all nodes of one of the two graphs become core
nodes, then this graph is a subgraph of the larger graph; if all the
nodes of the two graphs are core nodes, then the two graphs are
equivalent.

B. Fuzzy Attributed Graph Algorithm on Subcircuit
Extraction Problem

Given two fuzzy attributed graphs G1 and G2. G1 is the pat-
tern circuit graph, and G2 is the candidate subcircuit graph. G1
has nodes, which is represented as , and G2
has nodes, which is represented as . Assume
Vdd is the start node for both graphs. Our subcircuit extraction
algorithm is partitioned into two parts: Circuit setup and subcir-
cuit identification.

TABLE I
A 2-INPUT NAND GATE REPRESENTATION IN THE CIRCUIT FILE

C. Circuit Setup

The objective is to analyze the circuit file and choose the can-
didate subcircuits. First, we read in the circuit file, and partition
the circuit. The circuit files have the following format:

type

where Mxx is the name of the MOSFET device, is the node
connected to the Mxx’s drain, is the node connected to the
Mxx’s gate, is the node connected to the Mxx’s source, is
the node connected to the Mxx’s bulk, and type denotes the
device’s type (i.e., -type or -type). For example, Table I is
part of a circuit file, and it is actually a two-input NAND gate.
“2” denotes the power (i.e., Vdd), and “1” denotes the ground
(i.e., GND).

To make the subcircuit identification process easier, we rep-
resent the Mxx (i.e., device) as a negative integer to distinguish
it from the terminal that is a positive integer. For example, since

in the ASCII character set, then expressed as a radix-10
integer, M1 becomes . In the same
manner, we convert all the transistors’ names into negative in-
tegers.

Next, we partition the circuit. The circuit can be partitioned
according to the appearance of “2” in the source column. We
read each line from top to bottom. If a line has a “2” in the
source columns, and the next line has a different value in the
source column, the program will partition these two lines into
different netlists.

Second, we choose those netlists containing four devices as
candidate netlists. This is because a two-input NAND gate con-
sists of four devices.

We now provide an example to make the whole procedure
clear. Given a raw circuit file shown in Fig. 4(a), we choose the
first five columns, and replace Mxx with a negative integer, and
thus obtain a circuit as shown in Fig. 4(b).

The raw circuit is partitioned into six netlists, as shown in
Fig. 5.

If the amount of the transistors in a netlist is four, the netlist
will be considered a candidate netlist. Thus, there are three can-
didate netlists: The first, the third and the sixth netlists. Each
netlist is equivalent to a circuit graph, as shown in Fig. 6. Al-
though we can see that Fig. 6(a) and (b) are two-input NAND
gates, and Fig. 6(c) is a two-input NOR gate, the computer does
not know. We need to identify these NAND gates in the identi-
fication procedure later. Also, these three example graphs show
that it is possible that different kinds of netlists can exist in the
candidate netlists.

In addition, it is necessary to create a Hash table. The th
column stores all the information of a node whose value is , in-

ZHANG AND WUNSCH II: SPEEDING UP VLSI LAYOUT VERIFICATION USING FUZZY ATTRIBUTED GRAPHS APPROACH 733

Fig. 4. (a) Raw circuit file. (b) Circuit after data processing.

Fig. 5. Circuit has been partitioned into six netlists.

Fig. 6. Circuit graph for a netlist. (a) Circuit graph for the netlist consisting
of devices �771, �772, �773, and �774. (b) Circuit graph for the netlist
consisting of devices�777,�778,�779, and�780. (c) Circuit graph for the
netlist consisting of devices �785, �786,�787, and �788.

cluding node type, its neighbors, and whether it has been visited
before. It plays an important role in the identification procedure
later, because of the following.

Fig. 7. (a) Column 771 in the Hash table. It stores all the attributes of device
�771 in the circuit file. (b) Column 20 in the Hash table. It stores all the at-
tributes of terminal 20 in the circuit file.

1) Since the Hash table tells us what a node’s neighbors are,
it is possible to find whether there is an edge between the
core nodes and the element in the goal node set.

2) Since the Hash table tells us how many neighbors a node
has, it is possible to find out how many edges there are from
the core node set.

3) It helps to find whether an element has been explored.
The Hash table is established as follows: The th column

stores all the information of a vertex with value . It has the
format of type weight flag neighbor neighbor . We
assume the type value for a -type device, -type device, and
a terminal is 3, 4, and 0, respectively. The weight for a terminal
is defined as: Number of -type neighbors 3 number of

-type neighbors 4; and a device’s weight is always 0. If a
vertex has been visited, then the flag is set to “1”; otherwise, it
is “0”. The length of the vector is extended to the length of Hash
table with zeros. For example, according to Table I, an -type
device 771 has all of its information in column 771, as shown
in Fig. 7(a). Assume it has not been visited. The first row is 4
because this node is an -type device, whose type value is 4;
the second row is 0 because a device’s weight is always 0; the
third row is 0 because it has not been visited; row 4 through row
six are its three neighbors. Terminal 20 has all of its informa-
tion in column 20, as shown in Fig. 7(b). Assume it has been
visited. The first row is 0 because this node is a terminal, whose
type value is 0; terminal 20 is connected to two -type devices
(and), respectively. Thus, the second row is calcu-
lated as follows: ; the third row is 1 because
this node has been visited; the fourth row and the fifth row are its
two neighbors; we add zero to the last row because this vector
is shorter than the length of the Hash table.

D. Subcircuit Identification

The objective is to identify the instances of the pattern cir-
cuit from the candidate subcircuits. We compare the fuzzy at-
tributed graphs for pattern circuit (G1) and each candidate sub-
circuit (G2). Apparently, Vdd in G1 and Vdd in G2 is a core
node pair, thus, we first put Vdd of G1 into the core node set,
CNA, and put Vdd of G2 into the other core node set, CNB.
Set the flag attribute of Vdd to “1.” The following pseudocode,
shown in Fig. 8 is to implement the subcircuit identification for
each candidate subcircuit.

The maximum SIM of the above process is the similarity be-
tween G1 and G2. The corresponding core node pairs represent
the optimal matching result.

734 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

TABLE II
EXPERIMENTAL RESULTS IN EXPERIMENT I

Fig. 8. Pseudocode for subcircuit identification using fuzzy attributed graph
approach.

For example, given the G1 (pattern circuit) and G2 (candidate
circuit) shown later, the only difference between G1 and G2 is
the missing edge between device and the node 32 in G2.
The similarity between them is found to be 0.9.

Let us take another example. The similarity between the pat-
tern circuit [Fig. 6(a)] and the candidate circuit [Fig. 6(c)] is
only 0.7.

This makes sense because the candidate circuit in the first
example is a 2-input NAND gate with a missing connection.
Since the similarity between the two graphs is not 1, it indi-
cates that the candidate circuit is not an instance of pattern cir-
cuit. However, since the similarity between G1 and G2 (i.e., 0.9)
is above the threshold value (i.e., 0.8), it is possible that the
candidate circuit is an instance of a 2-input NAND gate with
some drawing errors. On the other hand, the similarity between
Fig. 6(a) and (c) (i.e., 0.7) falls below the threshold value, thus
the algorithm would say the candidate circuit is not a two-input
NAND gate at all. This is true because the candidate circuit in
the second example is actually a two-input NOR gate.

V. EXPERIMENTAL RESULTS

We implemented the proposed approach in Matlab on Sun
Ultra Sparc II 440 MHz, 1-G RAM platform. Three experiments
were carried out to investigate the algorithm performance.

A. Experiment I

The objective is to see how well the algorithm performs with
increasing size of VLSI circuits. The number of true NAND
gates remains the same. Experimental results are shown in
Table II. G denotes the main circuit and S denotes the instance
of the pattern circuit in the main circuit. Identification time is
the time to find out all the subcircuits. Total time includes setup
time and subcircuit identification time. Run time is measured in
seconds. From Table II, it shows that the setup time increased
proportionally to the size of the input file; however, the iden-
tification time did not change. Also, our algorithm can find all
the NAND gates.

B. Experiment II

The objective is to see whether the number of true NAND
gates in the circuit file has impact on the algorithm. The
input circuits remain to be 5,000-transistor, but we increase
the number of true NAND gates in it. Experimental results
are shown in Table III. It shows that the identification time
increased proportionally to the number of NAND gates, but the
setup time didn’t change. Also, it can find all the NAND gates.

C. Experiment III

The objective is to compare our fuzzy attributed graph al-
gorithm with the commercial software called SubGemini and
two of the fastest approaches called DECIDE and SubHDP, as
shown in Table IV. DECIDE and SubHDP used the same plat-
form as that used for this approach. However, SubGemini uses
SUN 4/490 25 MHz, so we normalize the run time with a scalar
factor, ratio of the two CPU rates. The four approaches use the
same testing circuits.

In Table IV, when the main circuit has no more than 5,000
transistors, the DECIDE and SubHDP algorithms are faster
than the fuzzy attributed graph approach. However, when the
main circuit has much more than 5,000 transistors, the fuzzy
attributed graph algorithm is faster.

We then plot the results in Table IV into Figs. 11 and 12. In
Fig. 11, the circuits are no more than 100,000 transistors. The

-axis denotes the number of transistors, and the -axis denotes
the total run time. We can see that the fuzzy attributed graph ap-
proach has kept a fast run time all the way. The gap between the

ZHANG AND WUNSCH II: SPEEDING UP VLSI LAYOUT VERIFICATION USING FUZZY ATTRIBUTED GRAPHS APPROACH 735

TABLE III
EXPERIMENTAL RESULTS IN EXPERIMENT II

TABLE IV
COMPARISONS OF THE FOUR ALGORITHMS

Fig. 9. Pattern circuit (G1).

fuzzy approach and the other three approaches becomes larger
and larger with the increase of the circuit size. In Fig. 12, the
circuits are larger than 100,000 transistors. The fuzzy approach
still keeps the lowest run time.

VI. DISCUSSIONS AND CONCLUSION

A. Time Complex Analysis

In order to explain why the fuzzy attributed graph has such
an excellent performance, we analyze the time complexity for
the three experiments. Assume we have an -transistor input
circuit with instances of the pattern circuit in it. Each circuit

Fig. 10. Candidate circuit (G2).

graph can be represented as , where is the number
of vertices, and denotes the number of edges.

In the circuit setup part, finding a “2” in the source column
takes time [27]. Since we have at least “2’s” in number,
so the circuit partition takes . In the subcircuit identifica-
tion part, assume the matching time between a pair of vertices
is . Since there are vertices in a pattern circuit graph,
the worst case matching time is . Since we have at least

candidate subcircuits, so the worst case identification time is
.

Finally, we add the circuit setup time and subcircuit identifi-
cation time together. The total run time is .

736 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

Fig. 11. Comparisons among four algorithms: SubGemini, SubHDP, DECIDE, and fuzzy attributed graph when circuit is no more than 100,000 transistors. The
x-axis denotes the number of transistors in the main circuit. The y-axis is the total run time.

Fig. 12. Comparisons among four algorithms: SubGemini, SubHDP, DECIDE, and fuzzy attributed graph when circuit is larger than 100,000 transistors. The
x-axis denotes the number of transistors in the main circuit. The y-axis is the total run time.

The aforementioned analysis can explain the experimental re-
sults. In Experiment I, was increasing, but and remained
unchanged. Therefore, the circuit setup time increases propor-
tionally to the size of the input file, but the identification time
did not change.

In Experiment II, was increasing, but and remained
unchanged. Therefore, the setup time did not change, but the
subcircuit identification time increased proportional to the
number of NAND gates.

In Experiment III, , , and were all increasing, so both
the setup time and subcircuit identification time increased. The
results match well with the complexity computation,

.

B. Conclusions

The experimental results show that the fuzzy attributed graph
is an efficient approach to implement the subcircuit extraction
problem. By comparing the original circuit and the netlist ex-
tracted from the layout, the algorithm can not only find out all
the instances of the pattern circuit, but also tell how much degree
a candidate circuit is an instance of the pattern circuit. Impor-
tantly, it is the fastest algorithm over the existing commercial
software and algorithms. Its advantages become more notable
with the increase of the circuit size. This is because the fuzzy at-
tributed graph algorithm employs several effective approaches
to reduce the setup time and the identification time. First, we

ZHANG AND WUNSCH II: SPEEDING UP VLSI LAYOUT VERIFICATION USING FUZZY ATTRIBUTED GRAPHS APPROACH 737

pick only the netlists that consist of the same number of tran-
sistors as that in the pattern circuit. It helps greatly, to take out
a number of false netlists. Second, in the subcircuit identifica-
tion procedure, we terminate the program if no new core node
pair was found after one iteration. Therefore, we can diagnose
a false netlist at a very early time. Note that this algorithm used
NAND gate as the pattern circuit; however, it can be other prim-
itive gates, for example, AND gate, OR gate, buffer, and NOR
gate. This algorithm should also work for complex gates, such as
exclusive-OR (XOR), exclusive-NOR (XNOR), AND-OR-IN-
VERTER (AOI), OR-AND-INVERTER (OAI), 2-to-1 multi-
plexer, and RAM cell. This makes our fuzzy attributed graph
approach widely applicable to different circuits.

Our algorithm is the first fuzzy logic approach to solve the
subcircuit extraction problem. It has a valuable contribution to
the VLSI physical design automation, because it has superior
speed over other software on flat layout versus schematic. In ad-
dition, the successful implementation of fuzzy attributed graph
on the subcircuit extraction problem verifies the ability of fuzzy
logic on practical very large scale integrated circuits applica-
tions. The complexity analysis agrees with experimental results.

REFERENCES

[1] S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Anal-
ysis and Design, 3rd ed. New York: McGraw-Hill, 2002.

[2] M. J. S. Smith, Application-Specific Integrated Circuits. Reading,
MA: Addison-Wesley, 1997.

[3] N. A. Sherwani, Algorithms for VLSI Physical Design Automation.
Boston, MA: Kluwer, 1999.

[4] N. Zhang, D. C. Wunsch, II, and F. Harary, “The subcircuit extraction
problem,” IEEE Potentials, vol. 22, no. 3, Aug./Sep. 2003.

[5] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory
and Practice. New York: McGraw-Hill, 1995.

[6] V. D. Lehner, J. M. Cohn, and U. A. Finkler, “Pattern-matching for
transistor level netlists,” U.S. Pat. 473,881, 2002.

[7] T. Watanabe, M. Endo, and N. Miyahara, “A new automatic logic in-
terconnection verification system for VLSI design,” IEEE Trans. Com-
puter-Aided Design Integr Circuits Syst., vol. CAD-2, no. 1, pp. 70–82,
Apr. 1983.

[8] M. Boehner, “LOGEX—An automatic logic extractor from transistor
to gate level for CMOS technology,” in Proc. 25th Design Automation
Conf., Anaheim, CA, Jun. 12–15, 1988, pp. 517–522.

[9] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather, “SubGemini: Identi-
fying subcircuit using a fast subgraph isomorphism algorithm,” in Proc.
30th ACM/IEEE Design Automation Conf., Dallas, TX, Jun. 18, 1993,
pp. 31–37.

[10] F. Luellau, T. Hoepken, and E. Barke, “A technology independent
block extraction algorithm,” in Proc. 21st Design Automation Conf.,
Albuquerque, NM, Jun. 14–18, 1993, pp. 610–615.

[11] N. Vijaykrishnan and N. Ranganathan, “SUBGEN: A genetic approach
for subcircuit extraction,” in Proc. 9th Int. Conf. VLSI Design, Banga-
lore, India, Jan. 1996, pp. 343–345.

[12] Z. Ling and D. Y. Y. Yun, “An efficient subcircuit algorithm by re-
source management,” in Proc. 2nd Int. Conf. ASIC, Shanghai, China,
1996, pp. 9–14.

[13] W.-H. Chang, S.-D. Tzeng, and C.-Y. Lee, “A novel extraction algo-
rithm by recursive identification scheme,” in Proc. IEEE Int. Symp. Cir-
cuits and Systems, Sydney, Australia, 2001, vol. 5, pp. 491–494.

[14] N. Zhang and D. C. Wunsch, II, “A novel subcircuit extraction algo-
rithm using heuristic dynamic programming (HDP),” in Proc. 2002 Int.
Conf. VLSI, Las Vegas, NV, Jun. 24–27, 2002, pp. 38–44.

[15] N. Zhang, F. Harary, and D. C. Wunsch, II, “CMOS IC topology design
verification by heuristic dynamic programming,” in Proc. ANNIE ’02,
St. Louis, MO, Nov. 10–13, 2002, pp. 33–38.

[16] N. Zhang and D. C. Wunsch, II, “Comparison of decision tree ap-
proach and neural networks based heuristic dynamic programming ap-
proach for subcircuit extraction problem,” in Proc. Intelligent Com-
puting: Theory and Applications Conf. SPIE’s 17th Annu. AeroSense
Symp., Orlando, FL, Apr. 21–25, 2003, vol. 5103, pp. 143–149.

[17] D. V. Prokhorov and D. C. Wunsch, II, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[18] P. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligence Control, Neural,
Fuzzy and Adaptive Approaches. New York: Van Nostrand Reinhold,
1992, pp. 493–525.

[19] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dy-
namic programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 32, no. 3, pp. 140–153, May 2002.

[20] D. Han and S. N. Balakrishnan, “State-Constrained agile missile con-
trol with adaptive-critic-based neural networks,” IEEE Trans. Control
Syst. Technol., vol. 10, no. 7, pp. 481–489, Jul. 2002.

[21] N. Zhang and D. C. Wunsch, II, “A fuzzy attributed graph approach to
subcircuit extraction problem,” in Proc. IEEE Int. Conf. Fuzzy Systems,
St. Louis, MO, May 25–28, 2003, pp. 1063–1067.

[22] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphism of attributed
relational graphs for pattern analysis,” IEEE Trans. Syst., Man, Cy-
bern., vol. SMC-9, no. 12, pp. 757–768, Dec. 1979.

[23] M. T. M. Gary and J. C. H. Poon, “A fuzzy-attributed graph approach to
handwritten character recognition,” in Proc. 2nd IEEE Int. Conf. Fuzzy
Systems, 1993, vol. 1, pp. 570–575.

[24] K.-P. Chan, “Learning templates from fuzzy examples in structural pat-
tern recognition,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26,
no. 1, pp. 118–123, Feb. 1996.

[25] F. Haray, Graph Theory. New Delhi, India: Narosa, 1998.
[26] W.-J. Liu and M. Sugeno, “A similarity measure of fuzzy attributed

graphs and its application to object recognition,” in Proc. 5th IEEE Int.
Conf. Fuzzy Systems, 1996, vol. 2, pp. 767–772.

[27] T. H. Cormen, Introduction to Algorithms, 2nd ed. New York: Mc-
Graw-Hill, 2001.

Nian Zhang (S’00–M’05) received the B.E. degree
in electrical engineering from Wuhan University of
Technology, Wuhan, China, in 1996, the M.S. degree
in automatic control engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 1999, and the Ph.D. degree in computer
engineering from University of Missouri-Rolla, in
2004.

She has been an Assistant Professor in the De-
partment of Electrical and Computer Engineering at
the South Dakota School of Mines and Technology,

Rapid City, since August 2004. Her research interests include fuzzy logic,
neural signal processing, pattern recognition, autonomous robot navigation,
and VLSI design of neural networks.

Dr. Zhang is the recipient of Governor’s 2010 Individual Research Seed
Grant and 2003 Best Student Paper Award at the IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE 2003). She is a Member of IEEE
Computational Intelligence Society. She served as program committee member
of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’03
and FUZZ-IEEE’05) and 2006 IEEE Mountain Workshop on Adaptive and
Learning Systems (SMCals 2006), and reviewer for International Joint Confer-
ence on Neural Networks (IJCNN’02–IJCNN’06).

Donald C. Wunsch II (S’86–M’90–SM’94–F’05)
received the B.S. degree in applied mathematics
from the University of New Mexico, Albuquerque,
in 1984, the M.S. degree in applied mathematics and
the the Ph.D. degree in electrical engineering, both
from the University of Washington, Seattle, in 1987
and 1991, respectively, and the M.B.A. degree from
Washington University, St. Louis, MO, in 2006.

He is the Mary K. Finley Missouri Distinguished
Professor of Computer Engineering at the University
of Missouri-Rolla, where he has been since 1999. His

prior positions were Associate Professor and Director of the Applied Compu-
tational Intelligence Laboratory at Texas Tech University, College Station, Se-
nior Principal Scientist at Boeing, Seattle, WA, Consultant for Rockwell Inter-
national, Kirkland AFB, NM, and Technician for International Laser Systems,
Kirkland AFB, NM. He has well over 200 publications, and has attracted over
$5 million in research funding. He has produced eleven Ph.D.’s—six in elec-
trical engineering, four in computer engineering, and one in computer science.

Dr. Wunsch has received the Halliburton Award for Excellence in Teaching
and Research and the National Science Foundation CAREER Award, among
many other awards. He served as a Voting Member of the IEEE Neural Networks
Council, Technical Program Co-Chair for IJCNN 02, General Chair for IJCNN
03, International Neural Networks Society Board of Governors Member, and
2005 President of the International Neural Networks Society.

	Speeding Up VLSI Layout Verification Using Fuzzy Attributed Graphs Approach
	Recommended Citation

	Speeding up VLSI layout verification using fuzzy attributed graphs approach

